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Purpose. Hepatocellular carcinoma (HC) has emerged as one of the most prevalent malignancies on a global scale. Recently,
immunotherapy has achieved favorable effectiveness in the management of multiple cancers. However, there are limited
therapeutic options for advanced HC. As the liver is a special immune organ, we intend to uncover potential and effective
immunotherapeutic modalities for HC. Our study was designed to develop specific immune-related miRNAs (IRMs) for
outcome assessment and individualized strategies for the management of HC. Methods. The miRNA-seq and survival data of
TCGA-LIHC dataset was enrolled into this program. We first collected IRMs from Immune-miR website. Differentially
expression analysis was applied to screen aberrantly expressed IRMs. In order to set up an IRM-related index (IRMRI) in HC,
we conducted the Cox relevant methods. Next, the statistical approaches (survival curve and ROC curve analyses) were utilized
to detect the evaluation capacity of our IRMRI. Subsequently, we obtained the target genes of hub miRNAs from IRMRI
through three miRNA-related predictive online tools (miRDB, miRTarBase, and TargetScan websites). Results. Five IRMs were
determined to develop the IRMRI. It can effectively segregate all HC cases from two different risk subgroups. We identified a
marked discrepancy in survival outcome between the two groups by survival analysis and confirmed the reliability of IRMRI in
two testing sets. Moreover, we collected 10 hub target genes (ESR1, IGF1, PDGFRB, JUN, MYC, ZWINT, MAD2L1, TOP2A,
KIF11, and CDCA8) which were strongly linked to HC progression and malignant behavior. Conclusion. We screened out five
hub IRMs with clinical value and constructed a risk index model in HC, which can precisely assess the risk status and outcome
of patients to a certain extent.

1. Introduction

Hepatocellular carcinoma (HC) is the sixth most common
malignancy in the world, with more than 850,000 new cases
each year [1]. HC ranks second among cancer-related causes
of death and its incidence is increasing year by year. As a
highly aggressive malignancy, HC kills 750,000 patients
worldwide each year [2]. The incidence of HC has a large
geographical heterogeneity, with approximately 85% of HC
occurring in developing countries and regions and 72% of
HC occurring in Asia [3]. Although there are many studies
on the development of HC, it is still the tip of the iceberg
for understanding its mechanisms. Currently, there are sev-
eral well-defined risk factors for HC, including cirrhosis,

virus infection, high alcohol intake, and aflatoxin B1. It is
hard to diagnose HC given its insidious onset in early clini-
cal stage [4]. Serum AFP test and imaging are the most com-
mon clinical tests, but these methods have limitations in the
diagnosis of early stage. The survival outcome of HC is dis-
mal owing to the tendency of metastasis and the unsatisfac-
tory curative effect [5].

The immune microenvironment (IME) is a medium for
the formation of immunocytes infiltrating in tumor tissues.
Generated by tumor cells in their struggle with the immune
system, IME is the condition and basis for tumor immune
escape [6]. HC has unique self-protection mechanisms to
evade host immune surveillance, such as secretion of immu-
nosuppressive cytokines, abnormal expression of antigens,
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and alteration of the local IME [7]. For instance, TGF-β has
a dual role in tumorigenesis. It blocks tumor cell viability
and induces cell apoptosis in the early stage of disease, while
it exerts an immunosuppressive role in the late stage of can-
cer. In HC, abnormal elevation of TGF-β1 suppresses the
innate immune response and disrupts the antitumor

immune response, which in turn facilitates tumor progres-
sion [8].

Immunotherapy can alter the function or number of
immune cells, the expression of immune receptors or ligands
and cytokine levels to achieve antitumor immunity. Immu-
notherapy strategies currently used for liver cancer include
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Figure 1: Determination of differentially expressed immune-related miRNAs (DEIRM). (a) Volcano plot of DEIRM in LIHC. (b) Heatmap
of DEIRM.
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vaccines, immune checkpoint inhibitors, and passaged cell
transplantation, which have been shown to be safe and effec-
tive [9].

