
Research Article
Molecular Subtypes Based on Cuproptosis-Related Genes and
Tumor Microenvironment Infiltration Characterization in
Colorectal Cancer

Hao Huang,1 Zhiping Long,2 Yilin Xie,3 Pei Qin,3 Lei Kuang,3 Xi Li,4 Yang Zhao,4

Xing Zhang,5 Longkun Yang,5 Wancheng Ma,6 Xiang Xiao,7 Yu Liu,1 Xizhuo Sun,1

Ming Zhang,3 Fan Wang ,2 Dongsheng Hu ,1,3,4 and Fulan Hu 3

1Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen,
Guangdong, China
2Department of Epidemiology, Public Health School of Harbin Medical University, Harbin, Heilongjiang, China
3Department of Epidemiology and Health Statistics, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
4Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
5Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of
Public Health, Fujian Medical University, Fuzhou, China
6Luohu Center for Chronic Disease Control, Shenzhen, China
7Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China

Correspondence should be addressed to Fan Wang; yifan.701@163.com, Dongsheng Hu; dongshenghu563@126.com,
and Fulan Hu; hufu1525@163.com

Received 5 August 2022; Revised 31 August 2022; Accepted 21 September 2022; Published 11 October 2022

Academic Editor: Han Han

Copyright © 2022 Hao Huang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recent studies have demonstrated the biological significance of cuproptosis modification, a newly discovered programmed cell
death, in tumor progression. Nonetheless, the potential role of cuproptosis-related genes (CRGs) in the immune landscape and
tumor microenvironment (TME) formation of colorectal cancer (CRC) remains unknown. We comprehensively assessed
cuproptosis modification patterns of 1339 CRC samples based on 27 CRGs and systematically analyzed the correlation of these
patterns with TME. The CRG-score was constructed to quantify cuproptosis characteristics by LASSO and multivariate Cox
regression methods, and its predictive capability was validated in an independent cohort. We identified three distinct
cuproptosis modification patterns in CRC. The TME immune cell infiltration demonstrated immune heterogeneity among
these three subtypes. Enrichment for multiple metabolism signatures was pronounced in cluster A. Cluster C was significantly
correlated with the signaling pathways of immune activation-related, resulting in poor prognoses. Cluster B with mixed
features possibly represents a transition phenotype or intratumoral heterogeneity. Then, based on constructed eight-gene
CRG-score, we found that the signature could predict the disease-free survival of CRC patients, and the low CRG-score
was related to increased neoantigen load, immunity activation, and microsatellite instability-high (MSI-H). Additionally, we
observed significant correlations of the CRG-score with the cancer stem cell index and chemotherapeutic drug
susceptibility. This study demonstrated that cuproptosis was correlated with tumor progression, prognosis, and TME. Our
findings may improve the understanding of CRGs in TME infiltration characterization of CRC patients and contribute to
guiding more effective clinical therapeutic strategies.
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1. Introduction

Colorectal cancer (CRC) is the third most frequent malig-
nancy and the second biggest cause of cancer-related mortal-
ity in the world [1], which has very limited treatment
options still, despite the vast amount of research undertaken.
Targeted therapies for solid tumors, such as tyrosine kinase
inhibitors and immunotherapy, have shown little benefit in
CRC [2] (except for BRAF V600E-mutated tumors [3]).
The gene expression profiles of CRC have strong clinical
relevance. The characteristics of immune cells and stromal
cells infiltrating the tumor microenvironment [4, 5], com-
bined with different subtypes of microenvironment-related
signals and inherent signals of cancer cells, have always
shown predictive value [6, 7]. In recent clinical trials, com-
bining the molecular and histological characteristics of
tumors to guide treatment has improved the prognosis of
CRC patients [8–10]. The most widely used risk assess-
ment tools are the current molecular subtype of consensus
(CMS) and the tumor lymph node metastasis staging sys-
tem (TNM). However, the current robust classification
system has limitations in predicting this highly heteroge-
neous disease [11–13]. Therefore, more factors related to
prognosis need to be considered. And the implementation
of molecular classification in the clinical decision-making
of CRC is crucial to solving various clinical problems in
CRC progression.

