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Background. Oral squamous cell carcinoma (OSCC) is a commonly encountered head and neck malignancy. Increasing evidence
shows that there are abnormal immune response and chronic cell hypoxia in the development of OSCC. However, there is a lack of
a reliable hypoxia-immune-based gene signature that may serve to accurately prognosticate OSCC. Methods. )e mRNA ex-
pression data of OSCC patients were extracted from the TCGA and GEO databases. Hypoxia status was identified using the
t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm. Both ESTIMATE and single-sample gene-set enrichment
analysis (ssGSEA) were used for further evaluation of immune status. )e DEGs in different hypoxia and immune status were
determined, and univariate Cox regression was used to identify significantly prognostic genes. A machine learning method, least
absolute shrinkage and selection operator (LASSO) Cox regression analysis, allowed us to construct prognostic gene signature to
predict the overall survival (OS) of OSCC patients. Results. A total of 773 DEGs were identified between hypoxia high and low
groups. According to immune cell infiltration, patients were divided into immune high, medium, and low groups and immune-
associated DEGs were identified. A total of 193 overlapped DEGs in both immune and hypoxia status were identified. With the
univariate and LASSO Cox regression model, eight signature mRNAs (FAM122C, RNF157, RANBP17, SOWAHA, KIAA1211,
RIPPLY2, INSL3, and DNAH1) were selected for further calculation of their respective risk scores. )e risk score showed a
significant association with age and perineural and lymphovascular invasion. In the GEO validation cohort, a better OS was
observed in patients from the low-risk group in comparison with those in the high-risk group. High-risk patients also dem-
onstrated different immune infiltration characteristics from the low-risk group and the low-risk group showed potentially better
immunotherapy efficacy in contrast to high-risk ones. Conclusion. )e hypoxia-immune-based gene signature has prognostic
potential in OSCC.

1. Introduction

)e incidence of lip and oral cavity cancers has been on the
rise, with an estimated 246,420 cases and 119,693 deaths
occurring globally in 2018 [1]. Oral squamous cell carcinoma
(OSCC) is the dominating subtype of oral cancer, which
unfortunately harbors a dismal 5-year survival rate [2].
)ere is still an urgent need to discover accurate prognostic
biomarkers and effective drug targets for OSCC.

Solid tumors such as OSCC are usually characterized by
cellular hypoxia, which is generally considered to be a

manifestation of poor prognosis [3, 4]. Cell hypoxia has evolved
to represent a significant feature in cancer [5]. Hypoxic con-
ditions could trigger the migration and invasion of OSCC cells
[6–8]. Reports also suggest that hypoxia can induce epithelial to
mesenchymal transition (EMT) in several types of cancer,
including OSCC [9]. It can also stimulate angiogenesis through
the activation of proangiogenic factors [10]. Zhang et al. re-
ported that the expression of HIF-1α, Glut-1, and CA9 can
predict malignant transformation to OSCC [11]. It is unde-
niable that cellular hypoxia contributes significantly to the
malignant properties of OSCC.
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)e immune system is crucial in OSCC tumorigenesis,
progression, and prognosis [12–14]. Enhanced PD-1 and
PD-L1 expressions were observed in OSCC patient serum
and tissue samples [15]. Premalignant lesions were also
found to harbor raised PD-L1 expressions [16]. Inhibiting
the PD-1/PD-L1 axis is one of the most promising means to
activate antitumor immunity [17]. A number of immune-
related prognostic biomarkers have been identified in OSCC.
Meehan et al. had previously constructed an immune-related
signature that correlated with OSCC patient prognosis [18].
Some immune checkpoints have been documented to be
closely related to poorer patient outcomes in OSCC [19].
One of them is the CTSG gene, which is an immune-related
gene and has been identified as an independent biomarker
and therapeutic target of OSCC [20]. Although these im-
mune-related prognostic biomarkers have been discovered,
few studies have explored the potential benefit of a combined
assessment of both immunological characteristics and the
hypoxic microenvironment in OSCC [21].

Several studies have alluded to the clinical significance of
potential interactions between immune function and cellular
hypoxia across various malignancies [22, 23]. Computa-
tional framework for prognosis assessment for cancer pa-
tients has been widely used in various tumors [24–27].
Although some hypoxia-related and immune-relatedmodels
have been constructed to predict the prognosis of OSCC
[28, 29], a reliable hypoxia-immune-integrated prognostic
gene signature has not yet been established for OSCC. Here,
we first accessed the mRNA expression profiles of OSCC
patients from the TCGA database. Cell hypoxia was iden-
tified using the t-SNE algorithm, while the immune status
and immune-related DEGs were identified using the ES-
TIMATE and ssGSEA algorithms. DEGs that were signifi-
cant in both immune and cellular hypoxia phenomena were
identified. )is pool of genes was then subjected to a ma-
chine learning assessment to discern those which were
potentially prognostic. We successfully constructed a hyp-
oxia-immune-based gene signature that was useful in pre-
dicting the overall survival (OS) of OSCC patients.