MicroRNAs (miRNAs) are a class of small endogenous
RNAs of approximately 18-25 nucleotides in length without
protein-coding capacity. By binding with mRNAs, miRNAs
could block protein translation at the posttranscriptional
level [10]. Although a blood fetoprotein test is more widely
used to diagnose HC, it is not very accurate. Elevated feto-
protein often indicates progressive disease. It is urgent to
exploit new markers for early diagnosis of HC [11]. Indeed,
miRNAs released from human blood by tumor are stable. In
addition, circulating miRNAs are highly tolerant to RNA
enzyme activity [12]. Recently, Zhou et al. indicate that a
collection of seven miRNAs can distinguish HC from
healthy and cirrhotic groups with the promise of being an
indicator for early diagnosis of HC [13]. miRNAs can be uti-
lized not only for the diagnosis of HC but also for determin-
ing prognosis survival. A cohort study including a large
sample of patients revealed that HC patients with lower
expression of miR-26 presented a dismal survival outcome,
suggesting that miR-26 can be applied to assess the out-
comes of HC cases [14]. Nevertheless, the clinical potency
of immune-related miRNA (IRM) in HC needs to be thor-
oughly analyzed.

In our academic research, we unearthed the prognostic
value of IRMs and set up a risk index of HC based on IRMs
which could effectively forecast risk status and survival out-
come of HC samples. In the future, personalized treatment
for the HC will benefit from our constructed risk index.

2. Methods

2.1. Data Preparation. In this project, the HC-associated
dataset with RNA transcriptome data were collected from
TCGA website. Based on the processing of the miRNA data,
375 HC cases were enrolled into our research. We also
acquired 374 HC samples with complete mRNA data. In
addition, the clinical traits and survival data were obtained
from the UCSC Xena source. Each sample in the HC cohort
with follow-up time < 30 days were removed. And a total of
245 IRMs were extracted from the Immune-miR database.

2.2. Determination of Differentially Expressed miRNAs
(DEMs) and mRNA (DEGs). Difference analysis was per-

formed to collect DEMs and DEGs between HC and normal
specimens by “limma” package in R [15]. We selected
DEIRMs and DEGs on the basis of jlogFCj > 1 and adj-p <
0:05 as a filter.

2.3. Development of the Prognostic Index. To set up an IRM-
related index (IRMRI), HC cases were equally and randomly
divided into two sub-cohorts (training cohort and validation
cohort). We first employed univariate analysis to screen pos-
sible IRMs showing dramatically prognostic ability in the
training set. Then, the IRMs were processed by multivariate
analysis to generate corresponding coefficients for IRMRI.

The risk value of IRMRI =∑exp ðIRMsÞ ∗ coef . The
coef is the coefficient of each model IRMs.

2.4. Functional Enrichment Analysis. The target genes of
miRNA were collected by three predictive online tools
(miRDB, miRTarBase, and TargetScan websites). Next, the
intersection target genes were collected by overlapping with
the list of DEGs. R package “clusterProfiler” was instrumen-
tal in uncovering potential function of these intersection
genes [16].

2.5. Identification of Hub Gene. STRING is an online tool for
examining protein-protein interactions (PPI) [17]. An inter-
action network was created by introduction of the target
genes into STRING and visualized via Cytoscape tool [18].
Subsequently, we used CytoHubba algorithm to determine
hub genes from the network based on degree score. At the
same time, the prognostic power of target genes was detected
by the Kaplan-Meier (KM) method.

2.6. Statistical Analysis. All statistical data was processed by
R v.3.8.2. KM survival method contributed to assess the
prognosis difference between two groups. The specificity
and reliability of the index model were checked using ROC
curves. Moreover, the Cox regressions were utilized to exam-
ine the independent value of clinical outcome.

3. Results

3.1. Determination of DEIRMs and DEGs. A total of 251
DEMs (229 upregulated and 22 downregulated) between
HC and normal specimens were unearthed (Figures 1(a)
and 1(b)). According to the 251 DEMs, we further identified
72 DEIRMs by overlapping with IRM set. Additionally, a
total of 6219 DEGs (1349 downregulated and 4870 upregu-
lated) were obtained on the basis of 375 HC cases and 50
health controls.