Cuproptosis is a novel form of programmed cell death
along with copper accumulation, protein lipoylation, and
mitochondrial respiration [14]. Cuproptosis differs from
other forms of cell death, such as apoptosis, necrosis,
autophagy, and ferroptosis, in terms of molecular process.
Copper binding causes a hazardous increase of function in
lipoylated tricarboxylic acid (TCA) cycle proteins, excess
copper increases lipoylated protein aggregation and instabil-
ity of Fe-S cluster proteins, resulting in proteotoxic stress
and cell death. As major regulators of cuproptosis, FDX1
and protein lipoylation play important roles in this process.
Copper ionophores are extremely sensitive to cells con-
ducting mitochondrial respiration, which is explained by
their high quantities of lipoylated TCA enzymes. CRC tumor
cells demonstrate aberrant mitochondrial metabolism as a
result of active oncogene and loss of tumor suppressor gene
[15], and in the tumor microenvironment (TME), aerobic
glycolysis is widely observed in activated immune cells, to
support biosynthetic demands [16]. The TME is now well
recognized as playing a critical role in carcinogenesis and
cancer development. Mitochondria serve as an intriguing
target for cancer therapy since they govern the bioenergetics,
biosynthesis, and signaling organelles of cancer cells [17, 18].
Cuproptosis, a kind of programmed cell death that varies
from apoptosis, is likely to offer fresh hope for CRC tumor
therapy. Despite this, little is known about the involvement
of cuproptosis-related genes (CRGs) in prognosis and the
tumor microenvironment. As a result, a thorough under-
standing of the features of TME immune cell infiltration
mediated by numerous CRGs should help researchers better
understand the underlying mechanism of CRC carcinogene-
sis and predict immunotherapy response.

The goal of this study is to evaluate the prognostic value
and numerous functions of CRGs in the TME in a system-
atic way. According to The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) datasets, 1339 CRC
samples were divided into three cuproptosis subtypes based
on 27 CRGs, and the differences in survival and immune cell
infiltration of these subtypes were explored. Patients were
subsequently divided into two gene subtypes based on three
cuproptosis subtypes’ differentially expressed genes (DEGs).
Additionally, a CRG-score was established to quantify the
cuproptosis characteristics of a single tumor. The findings
revealed that the CRG-score is a powerful prognostic marker.

2. Materials and Methods

2.1. Data Sources. Figure S1 in the Supplementary Material
online depicts the research design used in this investigation.
The public databases GEO (https://www.ncbi.nlm.nih.gov/
geo/) and TCGA (https://portal.gdc.cancer.gov/) were used
to get open CRC gene expression datasets with clinical
information and survival outcomes. For the following
analyses, a total of six datasets were obtained, containing five
datasets from the GEO datasets (GSE17536, GSE39582,
GSE17537, GEO161158, and GSE38832) and one from the
TCGA CRC dataset (Table 1). Background correction and
normalizing of CEL data received from GEO were
performed using Robust Multichip Average with quantile
normalization. For normalized counts, the FPKM format of
RNA-seq data from the TCGA cohort was transformed to
log2(TPM+1). GSE17536, GSE17537, GSE39582, GSE38832,
and TCGA CRC datasets were pooled, and a batch
correction was conducted using the ComBat method.
Subsequent analyses involved a total of 1339 CRC patients.
Age, sex, TNM stage, BRAF mutation, KRAS mutation,
mismatch repair (MMR) status, follow-up period, and
survival status were incorporated among the clinical factors.
The open-source R/Bioconductor programs were used to
handle and analyze all of the data.

2.2. Consensus Clustering and Pathway Enrichment Analysis of
CRGs. Twenty-seven CRGs were retrieved from the research
of Tsvetkov et al. with a false discovery rate ðFDRÞ < 0:05 as
a filter condition [14]. Tables S1 and S2 provide all of the
information on these genes. Unsupervised clustering analysis
was utilized to categorize CRC patients into different
molecular subgroups based on CRG expression using the
“ConsensusClusterPlus” package in the R studio program. A
consensus clustering approach was performed to estimate
the number of clusters [19]. Furthermore, the hallmark gene
sets (c2.cp.kegg.v7.4.symbols) were also obtained from the
Molecular Signatures Database (MSigDB) database, and the
activity of signaling pathways was further accurately assessed
by a gene set variation analysis (GSVA) algorithm in each
subtype. The possible relationship between subtypes and
disease-free survival (DFS) was investigated using Kaplan–
Meier survival curves.

2.3. CRC Immune Landscape. CIBERSORT (https://cibersort
.stanford.edu/) was used to examine the relative number of
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22 immune cells in 1339 CRC samples to better understand
their immunological features. We assessed the quantity of
distinct immune-infiltrating cell subtypes in each sample
based on the gene expression matrix of 1339 samples and
the supplied gene expression feature set of 22 immune cell
subtypes. The differences in the percentage of immune cells
were analyzed using the Wilcoxon rank-sum test in each
subtype. We also further observed the differential expression
levels of PD-1, PD-L1, and CTLA4 among these subtypes.

