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Background. Breast cancer (BC) is the most commonly diagnosed cancer in women worldwide. 7e challenge in managing this
heterogeneous malignancy is that BC is highly aggressive and is always associated with chemical resistance, radiation resistance,
hormone therapy resistance, and targeted therapy resistance. 7erefore, there is an urgent need to find effective drugs to treat BC.
Methods. Based on the Selleck drug library approved by FDA, we screened 800 drugs for anti-BC cells and found that tegaserod
maleate (TM), a 5-hydroxytryptamine 4-receptor (HTR4) partial agonist had the best anti-BC effect, which was further verified.
7e effects of different concentrations of TM on cell proliferation, invasion, and migration were evaluated in vitro using CCK8,
plate cloning, transwell, and scratch assays. 7e UALCAN database, Kaplan–Meier Plotter database, Human Protein Atlas, and
GEPIA2 were used to explore the correlation between HTR4 expression and BC patients’ clinicopathological data as well as
immune response. In vivo experiments demonstrated the effect of the TM and immunotherapy drug (anti-PD1/anti-TIGIT)
combination on BC tumor growth in mice. Results. TM significantly inhibited the proliferation, invasion, and migration of BC
cells, and the higher the concentration, the better the inhibition effect. HTR4 was significantly downregulated in BC tissues
compared to paracancerous tissues. 7e downregulation of HTR4 was correlated with clinicopathological data and positively
correlated with BC prognosis. Interestingly, the GEPIA2 database suggested that there was a strong positive correlation between
the expression of HTR4 and effector Tcells, effector memory Tcells, and exhausted Tcells. In vitro experiments showed that TM,
anti-PD1, and anti-TIGIT could all inhibit the growth and weight of BC tumors as compared with the control group. However,
when anti-PD1 or anti-TIGIT was used simultaneously with TM, the inhibition of tumors significantly exceeded that in the
control group. Moreover, the combination of anti-TIGIT and TM has the best inhibitory effect. Conclusion. TM inhibited the
progression of breast cancer, and its combination with anti-TIGIT could effectively inhibit tumor growth and improve the
sensitivity of immunotherapy in breast cancer.
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1. Introduction

Breast cancer (BC) is the most commonly diagnosed cancer
in women worldwide [1], and a complex disease with
morphological and molecular heterogeneity, characterized
by three morphological grades and more than four different
molecular subtypes (at the level of gene expression) [2].
According to the consensus reached in 2015 and 2017 St.
Gallen International Breast Cancer Expert Conference [3, 4],
BC is clinically divided into four subtypes: triple negative,
hormone receptor (HR) negative and human epidermal
growth factor receptor 2 (HER2) positive, HR positive and
HER2 positive, HR positive, and HER2 negative. Treatment
options vary widely for different types of BC.

One hallmark of cancer including BC is the ability to
evade the immune system through tumor-mediated immune
escape [5]. Immune evasion can occur through a variety of
mechanisms, including manipulation of key immune
checkpoints that regulate the adaptive immune system,
including cytotoxic lymphocyte antigen 4 (CTLA-4), pro-
grammed cell death protein 1 (PD-1), and programmed cell
death 1 ligand 1 (PD-L1).7e CTLA-4 inhibitor was the first
immune checkpoint inhibitor (ICI) to demonstrate a benefit
in melanoma; subsequently, response rates for PD-1/PD-L1
inhibitors varied from 10% to 27% for multiple cancers
[6–8]. T cell immune receptor with Ig and ITIM domains
(TIGIT) is a type I transmembrane protein expressing Ig-like
variable extracellular domain (NKT) on activating and
memory T cells, regulatory T cells, natural killer (NK), and
natural killer T cells (NKT) [9]. Although the U.S. Food and
Drug Administration (FDA) has approved multiple ICI for
many cancers, the percentage of patients benefiting from
monotherapy ICI is low. 7erefore, the strategy of pursuing
ICI combined with other drugs is of great significance for the
treatment of cancers including BC.

