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Background. In childhood and adolescence, the prevailing bone tumor is osteosarcoma associated with frequent recurrence and
lung metastasis. This research focused on predicting the survival and immune landscape of osteosarcoma by developing a
prognostic signature and establishing aging-related genes (ARGs) subtypes. Methods. The training group comprised of the
transcriptomic and associated clinical data of 84 patients with osteosarcoma accessed at the TARGET database and the
validation group consisted of 53 patients from GSE21257. The aging-related subtypes were identified using unsupervised
consensus clustering analysis. The ARG signature was developed utilizing multivariate Cox analysis and LASSO regression. The
prognostic value was assessed using the univariate and multivariate Cox analyses, Kaplan-Meier plotter, time-dependent ROC
curve, and nomogram. The functional enrichment analyses were performed by GSEA, GO, and KEGG analysis, while the
ssGSEA, ESTIMATE, and CIBERSORT analyses were conducted to reveal the immune landscape in osteosarcoma. Results. The
two clusters of osteosarcoma patients formed based on 543 ARGs, depicted a considerable difference in the tumor
microenvironment, and the overall survival and immune cell infiltration rate varied as well. Among these, the selected 23
ARGs were utilized for the construction of an efficient predictive prognostic signature for the overall survival prediction. The
testing in the validation group of osteosarcoma patients confirmed the status of the high-risk score as an independent indicator
for poor prognosis, which was already identified as such using the univariate and multivariate Cox analyses. Furthermore, the
ARG signature could distinguish different immune-related functions, infiltration status of immune cells, and tumor
microenvironment, as well as predict the immunotherapy response of osteosarcoma patients. Conclusion. The aging-related
subtypes were identified and a prognostic signature was developed in this research, which determined different prognoses and
allowed for treatment of osteosarcoma patients to be tailored. Additionally, the immunotherapeutic response of individuals
with osteosarcoma could also be predicted by the ARG signature.

1. Introduction

Osteosarcoma (OS) is the major prevailing bone tumor in
childhood and adolescence worldwide that originates from
the bone marrow mesenchymal stem cells or osteoclasts [1,
2]. Osteosarcoma occurs mostly in the metaphysis of long
bones near an active bone growing region and is generally
more prevalent in the femur (42%), the tibia (19%), and
the humerus (10%) [3]. The incidence rate of osteosarcoma
is relatively low with only 3-4 people being affected per mil-

lion annually, but the high probability of recurrence and dis-
tant metastasis and the absence of identifying symptoms at
an early stage together with its highly malignant nature leads
to poor prognosis of osteosarcoma patients [4]. Currently,
therapeutic management for patients with osteosarcoma
mainly depends on surgical resection, chemotherapy, radia-
tion therapy, immunotherapy, and targeted therapy which
has caused the 5-year survival rate to increase to 60%-70%
in osteosarcoma patients without metastasis, whereas
patients with recurrence or metastasis still have a 5-year
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survival rate less than 30% [5, 6]. The identification of the
process behind the occurrence and progression of osteosar-
coma is extremely necessary to create effective treatments.
The examination of biomarkers to identify effective prog-
nostic markers for osteosarcoma that can enhance the active
interventions for the disease and the development of novel
therapies may help in increasing the survival rate.

Aging presents the characteristics of gradual deteriora-
tion in internal physiological function and is linked to the
onset and progression of multiple chronic conditions,
including cancers [7]. Cytologically, aging has been linked
to the cumulative damage caused by abnormalities such as
genomic instability, mitochondrial dysfunction, cellular
senescence, which has been related to the development of
aging-linked malignancies [8]. Cellular senescence occurs
in response to many different triggers, including DNA dam-
age, telomere dysfunction, oncogene activation, and organ-
elle stress, and has been linked to the aging processes [9].
Senescence cells have a highly complex effect on the growth
of cancers. The consequent activation of the SASP system
results in the secretion of a variety of signaling molecules
such as cytokines or chemokines, as well as growth factors,
and extracellular matrix proteases which affect tumor
growth by either arresting the cell cycle or regulating the
immune clearance [10]. The onset of aging-associated malig-
nancies can be delayed by targeting the aging mechanism,
which makes the identification of these aging-related
markers extremely necessary [11, 12]. The reports from mul-
tiple recent studies have demonstrated the involvement of
specific genes in modulating cellular senescence, such as
APOE [13] and FOXO3 [14]. Peters et al. [15] also per-
formed a population-based large-scale transcriptomic analy-
sis to determine aging-related genes (ARGs). Although
osteosarcoma is an age-dependent disease, nevertheless,
there is a lack of systemic research on the association
between ARGs and the prognosis of osteosarcoma.