2.4. Construction and Validation of CRG-Score Based on
DEGs. With a fold − change > 1:5 and an adjusted P value
of 0.05 as filter conditions, the DEGs among the cuproptosis
clusters were discovered by the limma R package. Following
that, the functional annotation of the DEGs was done with
the “clusterProfiler” software, and then Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis were performed to clarify the
biological function of these DEGs. The findings of unsuper-
vised cluster analysis were utilized to identify possible gene
categories after detecting prognosis-associated DEGs using
univariate Cox regression. Finally, CRC patients were allo-
cated in a 1 : 1 ratio to the training (n = 670) and testing
(n = 669) groups, and a CRG-score related to cuproptosis
was created. To reduce the overfitting of recurring character-
istics and restrict the range of genes predicting DFS, LASSO
Cox regression was used with the R “glmnet” package. The
penalty parameter’s optimal values were established using
the 10-fold cross-validation approach. Following that, the
CRG-score was calculated using a multivariate Cox regres-
sion analysis.

CRG score = 〠
n

i=1
Coefi ∗ Expri, ð1Þ

where Expri expressed the signature genes and the multivari-
ate Cox regression calculated the Coefi coefficient. The
patients were separated into low CRG-score and high CRG-
score groups using the median CRG-score as the cut-off value,
and then Kaplan–Meier survival analysis was performed.

2.5. TME, Mutation, and Drug Susceptibility Analysis Based
on CRG-Score. The TME differences between the low- and
high-risk groups were investigated using the relative propor-
tions of 22 kinds of immune cells identified and determined
using CIBERSORT. Each CRC patient’s tumor mutation
burden (TMB) score was calculated in high- and low-risk

groups. Meanwhile, based on maftools approach, a waterfall
plot was created to show the number of variations and muta-
tion distribution of the most often mutated genes in each
sample. We also observed the links between the two risk
groups and microsatellite instability (MSI), as well as cancer
stem cells (CSC). The difference in semi-inhibitory concen-
tration (IC50) values of common CRC chemotherapeutic
medicines between the low and high CRG-score groups
was calculated using the ‘pRRophetic’ software.

2.6. Statistical Analyses. The random stratified sampling was
carried out using R’s sample function. Meanwhile, the pheat-
map and maftools packages in R were used to characterize
the DEGs heatmap and mutation landscape, respectively.
One-way ANOVA and Kruskal-Wallis tests were used to
determine the significance of differences between three or
more groups. The Wilcoxon test was utilized to compare
the differences between the two groups. The correlation
coefficients were calculated by the Spearman and distance
correlation analysis. The log-rank tests and Kaplan–Meier
survival analysis were created using the survminer R pro-
gram. A P value of less than 0.05 was considered statistically
significant for all two-sided statistical P values. R version
4.1.1 was used for all statistical analyses, and no default set-
tings were utilized in any of the investigations.

3. Results

3.1. Genetic Mutation Landscape of CRGs in CRC. Based on
the study by Tsvetkov et al., we first identified 27 CRGs
through a whole-genome CRISPR-Cas9 positive selection
screen using two copper ionophores (Cu-DDC and Elesclo-
mol-copper) in cells (Figure 1(a)). Then, we analyzed the
mutational landscape of the CRGs in the TCGA-CRC data-
sets. As depicted in Figure 1(b) 95 of 535 (17.76%) CRC
samples presented genetic mutations among the 27 CRGs.
Furthermore, we explored the mutational incidence of copy
number variation (CNV), indicating that 27 CRGs demon-
strated evident CNV alterations (Figure 1(c)). Among them,
SLFN11, SOX2, YEAST2, AHR, MPC1, HAUS5, AFG3L2,
COQ7, LIPT1, PDHA1, and GLS had widespread CNV
increases, while MCUR1, OXAL1, LIAS, MBTPS1, BRPF1,
REXO2, RPL3, CAPRIN1, FDX1, CDKN2A, DLAT, PDHB,
and SCAP showed CNV decreases. Figure 1(d) displayed
the site of CNV alterations of 27 CRGs on chromosomes.
We also analyzed the expression levels of CRGs in CRC
and normal tissues and discovered that most CRG

Table 1: Overview of the datasets used in this study.

Dataset Source Assay Sample type Number of samples

Training set+testing set

TCGA CRC Infinium Tissue CRC = 503
GSE17536 HG-U133 plus 2.0 Tissue CRC = 145
GSE17537 HG-U133 plus 2.0 Tissue CRC = 42
GSE39582 HG-U133 plus 2.0 Tissue CRC = 557
GSE38832 HG-U133 plus 2.0 Tissue CRC = 92

Validation set GSE161158 HG-U133 plus 2.0 Tissue CRC = 191
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Figure 1: Continued.
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expression levels were linked to CNV changes (Figure 1(e)),
and CRGs with CNV gains, such as YEATS2 and AHR, were
significantly elevated in CRC samples.