Repurposing existing drugs is a time-saving way to
develop drugs that are more effective and have fewer side
effects. 7ere is substantial evidence that FDA-approved
nonantineoplastic drugs, such as antibiotics, anti-inflam-
matory drugs, lipid-lowering agents, and sulfonylureas, have
been shown to have antitumor effects in a variety of cancers
[10]. In this study, we screened 800 drugs against BC cells
based on the Selleck drug library approved by the FDA. We
were fortunate to find that tegaserod maleate (TM), a partial
agonist of 5-hydroxytryptamine 4-receptor (HTR4), worked
best on anti-BC cells, which was confirmed in subsequent
studies.

2. Materials and Methods

2.1. Cell Culturing and Compounds. Selleck drug library
approved by FDA including TM was purchased from Selleck
Chemicals LLC (USA). After dissolving in dimethyl sulf-
oxide (DMSO, Gibco, USA) to a final concentration of
10mM, TM was aliquoted and stored at −80°C. MDA-MB-
231, MCF-7, and ZR75-1 cells received the culturing process
using RPMI DMEM medium (Gibco, USA) involving 10%
fetal bovine serum (FBS) (Gibco, USA) under 37°C inside
one 5% CO2 chamber covering streptomycin (100mg/mL)

and penicillin (100 IU/mL). Half-maximal inhibitory con-
centration (IC50) values were computed from dose-response
curves using Excel.

2.2. Cell ProliferationExperiments. In the Cell Counting Kit-
8 (CCK-8) test, MDA-MB-231, MCF-7, and ZR75-1 cells
were cultured with TM (2.5 μM and 5 μM) at 37°C. Next,
after the medium was replaced, the CCK-8 solution (Bio-
sharp, China) was introduced into each well and incubated
for 2 h. 7e absorbance was measured at 450 nm at 0, 24, 48,
72, and 96 hours. During the clone formation experiment,
cells were exposed to TM at different concentrations (2.5 μM
and 5 μM) for 24 h and then inoculated in 6-well plates at a
density of 1000 cells per well. After 10 days, the cells were
imfixed based on the use of methanol and then stained with
Gimsa (Wobixin Inc., China). Finally, the colony was im-
aged and counted.

2.3. Transwell Assay. MDA-MB-231, MCF-7, and ZR75-1
cells were inoculated with 200 μl serum-free RPMI 1640
medium and TM (2.5 μM and 5 μM) at different concen-
trations. Transwell Cell (Corning, USA) underwent an in-
trusion testing process using a paving process with matrix
glue mixture (BD Biosciences, USA) and did not use matrix
glue mixture for migration testing. RPMI DMEM medium
and 10% FBS were introduced into the bottom chamber to
act as BC cell chemical attractants. When the 24-hour
culture process was completed, the upper chamber was
immobilized and then stained for 15 minutes with crystal
violet (Kagan, China). For the visualization program, the cell
line receives the photo and counting program in three fields.

2.4. Wound Healing Assay. MDA-MB-231, MCF-7, and
ZR75-1 cells received different concentrations of TM
(2.5 μM and 5 μM) when the seeding on 6-well culture plates
was achieved. Using a standard 20 μl pipette tip, the artificial
linear wound was eliminated on the fused cell monolayer.
Free-floating cells and debris isolated from the bottom of the
well were slowly removed. Medium was introduced and the
plate was incubated at 37°C. Scratch widths were recorded
under an inverted microscope and photographed at 0, 24,
and 48 hours.