2. Materials and Methods

2.1. Data Collection and Preprocessing. )e discovery cohort
included 303 OSCC individual data from the “TCGA-
HNSC” project in )e Cancer Genome Atlas (TCGA). )e
Genomic Data Commons (available at https://portal.gdc.
cancer.gov) database was then accessed to extract the cor-
responding gene expression data. In this study, samples
without data on the survival state and survival time were
eliminated. Data were externally validated using an inde-
pendent cohort. )e expression profile of GSE41613 was
downloaded from the Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo/) based on the GPL570 Affy-
metrix Human Genome U133 Plus 2.0 Array platform. A
total of 97 OSCC patient data were included in this validated
study. )e IMvigor210 (n� 348) cohort with immuno-
therapy data and corresponding clinicopathological infor-
mation was obtained from the IMvigor210CoreBiologies R
package.

RNA-sequencing data (FPKM values) extracted from the
TCGA database were translated into transcripts per kilobase
million (TPM) values and normalized using log2 (TPM+1).
Raw GEO database-derived data were obtained using the
RMA algorithm. Background adjustment, quantile nor-
malization, and final summation of oligonucleotides per
transcript were carried out using the median Polish algo-
rithm of the Affy software package. Finally, the different
probe IDs were converted into their respective gene symbols
to annotate them, and the repeated gene expression values
were averaged. All patients with included clinical infor-
mation and survival data were also incorporated in this
study.

2.2. Identification of Hypoxia Status and Hypoxia-Related
Differentially Expressed Genes (DEGs). )e presence of cell
hypoxia was determined using the t-distributed Stochastic
Neighbor Embedding (t-SNE) algorithm. )is nonpara-
metric, unsupervised method was able to distinguish be-
tween patient clusters based on provided hallmarks or
signatures. Based on the seven hypoxic signatures of Buffa,
Elvidge, Eustace, Hu, Ragnum, Sorensen, and Winter [30], a
nonlinear dimensionality reduction algorithm t-SNE was
used to measure the Euclidean distance of any two patients
in the TCGA cohort, which was then condensed into two-
dimensional points. )ree clusters were identified. More-
over, we obtained genes using the KEGG HIF-1 signaling
pathway (https://www.kegg.jp/; ID:04066) to assess the
hypoxic status. Of these genes, 14 were identified as “in-
creased oxygen delivery” genes and 12 were identified as
“reduced oxygen consumption” genes. Finally, the “DESeq2”
software package was used to discern between DEGs sig-
nificant to low- or high-hypoxic groups (P-value <0.05 and ǀ
log2 (fold change) ǀ>1).

2.3. Identification of Immune Status and Immune-Related
DEGs. We evaluated enrichment degrees of a total of 28
immune cells within each TCGA OSCC sample using the
ssGSEA method. )e OSCC samples were arbitrarily divided
into high-, medium-, and low-immune groups using hierar-
chical clusters (namely, “Immune_Low,” “Immune_Medium,”
and “Immune_High”) based on the above immune matrix.
Both degrees of immunocyte infiltration degree (immune
score) and stromal level (stromal score) were assessed using the
Estimation of Stromal and Immune cells in Malignant Tumor
tissues using Expression data (ESTIMATE) algorithm in
TCGA OSCC samples to validate the above immune status
grouping. )e immune-related DEGs between the Immu-
ne_Low group and the Immune_High groupwere identified by
the “DESeq2” software package using similar parameters as in
the cell hypoxia analysis. )e Metascape (https://metascape.
org/) database was used to construct GO and KEGG enrich-
ment pathways of the selected DEGs.

2.4. Construction and Verification of Prognostic Signatures
Related to Hypoxia and Immune Status. We took the in-
tersection between hypoxia- and immune-related
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differentially expressed genes (DEGs) and selected those
overlapped genes for subsequent analysis. First, using the
“survival” package in R, we employed univariate Cox re-
gression on these overlapped genes and overall survival (OS)
of OSCC in the TCGA to identify survival-related hypoxia-
immune-related DEGs. )ose with a P< 0.05 were con-
sidered as significant.)en, using the “glmnet” package in R,
the Least Absolute Shrinkage and Selection Operator
(LASSO) Cox regression model was applied to select the
optimal variables from all identified hypoxia-immune-re-
lated prognostic DEGs in the discovery cohort. LASSO is a
kind of linear regression that uses shrinkage and can be
applied to high-dimensional data. In this study, fivefold
cross-validation was employed to select the minimal penalty
term (λ). All patients were then subjected to a risk score
calculation as follows:

risk score�  (coefficient∗ expression of the signature
gene).

)e risk score was defined as the sum of the product of
the prognostic signature gene expression levels and the
corresponding LASSO model-derived coefficients. )e op-
timal cut point was determined by a method of maximally
selected rank statistics based on an individual level risk score
to further refine a means to stratify patients with OSCC
according to their prognosis.

2.5. Relationship between Risk Scores and the Immune Mi-
croenvironment of OSCC. Profiles of 22 immune cell infil-
tration were determined in both the low- and high-risk
groups using the CIBERSORT algorithm. Using gene ex-
pression data, the CIBERSORT is a deconvolution algorithm
specifically designed to evaluate cellular composition in
tissues. In addition, two immune checkpoints (CTLA-4 and
PD-1), APM, CYT, TILs, and TIS allowed for further
analysis of the relationship between the low- and high-risk
groups.

