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Purpose. Breast cancer is the most common type of cancer and the leading cause of cancer-related death in women worldwide. In
this study, we aimed to construct an infammatory response-related genemodel for predicting the immune status and prognosis of
breast cancer patients.Methods. We obtained the infammatory response-related genes from the Molecular Signatures Database.
Furthermore, we used univariate Cox regression analysis, the least absolute shrinkage and selection operator (LASSO) regression
analysis, and multivariate Cox regression to construct an infammatory response-related gene signature (IRGS) model based on
dataset obtained from Te Cancer Genome Atlas (TCGA). Patients were consequently categorized into high-risk and low-risk
groups. Kaplan–Meier analysis was used to compare the overall survival (OS) of high-risk and low-risk groups. Following that, we
validated the model using a dataset (GSE96058) acquired from Gene Expression Omnibus (GEO) database. Univariate and
multivariate Cox analyses were used to determine the independent prognostic value of the IRGS in the TCGA and GSE96058
cohorts. A nomogram was constructed to predict the OS in the TCGA cohort. Further, we used Gene Set Enrichment Analysis
(GSEA), CIBERSORT, and single-sample Gene Set Enrichment Analysis (ssGSEA) to evaluate the associations of IRGS with
immune-associated pathways and immune infltration. Finally, the relationship between the expression of the signature genes and
drug sensitivity was conducted using Pearson correlation analysis. Results. We established an IRGS to stratify breast cancer
patients into the low-risk and high-risk groups. In both the training and validation sets, patients in the high-risk group had
signifcantly shorter OS than those in the low-risk group.Te risk score was signifcantly correlated with the clinical characteristics
and could be used as a tool to predict the prognosis of breast cancer. Moreover, we found that the IRGS risk score was an
independent predictor of OS in breast cancer patients, and a nomogrammodel based on IRGS risk score and other clinical factors
could efectively predict the prognosis of breast cancer patients. Furthermore, the IRGS risk score was correlated with immune
characteristics and was inversely associated with the abundance of immune cell infltration. Patients with a low IRGS risk score
had higher expression levels of immune checkpoint genes, suggesting that IRGS can be used as a potential indicator for im-
munotherapy. Finally, we found that the expression levels of prognostic genes were signifcantly correlated with tumor cell
sensitivity to chemotherapeutic drugs. Conclusion. Overall, these fndings suggest that the IRGS can be used to predict the
prognosis and immune status of breast cancer patients and provide new therapeutic targets for the treatment of these patients.

1. Introduction

Breast cancer is the most common type of cancer in women
around the world [1]. In 2021, breast cancer accounted for

30% of newly diagnosed cancer cases and 15% of cancer-
related deaths in women [2]. Surgical resection, radiother-
apy, adjuvant chemotherapy, endocrine therapy, molecular
targeted therapy, and immunology therapy are commonly
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used for the treatment of breast cancer [3]. Although these
comprehensive treatment methods have a curative efect,
tumor recurrence and metastasis frequently cause poor
prognosis in breast cancer patients [3]. Breast cancer is
a highly heterogeneous disease with a complex etiology, and
the systemic infammatory response is critical in the de-
velopment and progression of the disease [4]. Tus, there is
an urgent need to fnd efective and valuable infammatory
response-related biomarkers to improve prognosis pre-
diction and clinical outcome of patients with breast cancer.

Infammation is a hallmark of cancer, and it plays an
important role in cancer development and progression
[5, 6]. A growing body of evidence suggests that cancer-
related infammatory responses regulate immune cell
infltration and immune response, afecting tumor pro-
liferation, invasion, and metastasis [7]. Infammation is
mediated by a variety of cytokines, chemokines, and
hormones that help to regulate a wide range of processes
involved in breast cancer development [4]. Furthermore,
infammatory cytokines and other infammatory media-
tors in the tumor microenvironment (TME) can infuence
immune function, tumor growth, diferentiation, in-
vasion, and metastasis [8]. It has been reported that el-
evated levels of infammation-related markers CRP, TNF,
IL-6, and IL-8 are associated with poor prognosis in breast
cancer patients [9]. A previous study has shown that IL-6
expression is correlated with tumor stage, lymph node
metastasis, and a poor prognosis in breast cancer [10]. IL-
1β is a proinfammatory cytokine that is associated with
a poor prognosis in breast cancer due to its ability to
stimulate NF-kappaB-driven gene transcription [11]. IL-
8, a member of the CXC chemokine family of
infammation-related chemokines, is signifcantly over-
expressed in human breast cancer patients and is asso-
ciated with a poor prognosis [12]. TNFα is
a proinfammatory cytokine that stimulates cell pro-
liferation by increasing cyclin D1 transcription in ER-
positive breast cancer [13]. Previous studies revealed that
increased CRP levels are associated with an increased risk
of breast cancer [14]. Several studies on infammatory
responses revealed that adjuvant chemotherapy causes
a severe systemic infammatory response and a weak
adaptive immune response, which promotes breast cancer
progression and poor prognosis [15]. To date, increasing
evidence has confrmed that some infammation-related
markers are closely associated with the prognosis of breast
cancer. However, there is no report on the infammatory
response-related gene signature (IRGS) as a predictor of
breast cancer.