In this research, the expression profile of ARGs was uti-
lized to identify two aging-related molecular subtypes in the
TARGET database, and the underlying differences between
subtypes were systematically revealed. Afterward, the ARGs
associated with independent prognosis were filtered out,
and an ARGs prognostic signature was constructed to pro-
vide a new method for assessing clinical outcomes in
patients with osteosarcoma, which was further verified uti-
lizing the Gene Expression Omnibus (GEO) dataset,
GSE21257. Moreover, a predictive nomogram utilized for
the prediction of accurate survival rates among patients with
osteosarcoma was established comprising the ARG signature
and clinical features. Finally, the link between the risk model
and the immune infiltration landscape was studied to search
for new targeted therapies for osteosarcoma.

2. Materials and Methods

2.1. Data Source. The RNA-seq expression profiles and cor-
responding clinical and pathological information of 88 oste-
osarcoma patients were accessed at TARGET datasets
(https://ocg.cancer.gov/programs/target, updated January
16, 2022). Afterward, three patients without prognostic

information and one patient without clinicopathological
information were excluded, and 84 individuals with osteo-
sarcoma were left in the training set. For the validation set,
53 osteosarcoma patients in the GSE21257 were obtained
from the Gene Expression Omnibus database (https://www
.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21257).
Table 1 demonstrates the relevant clinical data of patients
with osteosarcoma studied in this research.

2.2. Consensus Clustering. A total of 543 aging-related genes
were accessed at the Human Aging Genome Resource data-
set [16] (HAGR, https://www.genomics.senescence.info/)
and the CellAge dataset (https://genomics.senescence.info/
cells/) after the elimination of duplicate genes. The different
aging-related molecular subtypes were identified according
to the aging-related genes by employing the ConsensusClus-
terPlus package of R. The increase from 2 to 9 in the cluster-
ing variable (k) was carried out to select the optimum
number of subtypes, and the stability of the results was
enhanced by replicating the process 1,000 times.

2.3. Functional Enrichment Analyses between Aging-Related
Subtypes. The differentially expressed genes (DEGs) were
identified utilizing the “limma” R package by applying
the criteria |log2FC|≥0.5 and FDR P<0.05 to study the
biological function and pathways between aging-related
subtypes. These DEGs were analyzed using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis and Gene Ontology (GO) enrichment analyses.
The annotation and visualization were carried out by the
“clusterProfiler,” “http://org.Hs.eg.db,” “ggplot2,” and
“enrichment plot” R packages. The different pathways
between aging-related subtypes were assessed as described
previously utilizing the Gene Set Enrichment Analysis
(GSEA) [17].

2.4. Evaluation of Immune Characteristics between Aging-
Related Subtypes. The tumor microenvironment (TME)
scores such as stromal content (StromalScore), tumor purity,
and the degree of infiltration of immune cells (Immune-
Score) were measured utilizing the program ESTIMATE
[18]. The immune cells infiltration score and the activity
level of pathways associated with the immune system were
measured using the single-sample Gene Set Enrichment
Analysis (ssGSEA) by applying the “gsva” package.