2.5. HTR4 Expression Level and Clinicopathological Analysis
as well as Immune Analysis. UALCAN was used here to
compare HTR4 expression in BC patients of different
stages, histological subtypes, lymph node metastasis, and so
on. 7e Human Protein Atlas was utilized for obtaining
HTR4 protein expression in BC tissues. 7e Kaplan–Meier
Plotter was used to compare correlations between HTR4
expression and overall survival (OS), distant metastasis-
free survival (DMFS), relapse-free survival (RFS), and post-
progression survival (PPS). GEPIA2 was applied to analyze
the correlation between HTR4 expression and immune
cells.
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2.6. Mice Model. 7e animal management committee of
Nanjing Medical University approved the animal experi-
ment, and all experiment procedures and animal care
conformed to the institutional ethics directions for animal-
related experiments. 1× 106 4T1 cells were inoculated into
the right groin of BALB/C mice. 7e groups were PBS, TM,
anti-PD1 (BioXcell, BP0273), anti-TIGIT (BioXcell,
BE0274), TM+ anti-PD1, and TM+ anti-TIGIT (n� 5 for
the respective group). 10mg/kg TM intraperitoneal injection
was made for TM group every three days. 6.6mg/kg in-
traperitoneal injection was made for anti-PD1/anti-TIGIT
group on the eight day, and once per three days thereafter.
Tumor growth was observed. After 20 days, the mice were
killed and the tumor tissue was taken out for weighing and
immunohistochemical analysis.

2.7. Immunohistochemical Staining. Tumor tissues from
mice were embedded in paraffin blocks for immunohisto-
chemical staining and analysis. Tissues sections were
deparaffinized and hydrated. Sections were incubated with
3%H2O2 for 10min and then incubated at 4°C with primary
antibodies (CD4, CD8, Ki67, PD1, and PD-L1) overnight. A

secondary antibody was added and incubated at 37°C for
15min. Tissue sections were stained using diaminobenzidine
and hematoxylin. Finally, sections were dehydrated and
covered with glass slides. All tissue sections were photo-
graphed using a microscope camera and analyzed using
TissueFAXS Viewer software program.

2.8. Statistics-Related Analyzing Process. 7e continuing
information received the comparative analysis by per-
forming one individual t-testing process of the two groups. A
statistics-related analyzing process was performed and
presented graphically in GraphPad Prism 8.0 (USA). A
Pvalue of 0.05 was considered to be statistically significant.

3. Result

3.1. A Screen of the Selleck Drug Library Approved by the FDA
Identified TM as Having Anti-BC Activity. To identify drugs
with novel anti-BC activities using an unbiased approach, we
screened the Selleck drug library approved by the FDA
including 800 small molecules against the BC cell line. We
found that TM had the best inhibitory effect on BC with a
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Figure 1: A screen of Selleck drug library approved by FDA identified TM having anti-BC activity. (a) A cell viability screening identified
that TM had anti-BC activity among the compounds from the Selleck drug library approved by the FDA. (b)7e linear graph of IC50 values
in BC cells according to the CCK8 assay. (c) 7e chemical structure of TM.
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rate of 58.4% (Figure 1(a), Supplementary Table 1). 7rough
the CCK8 assay, we found that the half-maximal inhibitory
concentration (IC50) value in the MDA-MB-231 cell line
was 8.75 μM (Figure 1(b)). 7e chemical structure of TM is
shown in Figure 1(c).

3.2. TM-Inhibited BC Progression. We added 2.5 µM and
5 µM of TM, respectively, and evaluated the effect of TM on
BC cells with DMSO dissolution as the control.7e results of
the CCK8 and plate cloning assay showed that TM signif-
icantly inhibited the proliferation of BC cells (MDA-MB-
231, MCF-7, and ZR75-1) compared with the control group,
and the higher the concentration of drugs added, the more
obvious the inhibition effect (Figures 2(a) and 2(b)). 7e
Transwell assay showed that compared with the control
group, TM inhibited the migration and invasion rate of BC
cells, and the higher the concentration of drugs added, the
more obvious the inhibition effect (Figures 3(a) and 3(b)).
7e wound healing assay revealed that the scratch closure
rate was significantly lower than that of the control group
after adding TM (Figures 4(a) and 4(b)). 7ese results all

demonstrated that TM significantly inhibited the ability of
three different types of BC cells to proliferate, invade, and
migrate.