3.2. Identification of Prognostic IRMs. After processing prog-
nosis data from the TCGA-HC, 184 HC cases were ran-
domly assigned into the training set. In order to
characterize the IRMs with prognostic value, univariate
regression was conducted in the training set. We observed
that a total of eight IRMs were tightly bound up with clinical
outcome (Table 1).

3.3. Development of the IRMRI.We further carried multivar-
iate analysis to create a prognostic index including five
IRMs. The risk score = ½hsa −miR − 139 × ð−0:36Þ� + ½hsa −

Table 1: General characteristics of prognostic IRM.

miRNA symbol HR 95% CI p value

hsa-mir-139 0.648 0.538-0.781 5.65E-06

hsa-mir-34a 0.762 0.591-0.981 0.0352

hsa-mir-105-1 1.101 1.029-1.177 0.0049

hsa-mir-9-1 1.145 1.043-1.257 0.0044

hsa-mir-30d 0.740 0.577-0.949 0.0178

hsa-mir-195 0.801 0.658-0.975 0.0275

hsa-mir-326 1.257 1.012-1.562 0.0383

hsa-mir-188 1.336 1.007-1.772 0.0444
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Figure 2: Continued.
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miR − 9 − 1 × ð0:12Þ� + ½hsa −miR − 30d × ð−0:26Þ� + ½hsa −
miR − 326 × ð0:16Þ� + ½hsa −miR − 188 × ð0:33Þ�. All HC
samples were classified into high- and low-risk groups based
on the median risk power. As shown in (Figures 2(a) and
2(c)), IRMRI-high group showed worse patient outcome,
while IRMRI-low cohort presented favorable clinical out-
come. The results of ROC analysis indicated that AUC
values were 0.721, 0.808, and 0.853 for 1-, 3-, and 5-year sur-
vival, respectively (Figure 2(d)). Meanwhile, we employed
same analysis to confirm the capability of the IRMRI by val-
idation cohorts. The results disclosed that there are similar
results in the validation set as in the training set
(Figures 2(e) and 2(f)). Furthermore, the risk diagram
explicitly illustrated the clinical outcome between the two
groups (Figures 2(g)–2(i)). We also found that high expres-
sion levels of hsa-miR-9-1, hsa-miR-188, and hsa-miR-326
indicated a shorter patient survival time, while low expres-
sion levels of hsa-miR-30d and hsa-miR-139 revealed dismal
outcome (Figure 3).

3.4. Independence Analysis of the IRMRI. We undertook an
intensive analysis of clinical traits on age, gender, stage,

and grading of HC cases to estimate the independent perfor-
mance of the IRMRI. Univariate and multivariate methods
both suggested that IRMRI was tightly related to patient out-
come (Figures 4(a) and 4(b)). As indicated by Figure 4(c),
the AUC of risk score was higher than other clinical factors,
indicating a superior predictive power.

3.5. Functional Enrichment Analysis. There were 3,283 target
genes determined by three miRNA-related databases. We
performed further analysis by making predictions in three
databases and taking target genes that were predicted in
more than two databases. A total of 623 overlapping genes
were then screened to detect the underlying function and
pathway (Figure 5(a)). In terms of GO, we observed that
neurogenesis regulation, neuron differentiation, and urogen-
ital development were greatly activated. As for KEGG, PI3K/
Akt signaling, MAPK signaling, and Rap1 signaling mark-
edly enriched (Figure 5(b)).

3.6. Identification of Hub Gene. According to the degree
score generated by CytoHubba algorithm, we collected top
10 hub genes (ESR1, IGF1, PDGFRB, JUN, MYC, ZWINT,
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Figure 2: Predictive capability of the IRMS. (a–c) Survival outcome between the two groups in three sets. (d–f) ROC analyses for the IRMS
in three sets. (g–i) The clinical outcome of LIHC cases in three sets.
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Figure 3: Prognostic value of five hub miRNA. (a) has-miR-9-1. (b) has-miR-30d. (c) has-miR-139. (d) has-miR-188. (e) has-miR-326.
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MAD2L1, TOP2A, KIF11, and CDCA8) from the PPI net-
work (Figure 6). Moreover, a total of 16 target genes includ-
ing FLT3, ANLN, ASF1B, CDCA8, CDCA3, CHEK1,
DEPDC1, DTL, ESR1, FGF9, MUT, MAD2L1, KIF11,
LMNB1, IGF1, and ZWINT were closely associated with
survival outcome of HC sample (Figure 7).