2.5. Construction of an Aging-Related Risk Signature for
Osteosarcoma. A prognostic predictive risk model was con-
structed, and the coefficients were identified using the multi-
variate Cox regression, which was utilized for predicting the
risk scores of individuals with osteosarcoma. For the con-
struction of this model, the relevant genes were identified
by univariate Cox regression in the TARGET cohort, and
the Least Absolute Shrinkage and Selection Operator
(LASSO) regression was applied to define the optimum
range of aging-related genes utilized in the model. The prog-
nostic aging-relevant genes were identified using the “sur-
vival” package and were optimized in the signature by
utilizing the “glmnet” package in the aforementioned analy-
ses. The formula mentioned below was utilized to derive the

2 Journal of Oncology

https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21257
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21257
https://www.genomics.senescence.info/
https://genomics.senescence.info/cells/
https://genomics.senescence.info/cells/
http://org.Hs.eg


risk score of each individual in the validation and TARGET
cohorts:

Risk score = 〠
n

i=1
coefficient × aging‐related gene expression:

ð1Þ

The individuals with osteosarcoma were divided based
on the median into two groups: the high- and low-risk
groups. The prognostic value of the risk model for individ-
uals with osteosarcoma was analyzed using the principal
component analysis (PCA), Kaplan-Meier curves, time-
dependent receiver operating characteristics (ROC) curves,
C-index, decision curve analysis (DCA) [19], univariate
and multivariate Cox regression analysis, and survival sub-
group analyses. The risk model performance was verified
using the validation cohort, which consisted of 53 osteosar-
coma patients from the GSE21257. To determine whether
our ARG signature had a superior predictive ability
[20–23], four previous signatures were selected with which
the values of the following parameters were compared such
as time-dependent ROC, C-index, and restricted mean sur-
vival time (RMST).

2.6. Development of Nomograms to Predict the Outcome of
Patients with Osteosarcoma. The nomogram was generated
for the prediction of the 1-, 3-, and 5-year rates of survival
of individuals with osteosarcoma, and its performance was
analyzed using various software. The risk score and clinico-
pathological parameters such as age, gender, and metastasis
were utilized for the prediction of the overall survival (OS)
rate by using the “rms” package, while the time-dependent
ROC and calibration curves were utilized to analyze the
nomogram’s performance in prognosis prediction.

2.7. Evaluation of Immune Characteristics between High-Risk
and Low-Risk Group. The variation in the ESTMATEScore,

StromalScore, and ImmuneScore content in the TME and
the score of pathways associated with the immune system
were analyzed between the two risk groups. The ssGSEA
was utilized for the comparison of the pathway scores,
whereas the CIBERSORT algorithm [24] examined 22
immune cells to determine their infiltration degree. The
treatment response of immune checkpoint inhibitors was
predicted by examining the level of expression of several
important genes associated with immune checkpoints
between the two groups.

2.8. Statistical Analysis. The R software 4.1.0 was utilized for
statistical analysis and visualization of the data involved in
this research. The differences between groups were deter-
mined by utilizing Wilcoxon signed-rank and chi-square
tests. The Pearson correlation analysis analyzed the link
between groups. The significant level was selected as P values
<0.05.

3. Results

3.1. Consensus Clustering Analysis Based on ARGs. The
workflow was drawn (Figure 1(a)), and 543 ARGs were iden-
tified in total from the CellAge and HAGR database
(Figure 2(a)). The ARGs clusters of individuals with osteo-
sarcoma were determined by employing the consensus clus-
tering method based on the aforementioned genes. The
value of (clustering variable) k = 2 results in similarity in
values in the same group, while group-to-group variation
in the values exists (Figures 2(b) and 2(c)). Therefore, indi-
viduals with osteosarcoma in the TARGET cohort were cat-
egorized into Cluster 1 (57 samples) and Cluster 2 (27
samples) with distinct ARG expression patterns.

3.2. Functional Enrichment Analysis. The Kaplan-Meier sur-
vival curves (Figure 3(a)) indicated that the OS status of the
Cluster 1 subtype was considerably poorer as compared to
the Cluster 2 subtype (P = 0:023). The Gene Set Enrichment

Table 1: Clinical characteristics of the individuals with osteosarcoma in this research.