3.2. Identification of Cuproptosis Subtypes in CRC. This study
enlisted 1339 CRC patients from five suitable cohorts (TCGA-
CRC, GSE39582, GSE17536, GSE17537, and GSE38832) for
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Figure 1: Multiomics analyses of CRGs in TCGA CRC data. (a) Whole-genome CRISPR-Cas9 positive selection screen using two copper
ionophores (Cu-DDC and elesclomol-copper) in cells. Overlapping hits with a false discovery rate (FDR) value < 0:05 were analyzed. (b)
Mutation frequencies of 27 CRGs in 535 patients with CRC from TCGA cohort. (c) Frequencies of CNV gain, loss, and non-CNV
among CRGs. (d) Locations of CNV alterations in CRGs on 23 chromosomes. (e) Expression levels of 27 CRGs between normal and
CRC tissues. Red gene names present CNV gains, blue gene names represent CNV loss, and black gene names represent CNV constant.
CRGs: cuproptosis-related genes; CRC: colorectal cancer; TCGA: The Cancer Genome Atlas; CNV: copy number variant.
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the following analysis. With Kaplan–Meier survival analysis
and univariate Cox regression, the prognostic values of 27
CRGs in CRC patients were discovered (Table S3). The 27
CRGs were then assembled into a network map, allowing for
a thorough examination of the genes’ interactions and
interconnections, as well as their influence on the prognosis
of CRC patients (Figure 2(a)). We further conducted
unsupervised clustering on 1339 CRC samples by the
consensus clustering algorithm and identified three subtypes,
including clusters A (n = 653), B (n = 171), and C (n = 515)
(Figures 2(b) and 2(c), S2, and Table S4). Prognostic analysis
for the three distinct phenotypes showed obviously survival
advantage in the A subtype and survival inferiority in the B
and C subtypes (Figure 2(d)). We also analyzed the genomic
expression and clinicopathological factors across three
clusters, as shown in Figure 2(e), and some genes like PDHA1,
AHR, SOX2, and SLFN11 showed significant differential
expression levels, but none of the clinicopathological features
were significantly different.

3.3. Characteristics of the TME in Different Subtypes. We
used GSVA enrichment analysis on the three subtypes to
observe whether there were any changes in biological behav-
ior between them (Figure 3(a) and Table S5). Cluster A and
cluster B, cluster A and cluster C, and cluster B and cluster C

were compared in terms of enrichment analysis, respectively.
We observed that enrichment for multiple metabolism
signatures was pronounced in cluster A, including pyruvate
metabolism, pentose phosphate pathway, and citrate cycle
TCA cycle. In contrast, cluster C showed enrichment in
terms of pathways associated with immune activation, such
as the activated JAK-STAT signaling pathway, TOLL/NOD-
like receptor signaling pathways, and antigen processing and
presentation. Following TME cell infiltration investigations
(Table S6), as shown in Figures 3(b) and 3(a), significant
enrichment difference in most immune cells was observed
among the three clusters. In cluster A, significant immune-
infiltrating cells were plasma cells, T cells CD8, T cells CD4
memory resting and activated, and NK cells resting. Cluster C
was enriched with macrophages, neutrophils, and eosinophils.
Cluster B had an immune cell infiltration level that was
halfway between clusters A and C. Similarly, CTLA4, PD-1,
and PD-L1 expression levels were found to be higher in
cluster C (cluster C vs. cluster A), when three critical
immunological checkpoints were examined (Figure 3(c)). We
utilized the ESTIMATE method to get TME scores (stromal
score, immune score, and estimate score) in the different
clusters, and TME scores could evaluate the amount of
immunological and stromal components in TME. CRC
patients in cluster C had higher TME scores, according to the
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Figure 2: The clinicopathological and biological characteristics in distinct CRG subtypes. (a) The Interaction analysis among CRGs in CRC.
The line of the CRGs represents their interaction and the line thickness indicates the strength of the correlation between genes. Blue and
pink represent negative and positive correlations, respectively. (b) Consensus analysis defining three CRGs clusters (k = 3) and
correlation area. (c) The PCA analysis among three CRG cluster subtypes. (d) The Kaplan–Meier survival analysis for CRC patients of
three subtypes associated with DFS. (e) Heatmap analysis in clinicopathologic features and expression levels of CRGs among three
distinct subtypes. CRG: cuproptosis-related genes; CRC: colorectal cancer; PCA: principal components analysis; DFS: disease-free survival.
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Figure 3: Correlations of tumor immune microenvironment with three CRG subtypes. (a) GSVA of biological pathways among three
distinct subtypes in five datasets, where red and blue represent activated and blue inhibited pathways, respectively. (b) Abundance of 22
infiltrating immune cell types in three CRG subtypes. (c) Expression levels of PD-1, CTLA4, and PD-L1 among three CRG subtypes. (d)
Difference of TME score among three CRG subtypes. CRG: cuproptosis-related genes; GSVA: gene set variation analysis; TME: tumor
microenvironment.
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findings (Figure 3(d)). Up to a point, the higher TME scores in
cluster C can indicate tumors in cluster C patients have higher
interactions between stromal cells and immune cells.

