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Background. Immune checkpoint inhibitors (ICIs) emerge as the first-line treatment of lung adenocarcinoma (LUAD); selection
of subpopulations acquiring clinical benefit is required. Associations between epigenetic modulation of tumor microenvironment
(TME) and clinical outcome are far from clear. We focused on immune-related genes closely regulated by DNA methylation to
identify the potential clinical outcome indicators. Methods. We systematically calculated immunophenotype score (IMpS) and
classified immunophenotypes based on seven TME features in three independent cohorts. *e overlapping of differential
expressed genes and methylated probes targeted genes was regarded as genes closely regulated by DNAmethylation.*en, probe/
gene pairs which highly correlated with each other and IMpS were identified and named as immune-related probe/gene pairs
(mIMg). Prognostic mIMg were selected and verified in seven independent validation cohorts. Results. *ree immune phenotypes
were clustered, and similar results were obtained in the three independent training cohorts. C2 displayed as an immunologically
hot phenotype, whereas C3 corresponded with immunologically cold phenotype. Average methylation level was decreased from
C2 to C3 (C2>C1>C3). Similarly, ICIs nonresponders showed global hypo-methylation compared with responders. Genes in
mIMg were mainly enriched, especially in T-cell receptor activation, and repressed in noninflamed TME by hyper-methylation.
Among mIMg, low expression and hyper-methylation of CD247, LCK, and PSTPIP1 were risk factors of overall survival (OS).
ICIs nonresponders were more likely to be hyper-methylated in the three genes. By integrating with the oncogenes status, we
demonstrated that EGFR wt and SRGN overexpressed patients were associated with chronic inflammation and immune evasion,
showing an immunologically hot phenotype, which might lead to the short OS but derive clinical benefit from ICIs. Conclusions.
*is study identifies hyper-methylation and concurrent repression of CD247, LCK, PSTPIP1 as immune negative indicators and
risk factors for prognosis in LUAD. Moreover, EGFR/SRGN axis may participate in immune modification to influence ICIs
response and clinical outcome in LUAD.

1. Introduction

Nonsmall cell lung cancer (NSCLC) is the main subtype of
lung cancer, which accounts for the primary cause of cancer-
associated mortality. *e treatment of lung adenocarcinoma
(LUAD), the most common form of NSCLC, has achieved
great progression in the last ten years with more and more
targetable oncogene alternations identified [1]. What is
more, immune checkpoint inhibitors (ICIs) targeting the
programmed cell death protein 1 (PD-1) and its ligand (PD-L1)
axis have markedly changed the first-line treatment of

LUAD without molecular targets. Currently, extensive
challenges still exist as only a subset of patients deriving
clinical benefit [2].

Numerous studies had proved that the heterogeneity of
tumor immune feature discriminates the clinical outcome of
immunotherapies. *e disturbance of immune effectors and
regulators in the tumormicroenvironment (TME) is just like
the soil, fostering cancer cells (seeds) and participating in
tumor development and progression. Dynamic equilibrium
exists as the determinant of tumor immunogenicity, in-
cluding the balance between infiltration of effectors
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(activated CD8+/CD4+ T-cells and Teffectormemory (Tem)
cells) and suppressors (regulatory T (Treg) cells and mye-
loid-derived suppressor cells (MDSCs)), the dominating
type of T helper cells (*1 and *2), and the expression of
co-stimulators and co-inhibitors [3]. *e immunopheno-
types of TME predict response to ICIs. Immune-inflamed
(also known as immunologically hot) TME was usually
characterized by highly infiltrating T-cells accompanied by
expression of suppressive molecules, such as PD-L1. *e
inflamed tumors profoundly respond well to ICIs. However,
immune-excluded and immune-deserted (noninflamed or
immunologically cold) TMEs are always associated with
T-cell exclusion and unsusceptible to immunotherapy [4, 5].

DNA methylation is a well-known epigenetic process,
which participates in cancerogenesis and has been reported
as a promising biomarker in the diagnosis of NSCLC [6, 7].
With the widespread of ICIs, the relationship between TME
and DNA methylation gradually grabbed much attention.
TME shapes the fate of tumors with the aid of epigenetic
alternations to modulate the dynamic gene expression.
Moreover, DNA methylation silences or activates hub genes
in the pivot immune signaling to shape TME and vice versa
[8, 9]. Although challenges exist, managing immune re-
sponse to predict ICIs treatment outcome is a routine trend
and outlook. So far, combinatorial analyses of epi-immune
signatures have preliminarily declared the ability to predict
survival and ICIs response [10]. Fewer hyper-methylated
hub genes in critical ICIs response pathways correlated with
improved ICIs response [11, 12]. A simple prognostic profile
or measure panel is an increasingly popular option in the
routine use. However, even for the commonly and originally
used biomarkers of ICIs response, such as PD-L1 status and
tumor mutation burden (TMB), there are several exceptions
for the differentiation between responders and non-re-
sponders. *e predictive single hub genes in ICIs response
merit further research. Hence, clinically available bio-
markers for optimizing the use of ICIs and understanding
the molecular determinants of immune response are still
needed [13].

In this study, by integrating epigenetic and tran-
scriptomic information of three LUAD cohorts, we explored
the DNA methylation pattern of different immune pheno-
types and identified hub genes of immune response which
were regulated by DNA methylation and potentially influ-
enced clinical outcome.

2. Methods

2.1. Data Collection and Processing. *ree gene expression
profiles of LUAD were downloaded as training cohorts.
TCGA-LUAD level 3 RNA-seq data (HTSeq-Counts) was
directly downloaded by using the GDC data transfer tool
(https://portal.gdc.cancer.gov/). GSE60644 (Illumina
HumanHT-12 V4.0 expression bead chip), GSE66863
(Agilent-028004 SurePrint G3 Human GE 8 F0B4 60K
Microarray) were downloaded from Gene Expression
Omnibus (GEO) datasets (https://www.ncbi.nlm.nih.gov/).
HTSeq-Counts were transformed into log 2 transformed
transcripts per kilo-base per million mapped reads (TPM).

Gene length was calculated as the sum of lengths of non-
redundant exon. Illumina nonnormalized summary-level
data were read by “read.ilmn” function and normalized by
the “neqc” function. Agilent single channel microarray in-
tensity data were read by “read.maimages” function and
processed by “backgroundCorrect” and “normal-
izeBetweenArrays” unction. *e abovedescribed processes
were carried out by limma package [14].