)emajor histocompatibility complex (MHC)molecules
were subjected to relative antigen presentation mechanism
(APM) calculation. )e degree of immune cytotoxic activity
(CYT) based on granzyme A (GZMA) and perforin-1
(PRF1), both of which are related to CD8+T cell activation,
was calculated on previously reported formulas. Tumor
prognosis is known to be associated with the density of
T cells tumor infiltration. )e proportion of tumor-
infiltrating lymphocytes (TILs) was calculated. Lastly, we
used the tumor inflammation signature (TIS), which rep-
resents a commonly used 18-gene signature in research, to
quantify background adaptive immune responses, which are
normally inhibited in tumors. )e TIS score was derived in
terms of the mean of log2-FPKM gene expression of the
selected marker genes.

2.6. Statistical Analysis. )e R version 3.6.1 and its related
packages were used to carry out all data analyses. )e t-SNE
algorithm was performed using the “Rtsne” of the R package
on the basis of nonlinear dimensionality reduction. )e
“estimate” package was used to determine immune scores.
)e “glmnet” package was used to carry out LASSO Cox

regressionmodeling. To identify independent risk factors for
survival, univariate and multivariate Cox regression analyses
were employed after the adjustment of covariates. )e
“survival” package was used to perform the Cox regression
model and Kaplan–Meier analyses. A P value of <0.05
suggested that the results were statistically significant.

3. Results

3.1. Hypoxia Status and Hypoxia-Related DEGs in OSCC.
In the TCGA cohort, cell hypoxia status was evaluated using
ssGSEA analysis based on eight hypoxia signatures (Buffa,
Elvidge, Eustace, Hu, Ragnum, Seigneuric, Sorensen, and
Winter) [30] (Figure 1(a)). Based on the quantitative score of
each hypoxia signature, we found that the “Seigneuric”
signature had the lowest correlation with the others and was
therefore not included in this study (Figure 1(b)). )e
remaining seven gene signatures were used in the nonlinear
dimensionality reduction algorithm calculation of two-di-
mensional points between any two patients (see Methods for
details). As shown in Figure 1(c), three clusters of patients
were identified, and each patient was assigned to their
nearest cluster. A total of 64, 142, and 97 cases were classified
into Cluster 1, Cluster 2, and Cluster 3. )ere was no sig-
nificant difference in terms of patient survival among the
three clusters (log-rank test, P � 0.088) (Figure 1(d)).
However, there was a significant difference when comparing
Cluster 1 with Cluster 2 and Cluster 3 (log-rank test,
P � 0.029). Clusters 2 and 3 were then combined for further
comparison against Cluster 1, which appeared to possess the
most favorable overall survival outcome. Clusters 2 and 3
may differ from Cluster 1 in terms of the degree of cellular
hypoxia. We further explored differences in expressions of
KEGG HIF-1 pathway molecules between the two new
clusters (Cluster 1 versus Clusters 2 and 3). )e resultant
identified genes were classified as being involved in “reduced
oxygen consumption” (12 genes) or “increased oxygen de-
livery” (14 genes). Of those 14 genes involved in increased
oxygen delivery, 11 (78.57%) were found to be overexpressed
in Clusters 2 and 3 compared with those in Cluster 1
(Figure 1(e)). Seven of the 12 genes related to reduced
oxygen consumption (58.33%) were noted to be overex-
pressed in Clusters 2 and 3 (Figure 1(f )). We therefore
proved that both these clusters were of different cell hypoxia
status. Patients in Clusters 2 and 3 and Cluster 1 were then
renamed to Hypoxia_High or Hypoxia_Low groups, re-
spectively. A total of 773 DEGs were then identified using the
DESeq2 package between the Hypoxia_High and Hypo-
xia_Low groups. Of these genes, 220 were upregulated,
whereas 553 were downregulated (Figures 1(g) and 1(h)).

3.2. Immune Status and Immune-Related DEGs in OSCC.
Based on the proportions of 28 immune cells quantified by
ssGSEA, OSCC samples in the TCGA database were clas-
sified into high-, medium-, and low-immune groups (named
Immune_ High, Immune_ Medium and Immune_ Low,
resp. (Figure 2(a)). In accordance with calculations using the
ESTIMATE approach, both immune and stromal scores of
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Figure 1: Continued.
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Figure 1: Identification of hypoxia status and hypoxia-associated DEGs. Quantified heatmap (a) and correlation heatmap (b) calculated by
ssGSEA with respect to the eight hypoxia signature sets. (c) Dot plot of three distinct clusters determined using the t-SNE algorithm to
analyze 7 hypoxia signature gene sets. (d) Overall survival as shown by the Kaplan–Meier plot for patients in three clusters. (e), (f ) HIF-1
KEGG pathway gene expression changes based on hypoxia status (Hypoxia_High versus Hypoxia_Low). Heatmap (g) and volcano plot
(h) show the differentially expressed hypoxia-related genes in oral squamous cell carcinoma (OSCC). Red dots represent upregulated DEGs,
blue dots represent downregulated DEGs, and gray dots represent genes with no differential expression.
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Figure 3: )e construction of hypoxia-immune-based mRNA prognosis model. (a) Hazard ratios for 11 hypoxia-immune-associated
prognostic mRNAs. (b) LASSO coefficient profiles. (c) )e LASSO model is used to choose the tuning parameter (lambda) using fivefold
cross-validation based onminimum criteria for OS; average OS genes are represented by the upper x-axis, and log (lambda) is represented by
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the Immune_ High group were elevated in contrast to those
of the Immune_ Low group (Figures 2(b) and 2(c)).
Comparisons between high- and low-immune groups
revealed 854 immune-related DEGs (Figures 2(d) and 2(e)),
which were subjected to Metascape tool functional en-
richment analysis. )e identified DEGs were predominately
involved in immune response processes such as “lymphocyte
activation,” “adaptive immune response,” “leukocyte acti-
vation involved immune response,” and “immunoregulatory
interactions between a Lymphoid and a non-Lymphoid cell”
(Figure 2(f)).