Covariates Type
Target GSE21257

Number Percent Number Percent

Age
≤14 39 46.43% 15 28.30%

>14 45 53.57% 38 71.70%

Gender
Female 37 44.05% 19 35.85%

Male 47 55.95% 34 64.15%

Race

White 51 60.71% — —

Asian 6 7.14% — —

Black or African American 7 8.33% — —

Primary tumor site

Leg 76 90.48% 44 83.02%

Arm 6 7.14% 8 15.09%

Pelvis 2 2.38% — —

Metastatic status
Yes 21 25.00% 14 26.42%

No 63 75.00% 39 73.58%

Survival status
Dead 27 32.14% 23 43.40%

Alive 57 67.86% 30 56.60%
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Analysis (GSEA) analyzed the enrichment of signaling path-
ways associated with the immune system in the Cluster 2
group, including IgA production using the intestinal
immune pathway, cytokine-cytokine receptor interaction,
and primary immunodeficiency, as well as B cell and T cell
receptor signaling pathways (Figure 3(b)). The molecular
mechanism between two clusters was examined using 278
DEGs which included 119 upregulated and 159 downregu-
lated genes utilizing the Limma R package (Figure 3(c)).
The GO analysis (Figures 3(d)–3(f)) and KEGG analysis
(Figures 3(g)–3(i)) depicted the enrichment of DEGs in
functions linked to immunity, including neutrophil-
mediated immunity, neutrophil activation involved in
immune response, T cell activation, B cell differentiation,
and immune receptor activity. This analysis demonstrated
that the Cluster 2 subtype was closely linked to the increased
immune activity in the microenvironment.

3.3. Immune Landscape Analysis between Cluster 1 and
Cluster 2 Subtype. The above findings were taken into con-
sideration, and the composition of the TME and immune-
related function between the two subtypes was analyzed
(Figure 4(a)). The ImmuneScore and StromalScore were
higher in Cluster 2 compared to the Cluster 1 subtype
(Figure 4(b)), indicating that Cluster 2 harbored more
immune cells and stromal components. The variation in
the TME of both the subtypes was analyzed by conducting
a ssGSEA in each sample, which resulted in an increased
enrichment of immune-related cells (including CD8+ T
cells, macrophage, and helper T cells; Figure 4(c)) and
immune-related functions (Figure 4(d)) in Cluster 2
subtype.

3.4. Construction and Validation of an ARG Signature for
Osteosarcoma. The univariate Cox analysis resulted in the

84 osteosarcoma patients 
from TARGET dataset 

Tumor microenvironment and 
immune cells infiltration

Construct an age-related gene 
signature in TARGET cohort 

Unsupervised consensus 
clustering analysis

Validate the prognostic 
value in GSE21257 

cohort

A B C

D E F

Functional enrichment analysis

Nomogram Immunotherapy 
response

Assess the 
prognostic value

Tumor microenvironment and 
immune cells infiltration

Identify prognostic aging-related genes 
by univariate Cox regression analysis

A

B

A B C

D E F

G H I C

A B

C D

A

C

B

D

A B

C D

A B

C D

A

D

G H I

E F

B C

A B

C

D E F

Figure 1: Study flow chart.
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identification of 52 ARGs that showed a considerable link to
OS for individuals with osteosarcoma (Figure 5(a)). After-
ward, a total of 23 ARGs were identified as hub genes to
establish the ARG signature for osteosarcoma utilizing the
LASSO analysis and the multivariate Cox regression
(Figures 5(b) and 5(c)). Each sample was scored using the
formula, and the coefficients were shown in Table 1S.
Afterward, the patients were then classified based on the
median value into the two risk groups. The PCA analysis
demonstrated that ARGs in the signature (Figure 5(d))
could discriminate and differentiate the two risk groups to
a higher degree as compared to all ARGs (Figure 5(e)) and
the whole genome (Figure 5(f)). The OS time
demonstrated a negative link to the risk score (r = −0:58)
(Figures 6(a) and 6(b)), which can be depicted using the
Kaplan-Meier analysis that illustrated a link between the
high-risk group and a shorter OS time compared to the
low-risk group (Figure 6(c)). The risk model was further
evaluated for its prediction accuracy by deriving the area