*e corresponding DNA methylation data (IDATs)
including TCGA-LUAD, GSE56044, and GSE66836 meth-
ylation beta value were obtained [15, 16]. Collectively, the
three datasets were measured with Illumina Human-
Methylation450 bead chip. Raw data were read by “read.-
metharray.exp” function to found rgSet [17] and filtered by
“champ.filter” function. Specially, poor performing probes
with detection p value more than 0.05, belonging to sex
chromosome, known to have common SNPs at the CpG
sites, or having been demonstrated to map to multiple places
in the genome were removed prior to differential methyl-
ation analysis [18]. Normalization was performed by BMIQ
method with “champ.norm” function. *e DNA methyla-
tion pipeline was realized by minfi [17] and ChAMP [18] R
package.

Five cohorts including GSE37745, GSE50081, GSE14814,
GSE41271, and GSE42127 were utilized for the validation of
prognosis associated genes [19–23]. Two cohorts with on-
cogene status including GSE13213, GSE11969 were used for
verification analysis grouped by oncogene status [24, 25].
DNA methylation cohorts containing ICIs response in-
cluding GSE119144 and its corresponding expression data
GSE135222 were used for the exploration of association
between ICIs response and methylation/expression status.
*e raw files of Affymetrix were normalized by affy R
package with Robust Multi-array Average (RMA) algorithm
[26].*e procedures of processing Illumina and Agilent data
were consistent with the training cohorts. Expression data
from the same microarray manufactory were combined and
the “ComBat” function in sva package was applied to adjust
for batches deriving from different gene sets [27].

Minus germ-line somatic copy number alternations
(sCNA) and merged somatic simple nucleotide variations
(sSNV) segmented data of TCGA-LUAD cohort were
downloaded from GDAC Firehose (Broad Institute TCGA
Genome Data Analysis Center, https://gdac.broadinstitute.
org/) for oncogene status analysis. Data utilized for our study
were listed in Supplementary Table S1 and have been
uploaded to Github (https://github.com/HU-ZX/
01_mIMg_LUAD_2022).

2.2. Estimation of TME and Classification of Immunophe-
notype Clusters. For each LUAD sample in the training
cohorts, we first quantified the immune activity of tumor by
single sample gene set enrichment analysis (ssGSEA)
[28, 29]. Immune features were measured by the following
categories: (1) inflitration of immune effectors (aCD4+T,
aCD8+T, CD4+Tem, CD8+Tem) (2) immune suppressors
(Tregs and MDSCs) (3) dominating T helper cells type (*1
and*2) (4) expression of MHCmolecules (5) expression of
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co-stimulators and co-inhibitor [3]. *en, we weighted
ssGSEA scores of positive immune factors (MHCmolecules,
effectors, *1 cells, co-stimulators) by “+1” and negative
immune factors (suppressors, *2, co-inhibitors) by “−1” to
calculate immune activity scores (IMaS) of every feature.
Unsupervised hierarchical cluster was performed based on
the IMaS of seven features and immunophenotype score
(IMpS) was calculated by the sum of IMaS of every feature.
*e gene list containing 28 immune cell populations, MHC
molecules, and immunostimulatory and immunoinhibitory
factors was retrieved from the publication [3, 30]. *e
consistency of different clusters was verified by cytolytic
activity (CYT), which represented the ultimate effective
mechanism in the cancer immunity cycle and was calculated
as the geometric mean of granzyme A (GZMA) and perforin
(PRF1) expression levels as previously defined [31]. *e
fraction of infiltrating cells were calculated using methyla-
tion data by EpiDISH [32]. *e fraction of CD3+ T-cells
(CD4+ T-cells and CD8+ T-cells) and epithelial cells were
compared among different clusters.

2.3. Identification of Immune-RelatedGenesClosely Regulated
by DNA Methylation. Microarray probes annotation files
were directly downloaded from GEO datasets. Homo. sa-
piens GRCh38.p13 GFF3 (v35) file downloaded from
GENCODE website (https://www.gencodegenes.org/) was
used for id transforming. Gene symbol was used as gene
identification. If gene ID did not map one-to-one to the gene
symbol, the first annotated gene was used to represent the
others. RNA-seq data were preprocessed by normalizing
distributions with “calcNormFactors” function in edgeR
[33] and transforming to log2-counts per million (CPM) by
the “voom” function in limma [14]. Linear modelling and
empirical Bayes moderation in limma [14] were carried out
to identify different expression genes (DEGs) of three
datasets. Genes with pvalue less than 0.05 and the absolute
value of log-2-fold-change (FC) more than 0 were consid-
ered as DEGs.

*e average methylation level of each sample was cal-
culated as mean of beta value of all methylation probes.
Different methylation probes (DMPs) of three datasets were
calculated using linear models implemented in ChAMP [18].
Probes with adjust pvalue less than 0.05 and the absolute
value of log-2-fold-change (FC) more than 0 were consid-
ered as DMPs.

For assessing genes that underwent transcriptional
regulation by gaining DNA methylation, we selected the
overlapping of DEGs andDMPs corresponding genes, which
were more likely to be different genes regulated by DNA
methylation and named as mDEGs. Spearman correlation
between methylation beta value and gene expression was
carried out. Besides, the correlation between gene expression
and DNA methylation beta value with IMpS was also per-
formed. Probe/gene pairs whose correlation coefficient was
no less than 0.5 and p value less than 0.05 were selected. *e
procedures described above were repeated in the three
training cohorts, and the overlapping probe/genes were
regarded as ultimate results. Probe/gene pairs which met the

following requirements were regarded as the immune-re-
lated probe/gene pairs (mIMg): (1) the pairs were closely
related with each other (|r| > 0.5, p.val <0.05); (2) both the
probes and genes in the pairs were highly correlative with
IMpS (|r| > 0.5, p.val <0.05. Beta value of each probe in
mIMg was used for principal components analysis (PCA) in
the three training cohorts by “PCA” function in FactoMineR
package.

2.4. Functional Enrichment Analysis. We further analyzed
functions of the mDEGs. Gene Oncology (GO) functional
enrichment was carried out in biological processes (BP),
cellular components (CC), and molecular functions (MF).
Terms with a pvalue < 0.05 were regarded as significant. *e
enrichment score was calculated as previously reported to
combine the number and status (upregulated or down-
regulated) of genes enriched in the pathway [34]. Candidate
genes were used for further stratification of overall population.
Gene Set Enrichment Analysis (GSEA) was used to excavate
mechanisms of them.Ontology gene sets inMSigDBwere used
for analysis [35]. Protein–protein interaction network (PPI)
was performed by STRING website (https://string-db.org).
Association between proteins encoded by genes in mIMg was
represented by combined scores, which suggested the result of
combinatorial analysis of gene neighborhood, fusion, occur-
rence, co-expression, and some other parameters [36]. R
packages including clusterProfiler [37], GSVA, and ggplot2
were used for analysis and visualization.