3.4. Development and Validation of a Gene Signature Based
on Cuproptosis-Related Clusters. We identified the DEGs
between clusters A and C (P < 0:05) in order to further
investigate the probable biological role of the cuproptosis
subtypes in CRC, and 702 genes were retrieved. Then, using
the “clusterProfile” package, we performed GO and KEGG
enrichment analysis and discovered that these DEGs are
strongly correlated with immune biological processes
(Figures 4(a) and 4(b) and Table S7). Following that, 428
prognosis-related genes were identified using univariate
Cox regression analysis for these 702 cuproptosis subtype-
related genes. Then, based on the 428 prognosis-related
DEGs, a consensus clustering technique was used to divide
patients into two genomic subgroups, which were dubbed
gene clusters I and II, respectively (Figure 4(c), S3, and
Table S8). On the basis of DEG expression levels, we
discovered that the two gene subtypes could be
distinguished considerably (Figure 4(d)). Furthermore,
CRC patients in gene cluster II had a worse DFS than
those in gene cluster I, according to the survival analysis
(Figure 4(e)). Meanwhile, we found the expression levels of
the majority of CRGs (22/27) were significantly different
between the two gene subtypes (Figure 4(f)).

To establish a model that could quantify each CRC
patient, we assigned randomly CRC patients to a training
cohort (n = 670) or a testing cohort (n = 669) at a ratio of
1 : 1. Then eight of the 428 DEGs were retained by application
of LASSO regression and multivariate Cox regression models
(Figure S4 and Table S9). We used these eight genes to build
a cuproptosis-related signature score which we named the
“CRG− score”= (−0:469× expressionlevel of KLRD1)+ (0:28
1× expression level of SMARCA1)+ (0:185× expression level
of SCG2)+ (0:263× expression level of SERPINE1)+ (0:227 ×
expression level of HS3ST2)+ (−0:230× expression level of
CXCL10)+ (−0:217× expression level of SELENBP1)+ (−0:14
8× expression level of MMP12) (Table S10). We divided CRC
patients into high and low CRG-score groups with the cut-off
value of the median. We further observed molecular subtype
distributions with different CRG-score and DFS outcomes in
Figure 5(a), and found that the low- and high-risk CRG-
score was significantly differential in the cuproptosis clusters
and gene clusters (Figures 5(b) and 5(c)).

Then, in the training and testing sets, we sought to
establish the possible predictive value of each CRC patient’s
CRG-score (Figures S5 and S6). The Kaplan–Meier survival
curves in two datasets demonstrated that CRC patients with
low risk had a considerably better disease-free survival than
those with high risk (log-rank test, P < 0:001; Figure 5(d)).
Furthermore, for 1-, 3-, and 5-year survival rates, the AUC
values of CRG-score were 0.701, 0.724, and 0.687,
respectively (Figure 5(e)). To validate the applicability and
generalizability of the CRG-score, we further verified this
score in an independent cohort with a total of 191 CRC
patients (GSE161158) and obtained the same results
(Figure S7). We further included CRG-score as an effective

indicator and other clinical characteristics in univariate
and multivariate Cox regression analysis and found that
CRG-score could be recognized as an independent factor
that predicts the prognosis of CRC patients (Table 2).
Additionally, we also created a predictive nomogram based
on the CRG-score and clinicopathological parameters to
predict the 1-, 3-, and 5-year DFS status of each patient in
the training and testing sets, and calibration plots revealed
that the constructed nomogram performed similarly to an
ideal model (Figures S8a, S8b, S8d, and S8e). Meanwhile, in
the training and testing sets, we also evaluated the prediction
accuracy of the CRG-score with clinicopathological markers,
and the findings revealed that our signature’s AUC was
better than that of other clinical criteria (AUC = 0:723)
(Figures S8(c) and S8(f)).