under the curve (AUC). The AUCs of the 1-, 3-, and 5-
years OS yielded the following respective values of 0.901,
0.927, and 0.950 (Figure 6(d)), which outperformed the
AUCs obtained with clinicopathological variables
(Figure 6(e)), including age, stage, and metastasis with
respective values of 0.469, 0.437, and 0.694. C-index
(Figure 6(f)) and DCA analysis (Figure 6(g)) also
confirmed that the prediction capacity of the risk score
outperformed that of age, stage, and metastasis. The risk
score could also function as an independent predictor of
the poor OS of patients with osteosarcoma, as
demonstrated by the univariate (Figure 6(h)) and
multivariate (Figure 6(i)) Cox analyses. The survival
probability and the risk score relationship in age
(Figure 7(a)), gender (Figure 7(b)), metastasis (Figure 7(c)),
and tumor site (Figure 7(d)) subgroup were also
investigated. The analysis indicated that the OS duration of
the patients with the higher risk score was shorter in each
subgroup, except in the no leg group, possibly due to too
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small sample size. Subsequently, the validation cohort was
set as 53 osteosarcoma patients in the GSE21257 where the
risk score was negatively linked to OS time (r = −0:29,
Figures 8(a) and 8(b)). In this cohort, the link between the
higher risk score of patients and the poor survival rate was
established using the Kaplan-Meier analysis (Figure 8(c)).
The respective AUCs of the 1-, 3-, and 5-years OS were
0.827, 0.713, and 0.827 (Figure 8(d)). These results were
further verified by the univariate Cox analysis that linked
the risk score values with the OS rates (Figure 8(e); HR =
1:816, P = 0:022). Furthermore, multivariate Cox analysis

indicated a poor prognosis for individuals with
osteosarcoma who demonstrated higher risk scores
(Figure 8(f); HR = 1:887, P = 0:017).

3.5. The ARG Signature Performed Better than Others in
Prognostic Prediction for Osteosarcoma. The ARG prognosis
model was compared with four other previously published
gene signatures to examine their relative performance in
prognosis prediction such as autophagy-related [20],
ferroptosis-related [21], immune-related [22], and
metabolism-related genes signatures [23]. Although these
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Figure 5: Construction of an aging-related risk model with prognostic value in osteosarcoma. (a) Forest plot utilizing the univariate Cox
analysis to depict the prognosis-related aging-associated genes linked to OS. (b and c) The Least Absolute Shrinkage and Selection
Operator (LASSO) regression analysis; the super parameter value was validated by means of 10-fold cross-validation. Principal
component analysis (PCA) of genes in the signature (d), all aging-related genes (e), and the whole genome (f).
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Figure 6: Continued.
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gene signatures were effective in creating two subgroups
with considerably varied prognostic outcomes for the
patients (Figures 9(a), 9(c), 9(e), and 9(g)), however, the
ROC curve analysis and restricted mean survival time
(RMST) values indicated the superiority of the model devel-
oped in this research. The aforementioned models depicted
lower values of AUC as calculated by the former analysis
for 1-, 3-, and 5-year survival compared to this model
(Figures 9(b), 9(d), 9(f), and 9(h)), while this model had
the highest C-index at 0.905 as calculated by RMST and
obtained after comparison with the other models
(Figures 9(i) and 9(j)).

3.6. Construction and Validation of the Nomogram Based on
the Risk Model. To enable the nomogram to give a very accu-
rate prediction, the clinical factors such as sex and age of the
individual as well as tumor metastasis and tumor site were
integrated into the prognostic signature (Figure 10(a)). The
respective AUC of the 1-, 3-, and 5-year nomograms were
0.941, 0.884, and 0.896 (Figure 10(b)). The performance of
nomograms was visualized utilizing the calibration curves
for 1-, 3-, and 5-year OS, where the 45° line stands for the
most accurate prediction ability. The closer the calibration
curves for 1-, 3-, and 5-year were to the ideal curve, the bet-
ter the nomogram performed (Figure 10(c)).