In this study, we constructed a prognostic IRGS for
breast cancer using a Te Cancer Genome Atlas (TCGA)
cohort and validated it in the Gene Expression Omnibus
(GEO) dataset. Te Human Protein Atlas database, which
includes immunohistochemical (IHC) images, was used to
assess infammation-related gene expression. Ten, using
the risk score, we created a nomogram for predicting 1-, 3-,
and 5-year overall survival (OS) of breast cancer patients in
the TCGA cohort. In addition, we explored the relationship
between the risk score model and tumor immune status.

Finally, we investigated the relationship between the ex-
pression of prognostic genes and cancer cell
chemoresistance.

2. Methods and Materials

2.1. Data Acquisition. RNA expression data and corre-
sponding clinical information of breast cancer patients were
systematically obtained from the TCGA and GEO databases
(GSE96058 cohort) [16]. Te TCGA cohort contained 1222
tissues, including 113 normal tissues and 1109 tumor tissues
and was used as the training cohort. Te GSE96058 cohort,
which contained 3273 samples, was used as the external
validation cohort. Te RNA sequencing data downloaded
from the TCGA database were transformed into the same
format as the GSE96058 cohort (log2 (FPKM+0.1)).

2.2. Identifcation of Diferentially Expressed Infammatory
Response-Related Genes. Infammatory response-related
genes were collected from the gene sets “GOBP_IN-
FLAMMATORY_RESPONSE” and “HALLMARK_IN-
FLAMMATORY_RESPONSE” in the Molecular Signatures
Database (MSigDB) (https://www.gsea-msigdb.org/), which
are shown in Supplementary Table S1 and Supplementary
Table S2. In the TCGA cohort, diferential gene expression
analysis for infammatory response-related genes was per-
formed using the Wilcox test. Genes with |log2 fold change
(FC)|> 1 and a false discovery rate (FDR)< 0.05 were
considered as diferential expression genes (DEGs). Te
DEGs were visualized in the form of a heatmap using the R
package “pheatmap.”

2.3. Development and Validation of a Prognostic IRGS. To
better understand the relationship between DEGs and pa-
tient survival, the R package “survival” was used to perform
a univariate Cox analysis based on the DEGs. Te IRGS was
then developed using the least absolute shrinkage and se-
lection operator (LASSO) regression (R package “glmnet”)
and multivariate Cox regression analysis. Te risk scores of
the patients were calculated as follows: risk
score� β1x1 + β2x2 + ... + βixi. In this formula, xi represented
the expression level of signature genes and βi represented the
corresponding coefcient based on the results of multi-
variate Cox regression analysis.

Te breast cancer patients in the TCGA cohort were
divided into low- and high-risk groups according to the
median risk score, and patients in the GSE96058 cohort were
divided into low- and high-risk groups based on the same
cutof value. Trough the R packages “survival” and
“survminer,” Kaplan–Meier analysis was employed to
compare OS between the low- and high-risk groups. Fur-
thermore, time-dependent receiver operating characteristic
(ROC) curves for 1-, 3-, and 5-year OS were plotted using the
R package “timeROC.” IHC staining of prognostic signature
genes was observed using the Human Protein Atlas database
(https://www.proteinatlas.org/) [17].

For subgroup analysis, patients in the TCGA and
GSE96058 cohorts were divided into two groups based on
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the corresponding clinical parameters, and Kaplan–Meier
analysis and correlation analysis were performed.

2.4. Construction and Evaluation of a Nomogram. To verify
whether the IRGS was independent of other clinical
variables in predicting OS in breast cancer patients,
univariate and multivariate Cox regression analyses were
conducted by the “survival” R package in both the TCGA
and GSE96058 cohorts.

Te independent clinical prognostic factors that were
identifed by multivariate Cox regression analysis in the
TCGA cohort were included in a nomogram to predict the
OS of 1-, 3-, and 5-year using the R package “rms.” Te
concordance index (C-index) was calculated to quantify the
predictive accuracy of the nomogram. Te calibration
curves were plotted to compare the predicted and actual
OS rates.

2.5. Gene Set Enrichment and Immune Status Analyses.
Gene Set Enrichment Analysis (GSEA) was conducted to
examine the biological diference between high- and low-
risk groups. Te analysis was carried out with the R package
“clusterProfler,” and P value <0.05 was considered to be
statistically signifcant.