3.5. Correlation of CRG-Score with TME, TMB, MSI, and
CSC Index and Drug Susceptibility. We discovered that
CRG-score might play an essential role in clinical prediction
based on these findings. Then we observed whether the
CRG-score may be used as a guide for treatment, particu-
larly immunotherapy. With different CRG scores, we looked
at TME cell infiltration. First, when the CRG-score grew, the
immuneScore from ESTIMATE analysis decreased, but the
stromalScore had the reverse impact (Figure 5(f)). Further-
more, immunological activation-related cells such as T cells
CD8, NK cells, and macrophages M1 had significant
negative correlations with CRG-score (P < 0:001), but M2
macrophages had a positive connection with CRG-score
owing to polarization (P < 0:001) (Figure 5(g)). Further-
more, we discovered that the majority of immune invading
cells were highly associated with the eight CRG-score genes
(Figure 5(h)).

TMB and MSI were important predictors of tumor
immune response and played an indispensable role in carci-
nogenesis and progression. As a result, we investigated the
function of MSI and TMB in the CRG-score in greater
depth. Low CRG-score was connected with MSI-H status,
whereas the high CRG-score was associated with microsatel-
lite stable (MSS) status, according to correlation studies
(Figures 6(a) and 6(b)). The Spearman correlation analysis
revealed a weak correlation between CRG-score and TMB
(R = −0:15) (Figure 6(c)), and no significant difference in
TMB between the low-risk and high-risk groups (Figure 6(d)).
As a result, we looked at the changes in somatic mutation dis-
tribution in the CRG-score signature. We observed the top 20
somatic mutation genes with high mutational frequencies in
TCGA CRC cohort and found no significant changes in
TMB or mutation types between the high and low CRG-
score groups (Figures 6(e) and 6(f)).

In addition, CRG-score was shown to be inversely linked
with the CSC index in Figure 6(g), showing that CRC cells
with a lower CRG-score exhibited more unique stem cell fea-
tures and a lower degree of cell differentiation (R = −0:38,
P < 0:001). Then, we chose chemotherapeutic drugs com-
monly used in CRC treatment to observe how sensitive
individuals in low- and high-risk categories were to them.
Interestingly, CRC patients with a high CRG-score had
lower IC50 values for shikonin, whereas
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chemotherapeutics including sorafenib, ABT.888, and gefi-
tinib had considerably lower IC50 values in the low CRG-
score group (Figure 6(h), S9).

4. Discussion

Despite the introduction of the term cuproptosis, the cellular
processes, overall impact, and TME infiltration features
mediated by the combined actions of numerous CRGs have
yet to be thoroughly understood in CRC. The 27 CRGs were
studied in terms of prognostic value, functions in the
immune microenvironment, and putative regulatory mecha-

nisms in CRC in this work. Despite the low mutational
intensity of CRGs, the majority of CRGs (22/27) were found
to be differently expressed between normal and malignant
tissues, with a total of 22 genes having substantial prognostic
significance. The finding of differences in expression levels of
CRGs indicated the latent function of CRGs in CRC tumor-
igenesis. We then divided CRC patients into three cupropto-
sis subgroups (Clusters A, B, and C) using the unsupervised
clustering approach. Cuproptosis clusters were connected to
distinct cellular metabolism-related signaling pathways and
immunological infiltrations, and were shown to be indepen-
dent of clinicopathological characteristics. As a result, we
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Figure 4: Identification of CRG-related gene subtypes. GO (a) and KEGG (b) enrichment analyses of DEGs between cuproptosis clusters A
and C. (c) Consensus analysis defining two gene clusters (k = 2) and correlation area. (d) Heatmap analysis in clinicopathologic features and
expression levels of CRGs between two distinct gene subtypes. (e) The Kaplan–Meier survival analysis for CRC patients of two gene subtypes
associated with DFS. (f) Differential expression levels of 27 CRGs between two gene subtypes. GO: Gene Ontology; KEGG: Kyoto
Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; CRG, cuproptosis-related genes; DFS: disease-free survival.
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found two gene clusters with diverse immunological activi-
ties and roles based on DEGs connected to the subgroups'
signature. By LASSO and multivariate Cox regression
models, CRG-score was also constructed to quantify the

cuproptosis gene subgroups. In the TME, MSI, CSC index,
and drug susceptibility, CRC patients with low- and high-
risk scores had significantly different prognoses. Specifically,
when compared to standard clinical markers like the TNM
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Figure 5: Construction, validation, and evaluation of CRG-score model. (a) Alluvial diagram of subtype distributions in groups with
different CRG-scores and DFS. (b) Differences in CRG-scores between cuproptosis clusters A and C. (c) Differences in CRG-scores
between two gene subtypes. (d) Kaplan–Meier curves analysis for DFS of CRC patients between high-risk and low-risk groups in the
training and testing sets. (e) ROC curves of the CRG-scores to demonstrate the sensitivity and specificity in predicting the DFS of CRC
patients from training and testing sets. (f) Differences in TME score between two gene subtypes. (g) Ranked dot and scatter plots
showing the correlation between CRG-score and 22 infiltrating immune cell types. (h) Correlations between the abundance of immune
cells and eight genes from the CRG-score model.