3.7. Correlation between Risk Model and Clinicopathological
Parameters, as well as Infiltrating Immunocyte Fractions.
The heatmap (Figure 11(a)) showed the clinicopathological
parameters of patients in the two risk groups. The chi-
squared test (Figure 11(b)) and Wilcoxon signed-rank test
(Figure 11(c)) confirmed that the risk scores in individuals
experiencing metastasis were increased as compared to those
with no metastasis. The increased TME scores (including the

StromalScore, ImmuneScore, and ESTIMATEScore) of the
group with low-risk scores were further analyzed by TME
analysis (Figure 12(a)), indicating that of the two risk
groups, the one with the lower risk scores had an increased
infiltration level of immune cells as compared to the group
with higher risk scores. The analysis of the immune-related
function through ssGSEA in the two risk groups demon-
strated a higher level of enrichment of these functions in
the group with low-risk scores. The level of infiltration of
immune cells was analyzed through CIBERSORT where
the immune cells were plotted using a bar graph to estimate
their percentage in each risk group (Figure 12(c)). The abun-
dance of activated memory CD4+ T cells and CD8+ T cells
was significantly increased in the low-risk group
(Figure 12(d)).

3.8. Immunotherapy Response Prediction. The correlation
between the risk model and the expression of genes related
to the immune checkpoints was studied, which indicated
an enhanced immune activity in the TME that led to arrest-
ing the tumor growth in the low-risk group. The enhanced
immunological activity was seen due to an increase in the
expression levels of genes associated with the immunological
checkpoints such as PD-L1 (CD274), CTLA4, LAG3, GZMB,
CD8A, PRF1, HAVCR2, IFNG, and GZMA (Figure 13).
These results demonstrate the increased effectiveness of
immunotherapy in targeting the immune checkpoints in
the group with low risk scores.

4. Discussion

Osteosarcoma is a common malignant tumor originating
from bone tissue in children and adolescents. Osteosarcoma
has a high degree of invasion and potential for distant
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Figure 6: Validation of the gene signature linked to aging in the TARGET cohort. (a) Risk score, survival time, and survival status of
individuals with osteosarcoma in the TARGET cohort. (b) The correlation between the risk score and survival time in the TARGET
cohort. (c) Kaplan-Meier survival curve generated on the basis of an aging-related gene signature in the TARGET cohorts. (d) Risk
model’s ROC curve for 1-, 3-, and 5-year OS in the TARGET cohort. (e) ROC curve of the risk score, age, gender, and metastasis. (f) C-
index for the risk score, age, gender, and metastasis. (g) Decision curve analysis (DCA) for the risk score, age, gender, and metastasis.
Univariate (h) and multivariate (i) Cox analyses assess the risk model’s independent prognostic value for individuals with osteosarcoma
in the TARGET cohort using Cox analyses.
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Figure 7: Continued.
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metastases and is prone to hematogenous metastases at the
early stage and after surgery, especially in the case of lung
metastases [25, 26]. In recent years, despite great progress
in surgery and adjuvant chemotherapy, such patients still
exhibit a poor prognosis, with a high recurrence rate [27].
Therefore, identifying effective prognostic markers for risk
stratification of osteosarcoma patients to adopt more aggres-
sive interventions is expected to improve OS and might
serve as potential therapeutic targets.