3.3. Development and Validation of the Risk Score. A total of
193 mRNAs were significant in both hypoxia- and immune-
related genes. Eleven of these mRNAs were associated with
OS (P< 0.05) according to univariate Cox regression
analysis (Figure 3(a)). Of these, a total of 8 mRNA signatures
were selected by the LASSO Cox regression model
(Figures 3(b) and 3(c)). All the 8 mRNAs were protective
against OSCC (Figure 3(d)). Subsequent risk scores were
derived from the following equation: risk score� [DNAH1
expression ∗ (−0.20877639)] + [FAM122C expression ∗
(−0.02762894)] + [INSL3 expression ∗ (−0.16020112)] +
[KIAA1211 expression ∗ (−0.07398287)] + [RANBP17 exp
ression ∗ (−0.05474305)] + [RIPPLY2 expression ∗
(−0.13172196)] + [RNF157 expression ∗ (−0.02933425)]
+ [SOWAHA expression ∗ (−0.06916555)]. Using this for-
mula, patients were stratified into either low- or high-risk
groups.)emethod of maximally selected rank statistics was
used to determine the optimal risk score cutoff (Figure 3(e)).
Significantly improved survival was observed in those in the
low-risk group compared to their high-risk counterparts
(log-rank test, p< 0.001) (Figure 3(f)). )e ROC curve
showed that the classifier had relatively strong predictive
power in the TCGA cohort, with a value of 0.578 for the area
under the curve (AUC) (Figure 3(g)). Furthermore, the
TCGA cohort was also analyzed for distribution of selected
gene expressions and risk scores as well as survival status
(Figure 3(h)). Table 1 depicts all relevant clinical parameters.

To further explore the efficacy of the constructed risk
score, we performed validation tests using the GEO cohort.
Using the method of maximally selected rank statistics, all
OSCC patients in the GEO cohort were divided
(Figure 4(a)). Comparison of survival showed that improved
survival rates were experienced by low-risk patients in
contrast to high-risk patients (log-rank test, p � 0.00084)
(Figure 4(b)). In addition, we plotted the ROC curves for
predicting one- and three-year survival according to the OS
of patients, and the values of the area under the curve (AUC)
were 0.552 and 0.605, respectively (Figure 4(c)). )e GEO
OSCC cohort was then analyzed for distribution of selected
gene expressions and risk scores as well as survival status
(Figures 4(d)–4(f)). Furthermore, we investigate the ex-
pression difference of eight signature genes between high
and low groups. )e result showed that the expression of the
eight signature genes was significantly higher in the low-risk
group than in the high-risk group in both TCGA and GEO

cohorts (TCGA: Supplementary Figure 1A; GEO: Supple-
mentary Figure 1B).

3.4. Relationship between Prognostic mRNA Signature and
Clinical Parameters. We next investigate the relationship
between the risk score and clinical parameters in the TCGA
database. Only OSCC samples with complete clinical in-
formation (including patient tumor stage and grade (in-
cluding N and T stages), genders, age, and the presence of
perineural and lymphovascular invasion) were used. We
found that, in addition to age (Figure 5(a)), perineural and
lymphovascular invasion were found to correlate signifi-
cantly with the hypoxia-immune mRNA signature, but not
with patient tumor stage and grade (including N and T
stages) and genders (Figures 5(b)–5(h)).

Both univariate and multivariate analyses were done on the
TCGA dataset to further prove the significance of the con-
structed hypoxia- and immune-related gene signatures.)e risk
score, age, and pathological stage may be able to be combined to
predict the prognosis of the TCGA OSCC cohort (Table 2).

Finally, we investigated whether our model could be
used to determine survival outcomes in subgroups with
different clinicopathological features. Supplementary
Figures 2A–2I show that the risk score could be used to
predict the prognosis of patients with different clinico-
pathological features.

3.5. Variability of Degree of Immune Cell Infiltration between
the Low- andHigh-Risk TCGAOSCCCohorts. )e degree of
immune cell infiltration between low- and high-risk groups
was evaluated using the CIBERSORTalgorithm.)ose in the
low-risk group were more likely to have higher infiltration
degrees of CD8+ Tcells, plasma cells, follicular helper Tcells,
regulatory T cells (Tregs), and naive B cells. On the other
hand, high-risk patients demonstrated higher degrees of
infiltration of activated DCs, activated mast cells, and
neutrophils. Furthermore, the immune indicator scores and
the immune checkpoint expressions in the low-risk group
were all remarkably raised in comparison to those in the
high-risk group patients (Figures 6(b)–6(g)).