Table 2: Univariate and multivariate Cox regression analysis of cuproptosis-related genes in datasets.

Variables
Training dataset Testing dataset Validation dataset

95% CI 95% CI 95% CI
HR Lower Upper P HR Lower Upper P HR Lower Upper P

Univariate analysis

Age

≥ 65 vs. < 65 years 0.761 0.552 1.050 0.096 0.857 0.629 1.169 0.330 0.658 0.461 0.939 0.021

Sex

Male vs female 0.786 0.567 1.090 0.148 0.868 0.635 1.187 0.376 0.803 0.559 1.153 0.234

TNM stage

III+IV vs. I+II 2.473 1.764 3.465 < 0.001 2.711 1.967 3.737 < 0.001 3.246 2.228 4.730 < 0.001

CRG-score

High vs. low risk 2.134 1.668 2.730 < 0.001 1.443 1.163 1.789 0.001 1.127 1.070 1.188 < 0.001

Multivariate analysis

Age

≥ 65 vs. < 65 years

Sex

Male vs. female

TNM stage

III+IV vs. I+II 2.285 1.628 3.208 < 0.001 2.654 1.924 3.659 < 0.001 3.153 2.156 4.610 < 0.001

CRG-score

High vs. low risk 2.008 1.545 2.609 < 0.001 1.388 1.113 1.732 0.004 1.132 1.067 1.201 < 0.001
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stage, the CRG-score outperformed them in predicting
patient prognosis.

Cuproptosis is a kind of cell death that is dependent on
copper and protein lipoylation [14]. It differs from other
types of cell death. Copper levels are very high in CRC
patients’ serum and tissue [20–23]. Furthermore, cancer cells
have elevated copper concentrations, which are thought to
be critical for angiogenesis and metastasis [24]. Cuproptosis
is therefore anticipated to play a key role in the establish-
ment and progression of neoplasms. Our findings consistently
showed that differences in mRNA transcriptomes between dif-
ferent cuproptosis subtypes were significantly related to metab-
olism and immune-related biological pathways, such as patients
with cluster A had more metabolism reprogramming features
and better DFS, and patients with cluster C had higher TME
scores and showed enrichment in pathways associated with
immune activation. The cuproptosis-related prognostic signa-
ture was found to be a good predictor of CRC patients’ progno-
sis. These results indicate that the cuproptosis could lead to
different biological behaviors in CRC patients, confirming the
existing conclusions.

According to mounting evidence, the TME of CRC plays
a critical role in tumor progression, invasiveness, metastasis,
drug resistance, and even the maintenance of the cancer
stem-like phenotype [25], which is primarily mediated by
immune cells (macrophages, T cells, B cells, and so on),
cytokines, chemokines, and exosomes [26]. Throughout can-
cer development, the TME constantly alters with great com-
plexity. Immune interaction is a fundamental characteristic
of CRC and a potential treatment target. The key compo-
nents of TME are stromal cells and immune cells, and
immune and stromal scores are linked to colorectal cancer
clinical features and prognosis [27, 28]. The immune-
related cuproptosis pattern (cluster C) was linked with a
higher CRG-score in the current study, whereas the meta-
bolic reprogramming pattern (cluster A) was associated with