3.3. Clinical Role of HTR4 in BC Based on Database Analysis.
7e target of TM excitation is HTR4. 7erefore, we inves-
tigated the expression and function of HTR4 in BC tissues.
7e TCGA portal showed that the expression of HTR4 in
tumor tissues was obviously lower than that in normal
tissues (Figure 5(a)). Subgroup analysis based on BC sub-
types, histological subtypes, stages, and lymph node me-
tastasis showed that the expression of HTR4 decreased in
different types of BC tissues compared with normal tissues,
and the higher the cancer stage and lymph node metastasis,
the lower the expression of HTR4 (Figures 5(b)–5(f)).
Analysis of the Human Protein Atlas data indicated that
HTR4 protein expression was moderate or low in BC pa-
tients (Figure 6(a)). 7e prognostic potential of HTR4 in BC
was further examined using the Kaplan–Meier Plotter. 7e
results showed that BC patients with low HTR4 expression
were not associated with OS, DMFS, and PPS, but were
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Figure 2: TM inhibited BC proliferation. (a) 7e CCK8 assay results at different concentrations of TM for BC cells. (b) Plate cloning
experiment of different concentrations of TM for BC cells. ∗∗P< 0.01; ∗∗∗P< 0.001; ∗∗∗∗P< 0.0001.
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significantly correlated with RFS (Figure 6(b)). 7ese results
suggested that HTR4 might play an important role in BC
tissues.

3.4.HTR4ExpressionWasCorrelatedwith Immune Factors in
BC. Existing studies have confirmed that the immune
system is closely related to the occurrence and development
of tumors. 7erefore, we investigated the relationship be-
tween the expression of HTR4 and immune factors. As
shown in Figures 7(a)–7(c), there was a strong positive
correlation between the expression of HTR4 and effector
T cells, effector memory T cells, and exhausted T cells. More
interestingly, HTR4 expression was significantly positively
correlated with PD1 and TIGIT expression, well-known
targets of CD8+ T cell exhaustion (Figures 7(d) and 7(e)).

7erefore, we will further study the effect of TM on the
immunotherapy of BC.

3.5. TM Enhances the Sensitivity of Immunotherapy in BC.
To examine the correlation between TM and the growth of
BC in vivo, we injected 4T1 cells into the right groin of 30
BALB/C mice, respectively, and then carried out an anti-
PD1/anti-TIGIT injection to assess their antitumor capacity.
According to the results, TM, anti-PD1, and anti-TIGIT
could all inhibit the growth and weight of tumors, as
compared with the control group (Figures 8(a) and 8(b)).
When anti-PD1 or anti-TIGIT were used simultaneously,
the inhibition of tumor significantly exceeded that in the
control group. Moreover, the combination of anti-TIGIT
and TMhad the best inhibitory effect (Figures 8(a) and 8(b)).
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Given the immunohistochemical results, the expression of
CD4 in each group showed no significant difference
(Figures 8(c) and 8(d)). Compared with the PBS group, the
TM group significantly promoted the expression of CD8 and
PD-L1, suggesting that the addition of TM activated the
immune function of BC (Figures 8(c) and 8(d)). When TM
was combined with anti-PD1/anti-TIGIT, the expression of
CD8 was significantly increased, and the expression of KI67
and PD1 was significantly decreased (Figures 8(c) and 8(d)).
Accordingly, this study revealed that TM was capable of
reducing BC growth and increasing the efficiency of anti-
PD1 or anti-TIGIT treatment in BC.