To further assess the ability of our model to predict immu-
notherapy efficacy, the IMvigor210 cohort of MIBC patients
treated with PD-L1 inhibitors was used. )e Kaplan–Meier
analysis showed that patients with high-risk scores had a poorer
survival rate than those with low-risk scores (Supplementary
Figure 3A, p � 0.018). ROC curve analyses showed that the risk
score combinedwith tumormutational burden (TMB) and tumor
neoantigen burden (TNB) output a higher area under the curve
(AUC) value (AUC� 0.699) than TMB (AUC� 0.659), TNB
(AUC� 0.690), or risk score (AUC� 0.560), respectively (Sup-
plementary Figure 3B). Furthermore, we further discussed the
differences in immunotherapy response between the high-risk
group and the low-risk group based on the immune signature,
and the results found that patients in the low-risk group had a
higher complete response (CR)/partial response (PR) rate than
those in the high-risk group (Supplementary Figure 3C).
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4. Discussion

OSCC is the most common oral cancer characterized by a
higher recurrence rate and lower overall survival rate of
patients [11]. Hypoxia has been found to play an im-
portant role in the prognosis and treatment of OSCC [28].
Hypoxia also influences the activity of immune cells in the
tumor microenvironment [31]. For example, hypoxia can
impair the maturation and activity of dendritic cells (DCs)
and natural killer (NK) cells [31, 32]. Both hypoxia and
immune status play important roles in OSCC [33–35].
However, there is a lack of a reliable prognostic model of
integration of hypoxia- and immune-related signatures
for OSCC. In this study, we have a comprehensive analysis
and constructed a hypoxia-immune-integrated indicator
in OSCC.

Based on hypoxia-related signatures, the samples in our
study were grouped into 3 clusters (Cluster 1, Cluster 2, and
Cluster 3) (Figures 1(a)–1(c)). )e presence of cell hypoxia
induces the expression of HIF-1α. Enhanced HIF-1α ex-
pression has previously been associated with poor prognosis
and lymph nodes metastasis in OSCC patients [36]. Further
evaluation of overall patient survival resulted in the com-
bination of Clusters 2 and 3 to form the Hypoxia_High
group, while those in Cluster 1 were designated as the
Hypoxia_Low group (Figure 1(d)). )e expression of genes
from two hypoxia-related gene sets, “increased oxygen de-
livery” and “reduced oxygen consumption,” was compared
between Cluster 1 and Clusters 2 and 3. Eleven of the 14
genes belonging to the “increased oxygen delivery” were
expressed at higher levels in Clusters 2 and 3 in contrast to
Cluster 1 (Figure 1(e)). On the other hand, 7 of the 12 genes
associated with “reduced oxygen consumption” were highly
expressed in Cluster 1 compared to Clusters 2 and 3
(Figure 1(f)). )erefore, Cluster 1 and Clusters 2 and 3 were
considered as the Hypoxia_Low and Hypoxia_High groups,
respectively. A total of 773 DEGs were identified across both
these groups (Figures 1(e) and 1(f )).

We then divided these OSCC patients into three groups
(Immune_High, Immune_Medium, and Immune_Low)
according to the abundance of immune cells (Figure 2(a)).
)e immune score of Immune_High group was higher than
that of the Immune_Medium and Immune_Low groups.
)e Immune_Low group has the lowest immune score
among the three groups (Figures 2(b) and 2(c)). A total of
854 immune-related genes in OSCC were determined be-
tween the Immune_High and Immune_Low groups
(Figures 2(e) and 2(f )). All genes were found to be enriched
in immune-related functions, including “leukocyte activa-
tion involved immune response,” “adaptive immune re-
sponse,” “lymphocyte activation,” and “immunoregulatory
interactions between a Lymphoid and a non-Lymphoid cell”
(Figure 2(f )). )ese immune processes are also related to the
malignant properties of OSCC. Previous reports found that a
higher neutrophil-to-lymphocyte ratio was a negative pre-
dictor for overall survival for patients with OSCC [37].
Dendritic cell immune response activation was able to be
induced by IFN-c-inhibited OSCC growth in tumor-bearing
mice [38].

To further integrate the hypoxia- and immune-related
genes, the overlapping genes between the two gene sets were
screened. Eight prominent mRNA signatures associated
with OS from the 193 overlapping genes were selected,
which were FAM122C, RNF157, RANBP17, SOWAHA,
KIAA1211, RIPPLY2, INSL3, and DNAH1 (Figures 3(a)–
3(d)). Among these mRNAs, KIAA1211 is known to be an
oncogenic gene. Non-small-cell lung cancer tissues were
found to have raised KIAA1211 expressions in contrast to
adjacent normal tissues. Knockdown of KIAA1211 inhibited
the proliferative abilities of NSCLC cells while promoting
apoptosis both in vitro and in vivo [39]. Small cell lung
cancer patients with a KIAA1211 mutation possess a longer
survival period than those with wild-type KIAA1211 mu-
tations [40]. RIPPLY2 represented one of the mRNAs in a
five-gene signature verified to be able to predict the survival
of endometrial cancer patients [41]. )e tumor-promoting
effect of INSL3 in cancer has also been widely addressed.)e
plasma level of INSL3 was found to be raised in an individual
with metastatic ovarian cancer [42]. Other reports highlight
the potential role of INSL3 as a marker of human testicular
Leydig cell tumors [43]. INSL3 could promote tumor growth
and angiogenesis in nude mice model of thyroid cancer in a
manner that appeared to be related to the action of RXFP2
and the secretion of S100A4 and (pro-) cathepsin-L [44]. In
pancreatic cancer patients, a higher serum level of INSL3 was

Table 1: Clinical characteristics of the TCGA OSCC patients.