a lower CRG-score. The TME features and relative abun-
dance of 22 tumor-infiltrating immune cells changed consid-
erably between the low- and high-risk CRG-score groups,
according to our findings. This data points to the impor-
tance of CRGs in the evolution of CRC. TILs (tumor-infil-
trating lymphocytes) are a kind of immune cell that
infiltrates tumors. They are made up of CD4T cells, CD8T
cells, B cells, and NK cells, among other T cell subpopula-
tions. TILs can help in tumor immune evasion as well as
tumor detection, destruction, and eradication [29]. Plasma
cells, T cells CD8, T cells CD4 memory resting and activated,
and NK cells resting were found in larger numbers in cluster
A and low CRG-score patients with a better prognosis,
indicating that they play a favorable role in CRC develop-
ment. M2 macrophages have been reported to promote
tumor growth by a variety of mechanisms, including the
production of immunomodulators such as IL-10, IL-6, and
TGF-1, as well as the recruitment of Th2 and Treg cells via
anti-inflammatory chemokines such as CXCL17, 22, and
24 [30–32]. Meanwhile, mounting data shows that neutro-
phils promote CRC development and metastasis via the
CXCL1/CXCR2 chemokine axis, as well as modify the
ECM milieu by generating matrix metalloproteinase
MMP9 [33, 34]. This corresponds to our finding that CRC
patients with cluster C and high CRG-score had more M2
macrophages and neutrophils compared to those in the
low CRG-score group. In addition, among cuproptosis sub-
types, cluster C demonstrated the highest expression of three
immune checkpoints (CTLA4, PD-1, and PD-L1), with a
worse prognosis. Patients with a high CRG-score, as well
as increased PD-1, PD-L1, and CTLA-4 expression, were
shown to be more likely to react to immune checkpoint
blocking. The exact mechanism linking cuproptosis with
immunity, however, remains unknown. These findings
might help us learn more about the association between
cuproptosis and CRC TME infiltration cells.
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Figure 6: Comprehensive analysis of the CRG-score in CRC. (a) and (b) Relationships between CRG-score and MSI. (c) The correlation of
the CRG-score with TMB between two gene subtypes. (d) TMB levels between the high and low-risk groups. The waterfall plot of somatic
mutation features established with high (e) and low (f) CRG-scores. Each column represented an individual patient and the number on
the right indicated the mutation frequency in each gene. (g) Correlation between CRG-score and stem cell index. (h) Correlation
between CRG-score and chemotherapeutic sensitivity. CRG: cuproptosis-related genes; TMB: Tumor mutation burden.
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Tumors havemetabolic processes that have been altered to
support cancer development [35]. The variability and flexibil-
ity of metabolism across malignancies and TME have been
highlighted in recent research [36]. Metabolic heterogeneity
is caused by a variety of mechanisms in the TME, including
interactions between cancer cells and other TME components,
such as immune cells, and extracellular matrix. In our study,
we found that enrichment for multiple metabolism signatures
was pronounced in cluster A, such as citrate cycle TCA cycle
and pyruvate metabolism. Metabolic heterogeneity is signifi-
cant because it has an impact on treatment vulnerabilities
and may predict clinical outcomes. Copper-based compounds
have been proven in several studies to be powerful cytotoxic
agents that may specifically target cancer cells in vitro and
in vivo [37–39]. Moreover, copper affects the proliferation of
cancer cells, which can modulate tumor tissue homeostasis
[40, 41]. The growing interest in the design of copper-based
compounds as anticancer drugs stems. But, the exploitation
of copper toxicity has been less successful in cancer. One of
the main factors is that copper ionophore–induced cell death
is mediated by the pathways of mitochondrial respiration.
Copper ionophores are almost 1000-fold more sensitive in
mitochondrial respiration-dependent cells than in glycolysis-
dependent cells [14]. The metabolic activity of cancer cells is
aberrant; the Warburg Effect is a frequent metabolic trait of
cancer cells that entails a preference for aerobic glycolysis over
oxidative phosphorylation to create ATP and biosynthetic
building blocks [17]. It is not clear whether metabolic changes
in CRC patients with cluster A are driven or mediated by
cuproptosis-related mechanisms, or whether these metabolic
changes are caused by the tumor itself, resulting in different
cuproptosis-related changes. However, the molecular subtypes
based on CRGs may certainly have some guiding significance
for the treatment of copper-based compounds in CRC.

This study has some limitations. First, all analyses are
based on several public databases, and the selection bias may
affect their robustness, the stability of the type required multi-
angle and multidatabase validation, and the link between
cuproptosis and TME requires additional experimental verifi-
cation. Furthermore, when assessing the prognosis of cuprop-
tosis status, some treatment modalities such as surgery,
radiotherapy, and chemotherapy were not included in the
analysis of survival models, which may cause certain accu-
racy problems. In addition, tumor metabolic heterogeneity
is an issue that must be addressed, and with the advance-
ment of cuproptosis-related research, more focused solu-
tions for different types of tumors may be provided.

5. Conclusion

In conclusion, this research discovered three subtypes of
cuproptosis-related molecules in CRC, as well as their bio-
logical function, demonstrating the heterogeneity of the
TME in CRC. Finally, we created a CRG-score signature to
measure cuproptosis traits statistically. Furthermore, the
CRG-score signature might be a useful prediction tool for
predicting CRC patients’ prognosis and guiding appropriate
therapeutic therapy. In summary, this research revealed new
information on the involvement of cuproptosis and TME in

boosting clinical outcomes and allowing tailored immuno-
therapy choices for CRC patients.
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