2.5. Statistical Analysis. Statistical analysis was conducted
with R software (version 4, 4.0.4). *e bioinformatic pro-
cesses could be repeated with the R scripts uploaded on
https://github.com/HU-ZX/01_mIMg_LUAD_2022. *e
datasets used in the study were showed in Table S1 and
original data are accessible to download from the link at-
tached in Github page. ANOVA test or Kruskal Wallis H test
was used for continuous variables in multiple groups. T test
or Mann Whitney U test was used for comparison between
two groups. Differences between distributions of the groups
were estimated by the Chi-squared test. Expression data and
methylation beta value were directly used for the assessment
of mIMg status. Overall, survival time (OS) and vital status
of LUAD patients were used to represent clinical outcome.
Patients were divided into two groups based on the threshold
of each candidate marker. *e thresholds were selected by
“surv-cutpoint” function implemented in survminer R
package to decrease the batch effect of calculation. Probes
and genes in mIMg were, respectively, brought into mul-
tivariate Cox analysis by adjusting gender, age, stage to select
potential prognostic biomarkers.*e Kaplan–Meier method
was used to estimate OS, and log-rank test between groups
were performed. Hazard ratios (HRs) were derived from
univariate Cox regressions of potential prognostic probe/
gene biomarkers. Statistical significance was set as p< 0.05.
C-index based on univariate Coxmodel was calculated using
the R package survcomp [38]. *e receiver operating
characteristic (ROC) curves at years 3, 5, and 9 years of the
multivariate Cox model including age, gender, stage, and
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candidate molecular factors were used to evaluate the dis-
criminative ability of molecular indicators using the R
package timeROC [39]. Efficiency of candidate molecular
biomarkers was assessed by decision curve analyses [40].

3. Results

3.1. Unsupervised Immunophenotype Clusters. *e workflow
of this study is shown in Figure 1. Basic information and
clinical pathological features of training and validation
cohorts used in this study are showed in supplementary
tables Table S2 and Table S3, respectively. *ere were 450
patients in the TCGA cohort, 112 patients in the GSE66863
& GSE66836 cohort, 78 patients in the GSE60644 &
GSE56044 cohort for the integrative analysis of tran-
scriptomic and epigenetic data. Samples were clustered into
three clusters based on the IMaS of 7 immune features
respectively in the above-described cohorts. Similar cluster
results were obtained in different datasets and showed by the
heatmaps (Figures 2(a), 2(e), and 2(i)).

Both immune effectors and regulators were in the domi-
nant position in the C2 cluster. In detail, tumors of the C2
cluster were characterized by the presence of CD8+ and CD4+
T-cells which act as defenders in the proximity of tumors.
However, the immunosurveillance system in C2 was also ac-
tivated which manifested as high expression of co-inhibitors
including immune checkpoints and other immunosuppressed
factors. C2 cluster presented as preexisting anti-tumor immune
response, tending to be immunologically hot phenotype, and
was more likely to benefit from immunotherapies.

In contrast, the C3 cluster was characterized by fewer
infiltrated TILs and low expression of immune regulators,
which was more likely to be immunologically cold or
noninflamed tumor. Not surprisingly, tumors in the C3
cluster belonged to ICIs-resistant subset. C1 cluster dem-
onstrated high immune heterogeneity and could not be
classified into C2 or C3 cluster (Figures 2(a), 2(e), 2(i)).

IMpS, which represented the immune response of tu-
mor, decreased from C2 to C3 (C2>C1>C3, Krus-
kal–Wallis test, p< 2.2e − 16, p< 2.2e − 16, p � 7e − 14,
Figures 2(c), 2(g), 2(k)). Besides, CYTshowed the same trend
(C2>C1>C3, Kruskal–Wallis test, p< 2.2e − 16,
p< 2.2e − 16, p � 7e − 14, Figures 2(b), 2(f), 2(j)). Fractions
of infiltrating cells including CD3+ (CD4+ and CD8+)
T-cells, epithelial cells were calculated based on the meth-
ylation data. CD3+T-cells decreased from C2 to C3
(C2>C1>C3, p< 2.2e − 16, p< 3.985e − 07,
p � 4.91e − 11, Figures 2(d), 2(h), 2(l)). Epithelial cells were
in the opposite trend (C2>C1>C3, p< 2.2e − 16,
p � 2.226e − 06, p � 3.769e − 10, Figures 2(d), 2(h), 2(l)).
Comparison between two groups in the three cohorts was all
significant. Tumors in C2 and C3 cluster had discriminative
immune features; therefore, DNA methylation pattern of
them were compared in the following analysis.

3.2. Methylation Features of Different Immunophenotypes.
*e average beta value of each sample was used for assessing
the global methylation features. Notably, the average

methylation level was consistent with the trend of IMpS
(C2>C1>C3, Kruskal–Wallis test, p � 2.7e − 12,
p � 0.00028, p � 4.1e − 05, Figures 3(a)–3(c)), which vali-
dated the result published before [9]. *e same trend was
observed in the ICIs responders and nonresponders, albeit
no significant difference was observed (Figure 3(d)).

C3 (noninflamed tumor cluster) and C2 (inflamed tumor
cluster) had different immune features; 4847 overlapping
probe/gene pairs of DEGs and DMPs among the three
cohorts were identified (Figures 3(e)–3(h)). 3806 probes
were hypo-methylated in a noninflamed tumor. *e cis-
regulatory pattern was defined as hypo-methylation re-
pressed gene expression or hyper-methylation activated
gene expression, in which condition, the changing trend of
gene expression and DNA methylation level was the same.
*e trans-regulatory pattern was defined as hyper-methyl-
ation repressed gene expression or hypo-methylation acti-
vated gene expression. In our study, we confirmed that DNA
methylation was more likely to trans-regulate gene ex-
pression (Chisq test, X-squared = 25, p � 2.035e − 07,
Figure 3(i)). DNA methylation was unevenly distributed.
TSS1500 contained more hypo-methylated probes in C3
compared with non-TSS1500 region (Chisq test,
X-squared = 28.08, p � 1.164e − 07, Figure 3(j)). Probes
located in promoter (TSS200, TSS1500, 1stexon, 5’UTR)
were more likely to trans-regulate gene expression while
those located in gene body tended to cis-regulate gene ex-
pression (Chisq test, X-squared = 202.34, p< 2.2e − 16,
Figure 3(j)). Flanking regions of CG island (CGI), also
known as “shore,” were enriched with more trans-regulative
probes compared with CGI region (Chisq test,
X-squared = 51.129, p � 8.648e − 13, Figure 3(k)). *e
chromosomal distribution characteristics of probes were
presented in Figure 3(l).