Characteristic High (n� 161) Low (n� 142) TCGA (n� 303)
Age
≤62 80 81 161
>62 81 61 142
Gender
Female 51 48 99
Male 110 94 204
Survival status
Living 93 100 193
Dead 68 42 110
Pathologic M
Unknown 100 88 188
M0 61 54 115
Pathologic N
Unknown 27 17 44
N0 59 54 113
N1 27 19 46
N2 47 51 98
N3 1 1 2
Pathologic T
Unknown 11 7 18
T1 12 15 27
T2 50 43 93
T3 31 26 57
T4 57 51 108
Tumor stage
Unknown 13 10 23
Stage I 9 8 17
Stage II 27 24 51
Stage III 33 21 54
Stage IV 79 79 158
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associated with increased anorexia [45]. )ese mRNAs,
which have previously been found to be of significant value
in other cancers, should be further investigated for their role
in OSCC.

)ese 8 mRNAs were used to construct an mRNA
signature, which may have prognostic potential in OSCC
(Figures 3(e)–3(h)). )is constructed risk score was then
validated in a cohort from the GEO dataset (Figures 4(a)–
4(f)). )e risk score showed a significant association only
with age and perineural and lymphovascular invasion, but

not with other features, including gender, T stage, N stage,
and tumor stage (Figures 5(a)–5(h)). )erefore, this estab-
lished gene signature may be an independent prognostic
indicator.

Cancer immunotherapy has obtained much attention
in recent years and is considered as a direction of tumor
therapy, such as checkpoint blocking therapy. )e specific
difference in the tumor immune environment can reflect
the heterogeneity of clinical samples in response to current
immunotherapy. Finally, the immune profile variability
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between the high- and low-risk groups was compared in the
TCGA OSCC cohort. High-risk group samples showed
different degree of immune cell infiltration (Figure 6(a)).
)e low-risk group showed higher immune status than the
low-risk group, as evidenced by a higher amount of im-
mune checkpoint expression, including CTLA-4, PD-1,
APM, CYT, and TILs (Figures 6(b)–6(g)). )ese check-
points are indictors of OSCC risk and may function as
therapeutic targets in OSCC.)e genetic variants of CTLA-
4 were associated with tobacco-related OSCC risk in the
North Indian population [46]. A high number of CTLA-
4 cells is associated with poor 5-year metastasis-free sur-
vival of OSCC patients [47]. An anti-PD-1 antibody is an
agent which may prevent the initiation and progression of
OSCC while prolonging patient survival time [48–50].
Analysis of the IMvigor210 cohort revealed that patients
with low-risk scores had better survival and tended to have
a higher complete response (CR)/partial response (PR)
rate.

In conclusion, hypoxia and immune status play a key
role in the prognosis of OSCC. Combining hypoxia- and
immune-related genes, we established an OSCC prognostic
model based on hypoxia and immunity, which provides a
reliable reference for clinical decision-making.

A preprint has previously been published on the preprint
website (https://www.researchsquare.com/article/rs-
596220/v1) [51].
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Supplementary Figure 1. )e expression of the eight sig-
nature genes. (A) Differential expression profiles of the 8
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Figure 6: Analysis of immune status variability of the high- and low-risk groups in the TCGA OSCC cohort. (a) )e bar plot shows various
immune cell infiltration between the high- and low-risk patients. (b-g) Box plots illustrating markedly different immune checkpoints
between the high- and low-risk groups.

Table 2: Univariate and multivariate Cox regression analysis of clinicopathological features associated with overall survival in TCGA data.

Variables
Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value
Age (＞62/≤62) 1.021 (1.005–1.037) 0.00942∗ 1.0329 (1.0103–1.056) 0.00413∗
Gender (male/female) 1.021 (0.6894–1.511) 0.919 0.7058 (0.4183–1.191) 0.19194
Tumor grade (G4/G3/G2/G1) 1.35 (1.01–1.803) 0.0424∗ 1.4226 (0.9819–2.061) 0.06242
Stage (IV/III/II/I) 1.482 (1.172–1.874) 0.00102∗ 1.7513 (1.0060–3.049) 0.04758∗
Pathologic T (T4/T3/T2/T1) 1.447 (1.181–1.773) 0.000365∗ 1.0449 (0.7235–1.509) 0.81483
Pathologic N (N3/N2/N1/N0) 1.411 (1.116–1.785) 0.00403∗ 1.1601 (0.8620–1.561) 0.32721
Risk score 4.322 (2.096–8.912) 0.0000736∗ 3.5246 (1.4818–8.383) 0.00438∗