Aging is characterized by the accumulation of damage to
macromolecules and cell architecture resulting in a progres-

sive decrease in the function of tissue and organ due to
nutrition, genetic and environmental factors, and lifestyle
[28]. The accumulation of these damaged arrested cells was
observed with the increase in age [29], and these senescent
cells were noted to contribute to diseases that are related to
aging, such as renal damage [30], alcoholic fatty liver disease
[31], cerebrovascular disorders [32], diabetes [12], and Alz-
heimer’s disease [33]. Cellular senescence is an inherent pro-
cess that inhibits tumor progression, contributing to
arresting the cells autonomously in the cell cycle and pre-
venting further divisions. This process also causes the
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Figure 7: Kaplan-Meier survival curves in subgroup analyses on the basis of various clinical variables. (a) Subgroup survival analysis of risk
model per age. (b) Subgroup survival analysis of risk model per gender. (c) Subgroup survival analysis of risk model as per metastatic status.
(d) Subgroup survival analysis of risk model as per primary tumor site.
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Figure 8: Verification of the aging-related gene signature in the GSE21257 cohort. (a) Risk score, survival time, and survival status of
individuals with osteosarcoma in the GSE21257 cohort. (b) Correlation analysis between the risk score and survival time in the
GSE21257 cohort. (c) Kaplan-Meier survival curve on the basis of an aging-related gene signature in the GSE21257 cohorts. (d) ROC
curve of the risk model for 1-, 3-, and 5-year OS in the GSE21257 cohort. Evaluation of the independent prognostic value of the risk
model using univariate (e) and multivariate (f) Cox analyses for osteosarcoma patients in the GSE21257 cohort.
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Figure 9: Continued.
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removal of these damaged cells by activating the immune
system through the SASP, but if the cells evade this fate, it
may lead to tumorigenesis [34]. Emerging evidence showed
that several ARGs may be the cause of onset and advance-
ment of cancers due to regulation of the process of aging
and cellular senescence by these ARGs and could be used
as a target for cancer therapy [35, 36]. Consequently, to ana-
lyze the exact role that aging plays in osteosarcoma, the tran-
scriptome of the ARGs needs to be investigated thoroughly.

In the current study, using the unsupervised consensus
clustering analysis, two subtypes in the TARGET cohort
were determined that were related to aging, and both groups
exhibited considerably varied outcomes regarding the prog-
nosis. Furthermore, various analyses gave results that were
favorable for Cluster 2 that indicated an enrichment of the
signaling pathways associated with the immune response
and an enhanced infiltration rate of immune cells in the
TME. The GSEA was carried out for the former to determine
the extent of the response by the immune system as those
values could be used for observation of the progression of
cancer [37]. In addition, the active immune response led to
a good prognosis of the Cluster 2 subtype. The TME is an
intricate network of immune cells, tumor cells, and stromal
cells that contribute to tumor biology and therapeutic
response. An increased infiltration level due to increased
enrichment of immune effector cells was detected in Cluster
2 during the analysis of the TME, such as CD8+ T cells,
macrophages, and helper T cells which can act as a protec-
tive factor against multiple cancers, such as epithelial ovar-
ian cancer [38], head and neck squamous cell carcinoma
[17, 39], and non-small-cell lung cancer [40]. These partly
explain that patients belonging to the Cluster 2 subtype

had a higher antitumor immune response and good
prognosis.