4. Discussion

HC is a classic inflammation-related cancer, and the IME
plays a central part in the pathogenesis of HC [19]. IME is
considered to be a key feature of cancer since the alterations
in the IME are involved in all stages of malignant progres-
sion from the initial transformation stage to invasion and
metastasis. Immunotherapy aims to provide more effective
tumor cell targeting by enhancing existing tumor-specific
immune responses [20].

In recent years, immunotherapy has been employed as
an effective curative strategy for a variety of tumors, includ-
ing HC [21]. In particular, therapies targeting immune
checkpoints have achieved success and improved the clinical
outcome of HC cases [22]. However, only a minority of
patients benefit from immunotherapy due to the immuno-
suppressive status in IME [19]. Considering the prominence
of IME in cancer progression, investigators should concen-
trate on uncovering new immune biomarkers and targets
for HC management which can offer a reference for early
diagnosis and prognosis determination.

Gene immunotherapy has become a promising approach
for tumor treatment by restoring the function of tumor sup-
pressor genes or stimulating the production of antitumor
immune responses [23]. One of the effective medical
methods is immunocytokine therapy which can be achieved
by transfecting cytokines such as IL-2 directly in tumor and
adjacent tissues [24]. Moreover, the clinical application of
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immune checkpoint inhibitors opens up new mindsets for
HC management. Immune checkpoints that have been
extensively analyzed in relation to HC immune escape
include PD-1/PD-L1 [25]. PD1 expressed on T cells, B cells,
and natural killer (NK) cells could bind with PD-LI and PD-
L2 ligands, inhibiting antigen-specific T cell activation and
blocking the immune response of T cells in IME [22].

miRNAs have critical biological functions and their
altered expression can contribute to cancer progression.
Numerous reports have highlighted that miRNAs can regu-
late tumor initiation and progression as either pro- or anti-
cancer factors [26]. The vast majority of HC can originate
from cirrhosis of the liver due to various causes. As various
etiologies lead to persistent liver injury and regeneration,
individual HC etiologies also result in differential miRNA
expression [27]. Hepatitis C virus infection is an integral fac-
tor in the pathogenesis of HC. Serum miRNA-27a may be

used as an indicator of hepatitis C virus-induced HC [28].
In addition, Cao et al. found that upregulated miRNA-182-
5p boosts HC initiation and progression [29]. Nevertheless,
the regulatory role of IRMs in malignant behavior of HC
needs a more exhaustive investigation.

In this work, an IRM-based prognostic index (has-miR-
9-1, has-miR-30d, has-miR-139, has-miR-188, and has-miR-
326) was created to analyze the risk status and survival out-
come for HC cases. Our established IRMPI has turned out to
display optimal independence with respect to survival out-
come of patients. Survival analysis can dramatically differen-
tiate the survival prognosis of the two groups. Meanwhile,
we applied ROC analysis to detect the predictive reliability
of IRMPI. Given the prominence of mRNA-miRNA interac-
tions, we also determined the target genes of five model miR-
NAs and obtained 10 hub genes (ESR1, IGF1, PDGFRB,
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JUN, MYC, ZWINT, MAD2L1, TOP2A, KIF11, and
CDCA8) with high relevant scores.

Reviewing the previous literature, we found that these
model miRNAs are more or less implicated in the formation
of various tumors. As suggested by Wong CC et al., miR-139
could serve as a suppressor in HC and upregulation of miR-
139 could inhibit the metastatic behavior of HC cell through
suppression of ROCK2 [30]. NETA1 could increase the
expression of TGF-β to facilitate HC cell viability through
binding with miR-139 [31]. Also, miR-139 could mediate
cell growth and metastasis in HC by targeting Wnt/TCF-4
axis [32]. As a promising noninvasive indicator in breast
cancer (BC), miR-188 has been shown to regulate BC cell
viability and metastasis by interacting with IL6ST [33]. In

glioma, Li N et al. suggested that miR-188 might suppress
cell cycle and cell development by inhibiting β-catenin [34].