Note. ∗Statistically significant. HR: hazard ratio; CI: confidence interval.
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signature genes in low and high-risk groups. (B) Differential
expression profiles of the 8 signature genes in low and high-
risk groups. Supplementary Figure 2. Kaplan–Meier analyses
of the eight-gene-based model in subgroups with different
clinicopathological features. Kaplan–Meier survival curves
for (A) age>62, (B) age≤62, (C) male, (D) female, (E)
T1 +T2, (F) T3 +T4, (G) N0+N1, (H) N2+N3, (I) stage
I + stage II, (J) stage III + stage IV, (K) G1+G2, and (L) G3
for the low- and high-risk groups. T: stage-T, N: stage-N, M:
stage-M, and G: tumor grade. Supplementary Figure 3. )e
risk model predicts immunotherapy efficacy. (A)
Kaplan–Meier overall survival curves for patients assigned to
low- and high-risk groups in the IMvigor210 cohort. (B)
ROC curves of tumor mutational burden (TMB), tumor
neoantigen burden (TNB), risk score, and the combination
(TMB, TNB, and risk score). (C) Rate of clinical response
(CR/PR and SD/PD) to immunotherapy in the low- or high-
risk groups (CR, complete response; PR, partial response;
PD, progressive disease; SD, stable disease).” (Supplementary
Materials)
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[19] M. Sieviläinen, R. Almahmoudi, A. Al-Samadi, T. Salo,
M. Pirinen, and A. Almangush, “)e prognostic value of
immune checkpoints in oral squamous cell carcinoma,” Oral
Diseases, vol. 25, no. 6, pp. 1435–1445, 2019.

[20] G.-z. Huang, Q.-q. Wu, Z.-n. Zheng et al., “Bioinformatics
analyses indicate that cathepsin G (CTSG) is a potential
immune-related biomarker in oral squamous cell carcinoma
(OSCC),” OncoTargets and �erapy, vol. 14, pp. 1275–1289,
2021.

[21] L. Li, B. Cao, X. Liang et al., “Microenvironmental oxygen
pressure orchestrates an anti- and pro-tumoral cδ T cell
equilibrium via tumor-derived exosomes,” Oncogene, vol. 38,
no. 15, pp. 2830–2843, 2019.

[22] S. Zheng, Y. Zou, J. y. Liang et al., “Identification and vali-
dation of a combined hypoxia and immune index for triple-
negative breast cancer,” Molecular Oncology, vol. 14, no. 11,
pp. 2814–2833, 2020.

[23] Y. Liu, J. Wu, W. Huang et al., “Development and validation
of a hypoxia-immune-based microenvironment gene signa-
ture for risk stratification in gastric cancer,” Journal of
Translational Medicine, vol. 18, no. 1, p. 201, 2020.

[24] Z. Zhang, S. Bao, C. Yan, P. Hou, M. Zhou, and J. Sun,
“Computational principles and practice for decoding immune
contexture in the tumor microenvironment,” Briefings in
Bioinformatics, vol. 22, no. 3, 2021.

[25] Z. Zhang, C. Yan, K. Li et al., “Pan-cancer characterization of
lncRNA modifiers of immune microenvironment reveals

Journal of Oncology 15

https://downloads.hindawi.com/journals/jo/2022/5286251.f1.zip
https://downloads.hindawi.com/journals/jo/2022/5286251.f1.zip


clinically distinct de novo tumor subtypes,” Npj Genomic
Medicine, vol. 6, no. 1, p. 52, 2021.

[26] H. Zhao, S. Gu, S. Bao et al., “Mechanistically derived patient-
level framework for precision medicine identifies a person-
alized immune prognostic signature in high-grade serous
ovarian cancer,” Briefings in Bioinformatics, vol. 22, 2021.

[27] J.-C. Guo, Y. Wu, Y. Chen et al., “Protein-coding genes
combined with long noncoding RNA as a novel transcriptome
molecular staging model to predict the survival of patients
with esophageal squamous cell carcinoma,” Cancer Com-
munications, vol. 38, no. 1, p. 4, 2018.

[28] Y. Han, X.Wang, K. Xia, and T. Su, “A novel defined hypoxia-
related gene signature to predict the prognosis of oral
squamous cell carcinoma,” Annals of Translational Medicine,
vol. 9, no. 20, p. 1565, 2021.

[29] Z. Qian, D. Shang, L. Fan et al., “Heterogeneity analysis of the
immune microenvironment in laryngeal carcinoma revealed
potential prognostic biomarkers,”HumanMolecular Genetics,
vol. 332, 2021.

[30] V. Bhandari, C. Hoey, L. Y. Liu et al., “Molecular landmarks of
tumor hypoxia across cancer types,” Nature Genetics, vol. 51,
no. 2, pp. 308–318, 2019.

[31] K. Mortezaee and J. Majidpoor, “)e impact of hypoxia on
immune state in cancer,” Life Sciences, vol. 286, Article ID
120057, 2021.

[32] M. H. Bao and C. C. Wong, “Hypoxia, metabolic reprog-
ramming, and drug resistance in liver cancer,” Cells, vol. 10,
no. 7, 2021.