The construction of an accurate and efficient model for
cancer monitoring has become a research hotspot due to
advances in RNA-sequencing and bioinformatics tools.
Research has shown a considerable correlation of several
ARG signatures with the prognosis of cancers such as Zhang
et al. [41], Wang et al. [42], and others who developed gene
signatures. In both cases, gene signatures that were aging-
related were designed to evaluate the potential prognosis
prediction efficiency of a biomarker for malignancy and
study the effect of chemo- and immunotherapies. The for-
mer studied lung adenocarcinoma, while the latter studied
rectal cancer. In other studies, results similar to these were
detected such as in malignant melanoma [43] and lung
squamous carcinoma [44]. Nevertheless, there are fewer
studies about the function of ARGs as a prognosis-
determining factor in osteosarcoma. In this research, an
ARG signature was demonstrated to better predict the prog-
nosis of osteosarcoma than conventional clinicopathological
characteristics utilizing LASSO regression and multivariate
Cox regression analysis. The risk scores and metastasis could
predict the patients’ prognosis independently as depicted by
the univariate and multivariate Cox regression analyses,
which was consistent with the finding in the validation
cohort. Moreover, compared to previously reported signa-
tures for osteosarcoma prognosis [20–23], the time-
dependent ROC curve analysis and C-index revealed a better
ability of this ARG model to predict the prognosis of
patients with osteosarcoma. Subsequently, using risk scores
and clinical characteristics, a nomogram was developed that
depicted more convenient usage in clinical settings. The
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Figure 9: Comparison of the performance of the constructed seven-gene signature to previous signatures in the TARGET cohort. Kaplan-
Meier survival analysis of autophagy-related genes signature (a), ferroptosis-related genes signature (b), immune-related genes signature (c),
and metabolism-related genes signature (d). Time-dependent ROC curves of autophagy-related genes signature (e), ferroptosis-related genes
signature (f), immune-related genes signature (g), and metabolism-related genes signature (h). (i) Restricted mean survival time (RMST)
curve for all signatures. (j) C-index for all signatures.
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nomogram exhibited better performance than the single
ARG risk model in predicting short-term OS. Based on the
above finding, the ARG risk model was a promising novel
prognostic marker and could improve individualized treat-
ment strategy.

Emerging immunotherapy, including anti-CTLA4 [45],
anti-LAG3 [46], anti-PD-1, and anti-PD-L1 antibodies
[47], has been proven to be efficacious and increased the sur-

vival rate of patients with several advanced cancers, includ-
ing metastatic osteosarcoma patients [48]. However,
considering the heterogeneity and complexity of osteosar-
coma, only a few patients had a favorable response to immu-
notherapy [49]. The components and activity of TME are
critical determinants of the response to immunotherapy
[50]. As compared with other cancers, osteosarcoma has
low immune infiltration in TME, which may be one reason
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for unsatisfactory immunotherapy results [49, 51]. In this
research, the group with the lower risk scores had increased
StromalScore, ImmuneScore, and immune functions, indi-
cating that the risk group with low scores demonstrated
increased immune infiltration level and immunogenicity in
comparison with the high-risk group, which probably con-
tributed to the better survival outcomes. The CIBERSORT
analysis showed that CD8+ T cells and activated memory
CD4+ T cells were more infiltrated in the low-scoring risk
group. CD8+ T cells are essential in the antitumor activity
and are a favorite prognosis marker for osteosarcoma
patients [52]. The CD8+ T cells can be differentiated into
cytotoxic T lymphocytes (CTLs) by CD4+ T cells through
multiple mechanisms, as well as maintaining and enhancing
the antitumor response of CTLs [53]. Intriguingly, CD4+ T
cells have been identified as having direct antitumor cyto-
lytic function [54]. The efficiency of blockade therapy based
on immune checkpoints is primarily dependent on the
expression of genes associated with immune checkpoints
and T cell-dependent immune response [55]. Unsurpris-
ingly, in the low-risk group, the immune checkpoint genes
were expressed more, particularly PD-L1, CTLA4, and
LAG3, showing that the low-risk patients could be more
benefited from the immune checkpoint blockade therapy.

Therefore, this study indicates that the ARG signature may
be useful in filtering patients who can benefit from
immunotherapy.

This study had some limitations. Both the TARGET-OS
cohort and the GSE21257 cohort have relatively small sam-
ple sizes, and the finding based on bioinformatics analysis
was insufficient for clinical practice. Therefore, the results
need to be verified by utilizing large study samples and
in vitro or in vivo experimental verification. Furthermore,
the specific functions of ARGs in the signature in osteosar-
coma remain ambiguous and need more study.

5. Conclusion

In conclusion, this study identified two aging-related sub-
types and an ARG prognostic signature that depicted robust
performance in the prognosis prediction of osteosarcoma
patients, which might help in guiding clinical management.
Furthermore, ARG prognostic signature showed the differ-
ent immune landscapes for osteosarcoma patients, which
guide the personalized application of immunotherapy. How-
ever, before applying aging-related subtypes and prognostic
signatures, these findings need to be verified by more clinical
samples.
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