3.3. Hyper-Methylation of Hub Genes in Immune Response
Predicted Noninflamed Phenotype. Functional enrichment
analysis showed that the mDEGs enriched in T-cell acti-
vation and some other immune-related processes. Besides, it
suggested GTPase and Src homology 2 (SH2) domain as
potential targets of DNA methylation regulatory system in
immunophenotype. GTPase is a rate-limiting enzyme in
GTP hydrolysis to participate in G protein inactivation. SH2
domain is a special structure in the combination of enzymes
and prolongs docking time. *e two are in the downstream
of TCR activation signaling. *e processes described above
were all downregulated in the C3 cluster (Figure 4(a)).

Spearman correlation identified 168 probes and 86
corresponding genes which highly correlated with IMpS
(Supplementary Table S4). Meanwhile, correlation between
methylation level and gene expression was performed, and
61 probes whose beta level were highly correlated with its
corresponding gene expression were selected (Supplemen-
tary Table S5). Ultimately, 24 probes and 19 corresponding
genes which were contained in both two probe/gene sets
described above were defined as mIMg (Supplementary
Table S6, Figures 4(b) and 4(c)). PCA analysis of three
training cohorts indicated that mIMg successfully
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distinguished patients with different immunophenotypes in
the three LUAD training cohorts (Figures S1(a)–S1(c).
Trans-regulative pattern was more common in mIMg and
genes in mIMg tended to be repressed by hyper-methylation
in the noninflamed tumor (Supplementary Table S6,
Figures 4(b) and 4(c)). Functional enrichment analysis of the
19 genes demonstrated that mIMg operated an important
position in T-cell activation. *e crucial structures in
transduction of T-cell activation were identified, including
GTPase and SH2 domain (Figures 4(d) and 4(e)).

Methylation level of IMpS-related mDEGs according to
ICIs response in the GSE119144 cohort were investigated,
and 44 of 168 probes were significantly different between
responders and nonresponders with the same trend in the
training cohort (Supplementary Table S7-1). 10 probes were
in mIMg, including cg07786657, cg09032544, cg07728874,
cg24841244, cg11384427, cg08450017/, cg11683242,
cg14145194, cg15518883, and cg26227523. However, ex-
pression of the corresponding genes was not significantly
different (Supplementary Table S7-2).

3.4. Silence of T-Cell Activation Associated Genes by DNA
Methylation Predicted a Poor Clinical Outcome. To investi-
gate the prognostic capacity of mIMg, multivariate Cox ana-
lyses adjusted for age, gender, stage based on hyper/hypo
methylation (high/low expression) groups of the probe/gene
pairs were performed, respectively, in the TCGA-LUAD co-
hort, and 15 probes together with their corresponding 13 genes
distinguished OS (Supplementary Table S8). Prognostic ability

of genes in mIMg was verified in two integrative expression
cohorts (Supplementary Table S3). ArfGAP with coiled coil,
ankyrin repeat and PH domains 1 (ACAP1), Rho GTPase-
activating protein 30 (ARHGAP30), CD247, lymphocyte
transmembrane adaptor 1 (LAX1), lymphocyte-specific pro-
tein tyrosine kinase (LCK), proline-serine-threonine phos-
phatase interacting protein 1 (PSTPIP1) stood the test
(Table 1). Among these prognostic mIMg factors, hyper-
methylation and concurrent downregulation of gene expres-
sion was significantly blamed for low OS.

Notably, cg09032544/CD247, cg07786657/CD247,
cg11683242/LCK, and cg26227523/PSTPIP1 separated not
only immune response but also survival time. CD247, LCK,
PSTPIP1 are hub genes in T-cell activation, whose meth-
ylation level were closely correlated with expression level
(Figures 5(b)–5(e)). Hypo-methylation of cg09032544,
cg07786657, cg11683242, and cg26227523 were protective
factors of ICIs response and OS (Figures 5(f)–5(i),
Figures 6(a)–6(d)). Concurrently, low expression of CD247,
LCK, PSTPIP1 were risk factors in OS (Figures 5(e)–5(g)),
and the results were validated in GPL570 cohort and
GPL6884 cohort (Supplementary Figures S4(A)–S4(C),
S4(G)–S4(I)). However, expression of the three genes had no
significant difference between responders and nonre-
sponders in GSE135222 (Supplementary Figures S3(A)–
S3(C)). C-index based on univariate Cox model and ROC
curves based on multivariate Cox model indicated that the
seven prognostic factors could be used as discriminative tool
for predicting prognosis of LUAD (Figures 6(h)–6(n),
Supplementary Figures S4(D)–S4(F), S4(J)–S4(L)). Decision

Classificatiozn of immunophenotypes
by ssGSEA(Figure 2)

Training cohort
TCGA-LUAD,

GSE60644 & GSE56044,
GSE66863 & GSE66836.

ICIs response predictors
(Figure 5, Figure 8, Figure S3,Table S7)

Validation cohort
GSE135222 & GSE119144

Overlapping of DEGs and DMPs
(Different genes regulated by DNA methylation, 

mDEGs, Figure 3)

Methylation feature of different 
immunophenotypes (Figure 3) 

GO functional enrichment 
analysis (Figure 3)

m IMg
(Figure 3, Table S 6)

Correlation between candidate 
markers and immune features
(Figure 5, Figure 8, Figure S2)

GSEA analysis (Figure 4)

Subgroups stratified by 
oncogene status in LUAD 

(Figure 7, Figure S7, Table S9)

Overall population of LUAD 
(Figure 5-6, Figure S4-6, 

Table S8)

PCA analysis 
(Figure S1) 

Functional enrichment analysis, 
Methylation-protein 

internetional network (Figure 4)

Multivariate Cox analysis

Prognostic biomarkers 
(Table 1)

Validation cohort
GPL750 combined data: 

GSE37745, GSE50081, GSE14814
GPL6884 combined data: 