4. Discussion

TM is used for the treatment of constipation-type irritable
bowel syndrome as a HTR4 partial agonist [11]. Studies have

shown that 5-hydroxytryptamine plays a mitogenic role in
colon cancer cells, and HTR4 is significantly expressed in
both colon cancer tissue and cells [12]. Wu et al. reported
that TM inhibited esophageal squamous cell carcinoma
proliferation by suppressing the peroxisome pathway [13].
Zhang et al. found that TM could cause G1 cell cycle arrest,
induce cell apoptosis, and inhibit the growth of a variety of
cancer cells [14]. Liu et al. used a screen of 770 pharma-
cologically active and/or FDA-approved drugs and identi-
fied TM as a novel anticancer compound that can induce
apoptosis of mouse and human malignant melanoma cell
lines. 7e antiapoptotic induction effect of TM was unre-
lated to the serotonin signal and was attributed to PI3K/Akt/
mTOR signal inhibition. TM reduced tumor growth and
metastasis and increased survival in a model of in vivo
homologous immune activity [15]. In our study, we screened
the Selleck drug library approved by the FDA including 800
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distant metastasis-free survival; PPS, postprogression survival).
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Figure 7: HTR4 expression was correlated with immune factors in BC. (a–c) Dot chart showing the correlation of HTR4with effector Tcells,
effector memory T cells, and exhausted T cells in BC. (d, e) Dot chart showing the correlation of HTR4 with TIGIT and PD1 expression in
BC.
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Figure 8: Continued.
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small molecules and found TM had the best anti-BC effect,
which was further verified. TM significantly inhibited the
proliferation, invasion, and migration of BC cells, and the
higher the concentration, the better the inhibition effect. A
search of the literature showed that this is the first report in
the world that TM could be used against BC.

TIGIT has been reported to be coexpressed with PD-1 on
tumor-antigen specific CD8+ T cells and CD8+ tumor-
infiltrating lymphocytes (TIL) in human cancers [16]. In
addition, coexpression of TIGIT and other inhibitory re-
ceptors on exhausted CD8+ T cell subsets in tumors, such as
molecule 3 in the Tcell immunoglobulin and mucin domain
(TIM-3) and lymphocyte activation gene 3 (LAG-3), was
observed [17]. Although multiple sources of evidence sup-
port the critical role of TIGIT in limiting tumor-specific
adaptation and innate immunity, the role of TIGIT and its
association with the tumor-immune microenvironment in
BC remains largely unknown. Stamm Hauke et al. showed

blocking TIGIT or PVR resulted in enhanced immune cell-
mediated lysis of BC cell lines (SKBR-3, MDA-MB-231,
MDA-MB-468, and BT549) and additionally increased the
cytotoxic effects of a bispecific Tcell engager BiTE® antibodyconstruct targeting EGFR [18]. Xu Feng et al. reported that
blockade of TIGIT or CD112R, separately or together,
enhanced the trastuzumab-triggered antitumor response by
human NK cells. PVR-like receptors regulate NK cell
functions and could be targeted for improving trastuzumab
therapy for breast cancer [19]. In our study, in vitro ex-
periments showed that TM, anti-PD1, and anti-TIGITcould
all inhibit the growth and weight of BC tumors as compared
with the control group. However, when anti-PD1 or anti-
TIGIT was used simultaneously with TM, the inhibition of
tumors significantly exceeded that in the control group.
Moreover, the combination of anti-TIGIT and TM showed
the best inhibitory effect. 7is conclusion adds a new bright
spot for the application of TIGIT in cancer.
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Figure 8: TM enhanced the sensitivity of immunotherapy in BC. (a) Picture display of the respective group of tumors. (b) Analysis of the
weight of tumors in the respective group. (c) 7e tumors in each group were confirmed by HE staining. (d) HE staining analysis of each
group. ∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.0001.
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7ere are some shortcomings in our research. First, we
did not coculture BC cells with immune cells to prove our
conclusion. Secondly, we did not explore the mechanism by
which TM activated the immune activity of BC. 7irdly, we
do not use more advanced models such as the patient-de-
rived xenografts (PDX) model to verify the validity of this
conclusion in human samples.

5. Conclusion

Tegaserod maleate inhibits the progression of breast cancer,
and its combination with anti-TIGIT can effectively inhibit
tumor growth and improve the sensitivity of immuno-
therapy in breast cancer.
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