[33] L. Gao, Z.-C. Dou, W.-H. Ren, S.-M. Li, X. Liang, and
K.-Q. Zhi, “CircCDR1as upregulates autophagy under hyp-
oxia to promote tumor cell survival via AKT/ERK½/mTOR
signaling pathways in oral squamous cell carcinomas,” Cell
Death & Disease, vol. 10, no. 10, p. 745, 2019.

[34] W. Dong, Y. Chen, N. Qian et al., “SATB2 knockdown de-
creases hypoxia‑induced autophagy and stemness in oral
squamous cell carcinoma,” Oncology Letters, vol. 20, no. 1,
pp. 794–802, 2020.

[35] H. Quan, Z. Shan, Z. Liu et al., “)e repertoire of tumor-
infiltrating lymphocytes within the microenvironment of oral
squamous cell carcinoma reveals immune dysfunction,”
Cancer Immunology, Immunotherapy, vol. 69, no. 3,
pp. 465–476, 2020.

[36] M. Uehara, K. Sano, H. Ikeda, M. Nonaka, and I. Asahina,
“Hypoxia-inducible factor 1 alpha in oral squamous cell
carcinoma and its relation to prognosis,” Oral Oncology,
vol. 45, no. 3, pp. 241–246, 2009.

[37] Y. Wang, P. Wang, O. Andrukhov et al., “Meta-analysis of the
prognostic value of the neutrophil-to-lymphocyte ratio in oral
squamous cell carcinoma,” Journal of Oral Pathology &
Medicine, vol. 47, no. 4, pp. 353–358, 2018.

[38] H. Wei, P. Hongya, J. Linlin et al., “IFN-c enhances the anti-
tumour immune response of dendritic cells against oral
squamous cell carcinoma,” Archives of Oral Biology, vol. 56,
no. 9, pp. 891–898, 2011.

[39] Z. Liu, H. Cao, Y. Shi, and R. Yang, “KIAA1211 plays an
oncogenic role in human non-small cell lung cancer,” Journal
of Cancer, vol. 10, no. 26, pp. 6747–6753, 2019.

[40] L. Wang, T. Luan, S. Zhou et al., “LncRNA HCP5 promotes
triple negative breast cancer progression as a ceRNA to
regulate BIRC3 by sponging miR-219a-5p,” Cancer Med,
vol. 8, no. 9, 2019.

[41] X. Li, F. Yin, Y. Fan et al., “Establishment and validation of a
prognostic nomogram based on a novel five-DNA

methylation signature for survival in endometrial cancer
patients,” Cancer Medicine, vol. 10, no. 2, pp. 693–708, 2021.

[42] M. Rossato, M. Barban, and R. Vettor, “Elevated plasma levels
of the novel hormone INSL3 in a woman with metastatic
ovarian cancer,” �e International Journal of Biological
Markers, vol. 22, no. 2, pp. 159-160, 2007.

[43] M. Rossato, I. M. Tavolini, A. Calcagno, M. Gardiman, F. Dal
Moro, and W. Artibani, “)e novel hormone INSL3 is
expressed in human testicular Leydig cell tumors: a clinical
and immunohistochemical study,” Urologic Oncology: Semi-
nars and Original Investigations, vol. 29, no. 1, pp. 33–37,
2011.

[44] S. Hombach-Klonisch, J. Bialek, Y. Radestock et al., “INSL3
has tumor-promoting activity in thyroid cancer,” Interna-
tional Journal of Cancer, vol. 127, no. 3, pp. 521–531, 2010.

[45] E. Yeom, H. Shin, W. Yoo et al., “Tumour-derived Dilp8/
INSL3 induces cancer anorexia by regulating feeding neu-
ropeptides via Lgr3/8 in the brain,” Nature Cell Biology,
vol. 23, no. 2, pp. 172–183, 2021.

[46] V. Bharti, B. K. Mohanti, and S. N. Das, “Functional genetic
variants of CTLA-4 and risk of tobacco-related oral carcinoma
in high-risk North Indian population,” Human Immunology,
vol. 74, no. 3, pp. 348–352, 2013.

[47] K. Koike, H. Dehari, K. Ogi et al., “Prognostic value of FoxP3
and CTLA-4 expression in patients with oral squamous cell
carcinoma,” PLoS One, vol. 15, no. 8, Article ID e0237465,
2020.

[48] R. L. Ferris, G. Blumenschein Jr., J. Fayette et al., “Nivolumab
for recurrent squamous-cell carcinoma of the head and neck,”
New England Journal of Medicine, vol. 375, no. 19,
pp. 1856–1867, 2016.

[49] J. Wang, T. Xie, B. Wang et al., “PD-1 blockade prevents the
development and progression of carcinogen-induced oral
premalignant lesions,” Cancer Prevention Research, vol. 10,
no. 12, pp. 684–693, 2017.

[50] J. A. Monteiro de Oliveira Novaes, T. Hirz, I. Guijarro et al.,
“Targeting of CD40 and PD-L1 pathways inhibits progression
of oral premalignant lesions in a carcinogen-inducedmodel of
oral squamous cell carcinoma,” Cancer Prevention Research,
vol. 14, no. 3, 2020.

[51] J. L. Shaohua Lv, S. Piao, and J. Li, “Identification and vali-
dation of a hypoxia-immune-based prognostic mRNA sig-
nature for oral squamous cell carcinoma,” inpress, 2021.

16 Journal of Oncology