GSE41271, GSE42127

Validation cohort
GSE13213, GSE11969

Log rank test, 
Univariate Cox analysis, 
ROC analysis, 
DCA analysis

mDEGs highly correlated with DNA 
methylation (|r| > 0.5, p < 0.05, Table S5) 

mDEGs hightly correlated with IMpS 
(|r| > 0.5, p < 0.05, Table S4) 

Verification by cytolytic activity 
and methylation data using 

EpiDISH (Figure 2)

Figure 1: Workflow of this study.
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curves analysis of multivariate Cox models containing
molecular prognostic stratified factor (CD247 or LCK or
PSTPIP1), age, gender, stage was performed to further ex-
plore the predictive efficiency of the three genes.*e analysis
was successfully achieved in TCGA-LUAD training cohort
and GPL6884 integrative validation cohort (Supplementary

Figures S5(A) and S5(B), S5(D) and S5(E)) but failed in
GPL570 integrative cohort for batch effects. To conclude,
silence of CD247, LCK, and PSTPIP1 by hyper-methylation
might repress T-cell activation and affect ICIs response and
survival. Expression level of the three genes could be used as
prognosis indicators in LUAD.
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Figure 2: Classification of immunophenotypes. (a, e, i) Heatmaps of immune activity scores (IMaS) based on seven immune features in the
TCGA-LUAD, GSE66863 & GSE66836, GSE60644 & GSE56044 cohort, IMaS was calculated based on ssGSEA scores. Positive immune
factors (MHC molecules, effectors, *1 cells, co-stimulators) were weighted by “+1,” whereas negative immune factors (suppressors, *2,
co-inhibitors) were weighted by “−1.” Both positive and negative immune factors were all over-expressed in C2 cluster and shaped C2 as
immunologically hot phenotype. C3 was, on the contrary, showed as immunologically cold phenotype. Immune features of C1 were
heterogeneous. Samples in C1 were not as distinctive as those in C2 and C3, so we named the group of patients as immunologically medium.
(b, f, j) Comparison of Cytolytic activity (CYT) among different immunophenotype clusters, C2 cluster elicited the strongest immune
clearance response. (c, g, k). Comparison of IMpS of immunophenotype clusters in the 3 training cohorts. Immunophenotype score (IMpS)
was calculated as the sum of IMaS of seven features. (d, h, l) Beanplots of infiltrating CD3+ (CD4+ and CD8+) T-cells and epithelial cells,
which were calculated by EpiDISH based on methylation data. C2 cluster had the highest CD3+ T-cells, and C3 had the most epithelial cells.
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Figure 3: Continued.
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Figure 3: DNAmethylation features of immunophenotype clusters. (a–c) Comparison of average methylation level among different clusters
in the training cohorts. (d) Comparison of average methylation level between ICIs responders and nonresponders. (e) Overlapping of DEGs
and DMPs corresponding genes in the three training cohorts (mDEGs). (f–h) Patterns of genes regulated by DNA methylation in the three
training cohorts. (i) Proportion of DNA methylation regulation patterns. (j, k) Distribution of DNA methylation probes in different gene
regions. (l) Chromosome location of DNA methylation probes.
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Figure 4: Excavation of mIMg. (a) Gene oncology (GO) analysis of mDEGs. Terms including cell component (CC), molecular functions
(MF), and biological processes (BP) were analyzed. (b) Correlation among genes and probes in mIMg. Circles represent proteins encoded by
genes in mIMg, while diamonds represent probes in mIMg. Continuous color of circles and diamonds indicates the Spearman correlation
coefficient of the gene (probe) and IMpS. Purple means negative correlation and red represents positive correlation. Gray lines connecting
two circles represent correlation among proteins, the thickness of lines represent the combined scores calculated by STRING, which suggest
the strength of the interactions. Green or Red lines connecting a circle and a diamond denote the Spearman correlation coefficient between
gene and probes. Green represents trans-regulative pattern and red indicates cis regulation. (c) Circular plot indicates the chromosome
distribution of probe/gene in mIMg. (d, e) Association between genes in mIMg and corresponding enrichment in BP and MF processes.

Table 1: Multivariate Cox model of the prognostic molecular biomarkers by adjusting for age, gender, and disease stage.

Gene
TCGA GPL570 GPL6884

HR∗ 95%CI p.val HR∗ 95%CI p.val HR∗ 95%CI p.val
ACAP1 1.49 1.07–2.07 0.019 1.43 0.96–2.12 0.076 2.02 1.38–2.95 <0.001
ARHGAP30 1.68 1.18–2.38 0.004 1.51 0.99–2.31 0.056 2.15 1.47–3.13 <0.001
CD247 1.68 1.14–2.48 0.009 1.44 1.01–2.03 0.042 2.17 1.49–3.17 <0.001
LAX1 1.49 1.01–2.2 0.045 2.02 1.37–2.98 <0.001 1.48 1.02–2.15 0.039
LCK 1.54 1.07–2.21 0.02 1.41 0.99–2.01 0.055 1.46 0.99–2.16 0.054
PSTPIP1 1.6 1.14–2.24 0.006 1.68 1.12–2.52 0.012 1.63 1.09–2.42 0.016
∗Low expression vs high expression.
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ACAP1 and ARHGAP30 were closely correlated with
immune infiltration parameters. *e two were GTPase-acti-
vating proteins (GAPs) which might act in the downstream
T-cell activating pathway (Supplementary Figure S6(A)), albeit
no difference was observed in their expression and methylation
level according to ICIs response (Supplementary Figures S6(B)–
S6(E)). Hypo-methylation of ACAP1 and ARGAPs were
protective factors for OS, whereas over-expression of the two
genes were risk factors (Supplementary Figures S6(F)–S6(M)).

3.5. Crosstalk between DNA Methylation and Oncogenic
Mutations. Growing evidence suggests that Epidermal
Growth Factor Receptor (EGFR) and other oncogenic
driver mutations modify the TME with low immune
checkpoints and TMB thus reduce ICIs response [41]. More
mechanisms associated with ICIs resistance are gradually
surfacing and DNA methylation is one. Average methyl-
ation level of three clusters stratified by EGFR status, KRAS
status, and tumor protein p53 (TP53) status was consistent
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Figure 5: Hyper-methylation and low expression of immune-related hub genes predicting weak immune response. (a) Correlation between
cg09032544/CD247, cg07786657/CD247, cg11683242/LCK, cg26227523/PSTPIP1 in mIMg and seven immune features in TCGA cohort.
CD247, LCK, and PSTPIP1 were all positively correlated with immune response, whereas methylation probes of the three genes were
negative factors. (b–e) Scatter plots of correlation between methylation probe and gene. Cg09032544, cg07786657, cg11683242, and
cg26227523 trans-regulated their corresponding genes. (f–i) Comparison of cg09032544, cg07786657, cg11683242, and cg26227523
methylation level between ICIs responders and nonresponders in GSE119144.
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with total population, Supplementary Figures S7(A)–
S7(F)).