Moreover, we found that among the 10 hub genes, 6
genes (CDCA8, ESR1, MAD2L1, KIF11, IGF1, and ZWINT)
had significant prognostic value. Meanwhile, these 6 key
genes are tightly bound up with tumor aggravation. For
instance, Jeon et al. suggested that CDCA8 could regulate
HC cell viability and stemness by targeting Akt/β-catenin
signaling [35]. Aresti et al. detected the ERS1 expression in
lung cancer and normal specimens and indicated its poten-
tial ability in evaluating survival outcome [36]. The function
of MAD2L1 is related to cell mitosis. As revealed by Li et al.,
miR-200c-5p could block HC cell growth and survival by
binding with MAD2L1 [37]. Similar to our results, Huang
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et al. also demonstrate that IGF1 could be the carcinogenic
factor and possible target in HC by bioinformatic method
and experiments [38]. Both KIF11 and ZWINT can affect
HC progression by mediating cell proliferation [39, 40].

The signaling pathway is a cellular reaction to signal
reception and integration, which modulates gene expression
and affects cell viability and apoptosis. Tumor-associated
pathways engage in host of cellular activities and metabolic
regulation. The activation of these pathways could contrib-
ute to the development of tumor malignant behavior and
treatment failures [41]. Therefore, therapeutic strategies tar-
geting signaling pathways have been the focus of cancer
research, and various targeted inhibitors with promising
benefits are becoming prevalent.

PI3K/Akt signaling pathway is mainly modulated by
multiple genes such as PTEN, SHIP, and CTMP. PTEN
blocks the dephosphorylation of PIP3 to PIP2, which could
decrease the expression level of cellular PIP3 in cells and
suppress the activation of Akt and its downstream molecules
[42]. The downstream regulatory targets of the PI3K/Akt
signaling include mTOR, Foxo, and GSK-3. Among them,
the mTOR protein complex is a pivotal member. Akt can
trigger mTOR kinase activity by negatively regulating the
mTORC1 protein complex TSC1-TSC2, which mediates
biological processes such as cell cycle, DNA damage repair,
and glycogen synthesis [43]. In HC, Jiang et al. reported that
PRMT9 could confer powerful migration ability to cancer
cells by triggering Akt/GSK-3β pathway [44].

MAPK can be stimulated by mitogens, cytokines, and
neurotransmitters to mediate cellular signals and exert bio-
logical effects by regulating cell growth, apoptosis, and
autophagy. The MAPK pathway is composed of a conserved
three-tier kinase pattern, including MKK, MKK, and MAPK,
which can be triggered sequentially and act on downstream
molecules, such as c-Jun and ATF2/6, to control the expres-
sion of specific genes and thus adjust the cell viability and
differentiation [45].

Up to now, five parallel MAPK signaling pathways have
been identified, including ERK1/2, SAPK, ERK5 p38, and
JUK. Although each pathway is highly specific, in some
cases, there is some crosstalk between them. ERK is mainly
a transmitter of cell proliferation signals, while JNK and
p38MAPK are mainly activated by various extracellular
stimuli, causing a complex series of cellular stress transduc-
tion [46]. Several studies have revealed that MAPK signaling
remains active at both transcriptional and translational
levels in chemotherapy resistance HC cells [47]. Abnormal
activation of MAPK pathway is responsible for the loss of
cell differentiation and apoptosis, triggering abnormal cell
proliferation and malignant transformation, and plays a cen-
tral part in the mechanism of tumor drug resistance. In addi-
tion, upregulated ERK can promote cell division and
proliferation by facilitating the cell cycle to enter S phase.
Researchers have discovered that Ras mutations in cells
induced abnormal upregulation of downstream MEK and
ERK, resulting in abnormal proliferation of tumor cells [48].

In summary, we created a five IRM-based prognostic
index which could play a central part in survival assessment
for HC samples. In the future, our proposed index model

might be a valuable informative tool offering clinical guide
in HC management.
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