Multivariate Cox analyses were carried out according to
different oncogene status, respectively, in TCGA-LUAD
cohort. IMpS-related mDEGs whose expression and
methylation level concurrently had prognostic ability were
used for further multivariate Cox validations in GSE11969
and GSE13213 cohorts (Supplementary Table S9). Although
prognostic mIMg was found in EGFR mut, KRAS mut/wt,
TP53 mut/wt group, these genes did not stand validation
tests. mDEGs which potentially influenced prognosis were
presented in the forest plots (Supplementary Table S9,
Figures S7(G)–S7(I)). cg02851793/Serglycin (SRGN) was a
prognostic pair according to EGFR status. Expression of
SRGN was regulated by methylation regardless of EGFR
status (Figures 7(a) and 7(b)). *e total group was stratified
into SRGN high and SRGN low groups based on OS. Low
expression of SRGN and hyper-methylation in cg02851793
was a protective factor in the EGFR wt group of TCGA-
LUAD cohort (Figures 7(c)–7(e)). Low expression of SRGN
also predicted a better OS in the EGFR wt group of
GSE11969 and GSE13213 cohorts (Figures 7(c), 7(f ) and
7(g)). However, low expression of SRGN was a risk factor in
the EGFR mut group in TCGA-LUAD and GSE11969 but
failed to be validated in GSE13213 (Figure 7(c)). Methylation
level of SRGN did not affect survival in the EGFRmut group.
Log-rank test was used to compare OS between SRGN over-
expressed and low-expressed group. C-index based on
univariate model of SRGN was calculated in EGFR wt pa-
tients (Figures 7(d)–7(g)). ROC curves based onmultivariate
cox model were used to evaluate the prognostic ability in
training and validation cohorts (Figures 7(h)–7(k)).

We demonstrated that the expression level of SRGN
cooperating with EGFR status could discriminate clinical
outcome. *en, we explored the expression of SRGN and
EGFR status. Although comparison of SRGN in EGFR mut
and wt groups was not significant in TCGA cohort and
GSE13213 validation cohort (p � 0.7341, p � 0.09173),

SRGN was higher expressed in EGFR wt group in both
SRGN high and SRGN low groups (Figures 7(l), 7(n)). *e
expression SRGN and EGFR tended to be low correlated
with each other, yet it was not validated successfully
(Figures 7(m), 7(o)). GSEA analysis was carried out to
identify potential mechanisms. Notably, all patients in EGFR
wt and SRGN high group shared inflamed phenotypes (C1
and C2). Immune effective cells were highly infiltrating
accompanied by expression of immune inhibitors in this
group (Figures 8(a) and 8(b)). MHC-I antigen presentation
process and *1 cells activity were enriched in this group
(Figure 8(d)). Moreover, initiate immune pathways were
also enriched, indicating chronic inflammation
(Figure 8(d)). In contrast, EGFR mut and SRGN low group
was characterized as a noninflamed phenotype. EGFR wt
and SRGN low group showed immune heterogeneity and
was well classified by immune cluster. In addition, SRGN
was higher in ICIs responders compared with nonre-
sponders, which confirmed that SRGN might function to
modify TME potentially (Figure 8(c)). To sum up, with the
involvement of immune disturbance, EGFR wt and SRGN
high patients were associated with short OS but might
benefit from ICIs.

4. Discussion

In recent years, ICIs have achieved impressive success in the
treatment of LUAD. Selection of responders is becoming a
more and more crucial issue. *ere is a growing awareness
that cancer cells are fostered by highly heterogeneous and
plastic cells in TME engaging in well-orchestrated reciprocal
interactions [42]. Immunologically hot or inflamed TME is
characterized with high density of immune effectors ac-
companied by the expression of immune checkpoints. In this
case, ICIs reinvigorate anti-tumor immune response. In
contrast, immunologically cold or noninflamed TME lacks
ICIs response [4]. In our study, three immune phenotypes
were classified according to seven immune features; C2
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cluster corresponded to immunological hot phenotype,
indicating preexisting anti-tumor immune response, and
was more likely to benefit from immunotherapies. C3 cluster
had fewer infiltrated TILs accompanied by low expression of
immune regulators, tending to be an immunologically cold
or noninflamed tumor. Tumors in C3 cluster were more
likely to be ICIs-resistant subset.

DNA methylation is a key regulatory strategy in epi-
genetic modulation of gene expression. It was previously
reported that hyper-methylation on the promoters of tumor
suppressor genes could promote tumorigenesis [43, 44].
Emerging evidences have suggested the critical role of DNA
methylation in immune modification of tumors and me-
diating the immune response [8, 9]. Recent studies had
demonstrated that DNA methylation loss counteracted with
TMB and copy number load formed by genome instability in
mitotic cell division and involved in immune evasion to
increase ICIs resistance [45]. We confirmed that non-
inflamed TME and ICIs nonresponders underwent meth-
ylation loss. *e result implies that the combinatorial
regimen of DNA methyl-transferase inhibitors (DMTis) and
ICIs holds promise for improving the therapeutic efficacy of
ICIs [46].

At present, biomarkers are continuing to be excavated
for directing ICIs response as target therapy. Emerging
studies are developing prediction models for immune re-
sponse or clinical outcome [4]. Herein, we focused on genes
involving in immune modification which are closely regu-
lated by DNA methylation, naming these methylation
probe/gene pairs as mIMg. Although the average methyla-
tion level was low in the immunologically cold cluster and
ICIs nonresponders, hub genes in immune-related path-
ways, especially in T-cell receptor activation, were silenced
by hyper-methylation.

As we all know, two distinct steps must be completed to
elicit an effective anti-tumor response. Firstly, dendritic cells

(DCs) accomplish antigen cross-presentation for CD8+
T-cell initiation. *en, antigens must be directly presented
by the tumor via MHC class I pathway and recognized by
activated CD8+ T-cells for killing [5]. Among mIMg, most
genes in noninflamed tumor were repressed by hyper-
methylation and involved in CD8+ T-cell activation, espe-
cially in the process of interaction between MHC class I and
T-cell receptor (TCR) complex. TAP1 encodes antigen
peptide transporter 1, which involves in the transport of
antigens from the cytoplasm to the endoplasmic reticulum
for association with MHC class I molecules. CD247, CD3D
encode zeta and delta chains of CD3 which participate in
TCR complex. Zeta chains transduce positive signals by
immunoreceptor tyrosine-based activation motifs (ITAMs).
Apart from editing of TCR, the downstream signal also
experienced hyper-methylation, such as LCK, which en-
codes Syk family kinases Lck and associates with CD4 or
CD8 cytoplasmic tails. LCK phosphorylates the tyrosine
residues of ITAMs in CD3 and zeta chains and transduces
the TCR activation signal in an SH2 domain-dependent
manner [47]. Moreover, the hyper-methylation of co-
stimulators and regulators in the CD8+ T-cell activation
such as intercellular adhesion molecule 3 (ICAM3),
PSTPIP1, CD27, CD37, signaling threshold regulating
transmembrane adaptor 1 (STI1), LAX1, Myosin IG
(MYO1G) also proved to participate in immunologically
cold phenotype. We then compared methylation/expression
level of mIMg according to ICIs response for validation, and
found that the methylation level of CD247, CD3D, LCK,
ICAM3, STI1, PSTPIP1, and CXCR6 were enhanced in the
nonresponders, which verified our discovery. Even so, no
significant difference was found in the expression of genes
described above. As 58 samples in GSE119144 had complete
methylation data whereas only 27 samples in the corre-
sponding expression cohort GSE135222 had transcriptomic
data, we speculated that the failure of distinction between
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Figure 7: EGFR/SRGN axis potentially involved in TME modification. (a, b) Scatter plots between beta values of cg0285179 and expression
of SRGN. SRGNwere negatively regulated bymethylation regardless of EGFR status in TCGA cohort and GSE66863 and GSE66836 cohorts.
(c) Forest plot of SRGN stratified by EGFR status in the training and validation cohorts. (d, e) Comparison of overall survival (OS) between
groups based on methylation/expression level of cg02851793/SRGN in TCGA-LUAD EGFR wt cohort. C-index and hazard ratio (HR) was
calculated by univariate Cox analysis of methylation/expression level group. (f, g) Validation of SRGN discriminating OS in EGFR wt group
of GSE11969 and GSE13213 cohorts. (h, i) ROC curves based on multivariate Cox model combining molecular stratification factors
(cg02851793/SRGN), age, gender, stage in TCGA-LUAD EGFR wt cohort. (j, k) ROC curves of SRGN in EGFR wt group of GSE11969 and
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group tended to express more SRGN. (m, o) SRGN was negatively regulated by methylation despite EGFR status.
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responders and nonresponders in transcriptomic level could
come down to the small sample size. Moreover, as epigenetic
modulation occurred earlier than expression change,
methylation changes might be more sensitive than expres-
sion changes.

To investigate the clinical value in genes repressed by
hyper-methylation in noninflamed TME, multivariate Cox
analyses adjusted for universally known prognostic factors
(gender, age, stage) were carried out among mIMg. We
demonstrated that repression of CD247, LCK, PSTPIP1 by
hyper-methylation corresponded with immunological cold

phenotype and were risk factors of OS. *e crucial role of
CD247 and LCK need not to be restated more. PSTPIP1
encodes a CD2 cytoplasmic tail-binding protein and acts as
an immunoinhibitor by blocking CD2/CD58 contact. CD2
interacts with CD58 at the initial stages of T-cell activation
even prior to the recognition of TCR andMHC by increasing
the dwell time between antigen presentation cells (APC) and
T-cell [48]. In our study, we suggested that hyper-methyl-
ation and concurrent repression of CD247, LCK, and
PSTPIP1 attenuated CD8+ T-cell activation by disturbing
MHC I antigen binding, TCR signal transduction, and
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regulation of co-stimulators. In this way, noninflamed TME
formed with inferior ICIs response and bad OS.

Apart from hyper-methylation of hub genes in T-cell
activation, we also identified that hyper-methylation and
downregulation of ARHGAP30 and ACAP1 as potential risk
elements related to noninflamed TME. Although both
methylation and expression level had no significant differ-
ence according to ICIs response, the important role of them
in immunophenotype distinction could not be denied. *e
two elements both encode GAPs, which act by binding to the
GTPase and promoting the conversion of small guanine
nucleotide-binding proteins (small G proteins) from active
GTP bound state to inactive GDP bound state. *e repre-
sentative substrate of GTPase are Ras family proteins, which
are activated for participating in proliferation, attachment,
motility, and promote malignancy. ARHGAP30 and ACAP1
are both GAPs for Ras superfamily proteins and past studies
have demonstrated that over-expression of them attenuated
malignant characteristics and acted as favorable prognostic
factors [49, 50]. In our study, we obtained similar results and
suggested that over-expression of the two genes were closely
related to DNA hypo-methylation. As GAPs are down-
stream signal of T-cell activation, we supported the opinion
that hypo-methylation of ARHGAP30 and ACAP1 were the
outcomes of inflamed TME, instead of the reason.

In most of the ICIs clinical studies, patients that harbored
oncogenic alternations were excluded [39]. Past studies showed
that patients with sensitive mutations had lower TMB and
immunogenicity compared with those wild-type patients [51].
Coinciding with the trend of the overall population, we found
that the difference of the average methylation level was more
pronounced according to immunophenotypes in the EGFR wt
and KRAS wt subgroups. However, a smaller sample size of
patients with oncogene mutation might also make sense.
Methylation features of patients with or without TP53 alter-
nations were similar. TP53 is a pro-oncogene, whose alter-
nations are in the prophase of tumorigenesis and earlier than
other epigenetic adaptation changes. In our study, we recog-
nized EGFR/SRGN axis as a potential mechanism to dis-
criminate ICIs response and OS. SRGN encodes a kind of
proteoglycan, which can be secreted by the extracellular matrix
of tumor cells to create a pro-inflammatory TME and is
regarded as a driving factor of aggressive phenotype [52]. In
our study, we illustrated that the over-expression of SRGN was
closely regulated by hypo-methylation despite the EGFR status
but the EGFR wt group tended to express more SRGN. EGFR
wt patients accompanied with high expression of SRGN cor-
related with short OS but might benefit from ICIs. We
demonstrated that EGFR wt with SRGN over-expression pa-
tients was displayed as inflamed tumors, but associated with
“cancer-promoting inflammation”, which shaped TME toward
a tumor-permissive state by chronic inflammation and im-
mune evasion [53].

Our study had some limitations. Firstly, although we
declared that mIMg played a crucial role in the immune
response, and CD247, LCK, PSTPIP1, and SRGN were
potential prognostic indicators, further analyses and large-
scale clinical validations are needed.*e association between
mIMg and ICIs response deserves far more confirmations.

Secondly, themeasure of methylation beta value and expression
data of every cohort might be influenced by many factors; in
addition to samples’ attributes and testing conditions, the
threshold of methylation and expression level of different genes
had distinct effects on results. In this condition, we set the cutoff
value according to OS in every cohort, respectively, to reduce
the batch effect. A consistent and steady cutoff value in the
overall populationmay be needed. Besides, although prognostic
ICIs response-related indicators were recognized, the direction
of the association between immune response and methylation/
expression status could not be determined. Past study dem-
onstrated that ICIs could reshape the TCR repertoire, reiterating
that TME was plastic and in continuous modification [54].
Hyper-methylation of CD247, LCK, and PSTPIP1 might be a
way of TCR editing to influence immune response and survival.
However, we could not determine whether it was hyper-
methylation of TCR genes that led to immune exclusion or the
immune surveillance that shaped or incapacitated TCRbyDNA
methylation. Moreover, oncogenemutations are numerous and
in the dynamic change. We did not bring oncogenic alterna-
tions into multivariate Cox analysis in the process of choosing
prognostic variables. To eliminate the effect of multicollinearity
among the explanatory variables, we performed an extra hi-
erarchical analysis according to oncogene status.

5. Conclusions

*is study demonstrated the pivotal role of DNA methyl-
ation in immune response in LUAD. TCR editing by hyper-
methylation of CD247, LCK, and PSTPIP1 acts as potential
immune response indicators and prognostic factors. EGFR/
SRGN axis involves in TME modification to influence
clinical outcomes.

Abbreviation:

LUAD: Lung adenocarcinoma
ICIs: Immune checkpoint inhibitors
TME: Tumor microenvironment
TCR: T-cell receptor
IMaS: Immune activity scores
IMpS: Immunophenotype score
MHC: Major histocompatibility complex
CYT: Cytolytic activity
EGFR: Epidermal growth factor receptor
TP53: Tumor protein p53
TCGA: *e cancer genome atlas
GEO: Gene expression omnibus
GSEA: Gene set enrichment analysis
GO: Gene oncology
OS: Overall survival time
ROC: Receiver operating characteristic.
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Supplementary Materials

Table S1: Information of data was utilized in our study. Table
S2: Clinical pathological features of the training cohorts. Table
S3: Clinical pathological features of validation cohorts. Table
S4: Methylation probes and corresponding regulating genes
which both are highly correlated with IMpS. Table S5:
Methylation probes/gene pairs which are closely correlated
with each other. Table S6: Features of mIMg in immune
response in the training cohorts. Table S7-1: Comparison of
the methylation level of probes highly correlated with IMpS
between ICIs responders and nonresponders. Table S7-2:
Comparison of the expression level of corresponding genes in
Table S7-1 between ICIs responders and nonresponders.
Table S8: Multivariate Cox analysis of methylation probes in
mIMg pairs which both distinguished OS in the TCGA-
LUAD cohort. Table S9: Prognostic methylation probes
according to oncogenes status. Figure S1: PCA analysis
showed the distinct methylation status of genes in mIMg in
three immunophenotypes. mIMg was defined as DNA
methylation probe/gene pairs, genes in which were immune
response–related hub genes and closely regulated by DNA
methylation. Figure S2: Correlation between cg09032544/
CD247, cg07786657/CD247, cg11683242/LCK, cg26227523/
PSTPIP1 in mIMg and 7 immune features in GSE60644 &
GSE56044, GSE66863 & GSE66836 cohorts. Figure S3:
Evaluation of CD247, LCK, and PSTPIP1 in predicting ICIs
response. (A–C) No significant difference was observed in the
comparison of CD247, LCK, and PSTPIP1 expression levels
between ICIs responders and nonresponders in GSE135222.
Figure S4 Validation of CD247, LCK, and PSTPIP1in pre-
dicting the clinical outcome. (A–C), (G–I) Comparison of
overall survival (OS) between groups based on the expression

level of CD247, LCK, and PSTPIP1 in the GPL570 integrative
cohort and GPL884 integrative cohort. Hazard ratio (HR) was
calculated by univariate Cox analysis of methylation/ex-
pression level group. C-index was calculated based on uni-
variate Cox model of methylation/expression level group.
(D–F), (J–L) ROC curves of multivariate Cox models com-
bining molecular stratification factors (CD247, LCK,
PSTPIP1), age, gender, stage in the GPL570 integrative cohort
and GPL884 integrative cohort. Figure S5: Decision curve
analysis between the univariate Cox model of prognosis
stratification factors including CD247, LCK, and PSTPIP1,
and multivariate Cox model by adjusting for age, gender,
stage in the TCGA-LUAD cohort and the GPL6884 inte-
grative cohort. Figure S6: *e potential role of ACAP1 and
ARHGAP30 in predicting clinical outcome. (A) Correlation
between cg252671438/ACAP1, cg01774645/ARHGAP30 in
mIMg and 7 immune features in the TCGA-LUAD cohort.
(B–E) Comparison of methylation/expression level of
cg252671438/ACAP1, cg01774645/ARHGAP30 between ICIs
responders and nonresponders in the GSE119144 &
GSE135222 cohorts. (F)–(I) Comparison of overall survival
(OS) between groups based on methylation/expression level
of cg252671438/ACAP1, cg01774645/ARHGAP30 in the
TCGA-LUAD cohort. (G–M) Comparison of overall survival
(OS) between groups based on the expression level of ACAP1,
ARHGAP30 in the GPL570 integrative cohort and the
GPL884 integrative cohort. Hazard ratio (HR) in (F–M) was
calculated by univariate Cox analysis of the methylation/
expression level group. Figure S7: Crosstalk between meth-
ylation analysis and oncogene status. (A–F) Comparison of
the average methylation level among different immune
clusters stratified by oncogene status in the TCGA-LUAD
cohort and the GSE66863 & GSE66836 cohorts. (G–I) Ex-
cavation of potential prognostic factors according to onco-
gene status in LUAD. (Supplementary Materials)
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