Next, multiple methods, including ESTIMATE,
CIBERSORT, and single-sample GSEA (ssGSEA), were
utilized to characterize the diference in immune status
between the high- and low-risk groups. Te ESTIMATE
algorithm was used to calculate stromal scores, immune
scores, and estimate scores for each sample by using the R
package “estimate.” Te CIBERSORTalgorithm was used to
estimate the proportion of 22 immune cells in each sample
by using the R software. Te ssGSEA was used to estimate
the proportion of 28 immune cells in each sample by using
the R package “GSVA.”

2.6. Chemotherapy Sensitivity Analysis. To investigate
whether the signature genes were related to the drug sen-
sitivity of chemotherapy, we used the CellMiner website
(https://discover.nci.nih.gov/cellminer) to access the
NCI-60 database, which contained 60 diferent cancer cell
lines from nine diferent types of tumors; then, Pearson
correlation analysis was employed to assess the relationship
between signature genes and efcacy of chemotherapy drugs
approved by the FDA or currently used in clinical trials.

2.7. StatisticalAnalysis. R software (version 4.1.0) was used
for all statistical analyses and visualization in this study.
Te Wilcoxon test was used to compare DEGs between
tumor and normal tissues. To assess the relationship
between IRGS and prognosis, univariate and multivariate
Cox proportional hazard regression analyses were per-
formed using the R packages “survival” and “survminer.”
Te multivariate model was used to screen the genes with
prognostic signifcance (P value <0.10) [18]. Te
Kaplan–Meier method was used to calculate the survival
analyses. Te R package “timeROC” was used to assess the

predictive ability of the IRGS. Statistical signifcance was
defned as a P value less than 0.05.

3. Result

3.1. Construction of a Prognostic IRGS for Breast Cancer Using
the TCGA Cohort. Te fow chart of this study is shown in
Figure 1. We collected 1109 breast cancer specimens and 113
normal specimens from the TCGA database for this study.
Another cohort of 3273 breast cancer specimens was ob-
tained from the GEO database (GSE96058). Patients who did
not have follow-up data were excluded, resulting in a cohort
of 1069 cases in the TCGA dataset and 3069 cases in the
GSE96058 dataset.

Since infammatory response plays a crucial role in the
development and progression of breast cancer, we frst
examined the expression heterogeneity of infammatory
response-related genes in the tumor and normal tissues. As
a result, 243 infammatory response-related genes were
found to be diferentially expressed in the TCGA cohort
(Supplementary Figure 1A, FDR <0.05, |log2 fold change
(FC)|> 1). To comprehensively understand the prognostic
value of the infammatory response-related genes in breast
cancer, a univariate Cox proportional hazards regression
analysis was employed, and a total of 45 genes were found to
be associated with the OS (P< 0.05) (Supplementary
Figure 1B). Next, we performed a LASSO Cox regression
analysis on these factors, and fnally, we chose 19 genes that
appeared to be stable factors based on the optimal lambda
(λ) value (Figure 2(a) and Supplementary Figure 1C). Ul-
timately, all factors obtained from the LASSO Cox re-
gression analysis were included in the multivariate Cox
regression analysis (Figure 2(b)). Based on the results of
multivariate Cox regression analysis, 11 genes were selected
to establish the IRGS, and a risk score formula was de-
veloped: risk score =ANO6 expression× (0.3713) +APOD
expression× (−0.0747) + BCL6 expression× (−0.1823) +
CXCL13 expression× (−0.0732) +HYAL3 expression×

(−0.2807) + PTGER3 expression× (−0.1609) +RASGRP1
expression× (−0.0981) + SCG2 expression× (0.1316) +
SCGB1A1 expression× (−0.2036) + SDC1 expression×

(0.1917) +TSLP expression× (−0.3063) (Supplementary
Table S3).

Using the above risk score formula, the corresponding
IRGS risk score for each patient in the TCGA cohort was
calculated. Furthermore, the median risk score was used as
the cutof value to divide the patients into the high-risk
(n� 535) and low-risk (n� 534) groups (Figure 2(c)). Te
distribution of IRGS risk score and patient survival status
revealed that patients with a high-risk score had a higher
probability of death than those with a low-risk score (Fig-
ure 2(d)). Consistently, patients in the high-risk group had
signifcantly shorter OS than those in the low-risk group (P
< 0.001, Figure 2(e)). Following that, to evaluate the prog-
nostic performance of the IRGS, a time-dependent ROC
analysis was performed, and the area under the curve (AUC)
for 1-, 3-, and 5-year OS of this prognostic signature was
0.670, 0.733, and 0.721, respectively (Figure 2(f )). Tese
fndings indicate that the risk score derived from the IRGS
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has a strong prognostic value and high accuracy for pre-
dicting the OS of breast cancer patients.

3.2.Validationof thePrognosticValueof the IRGSRiskScore in
the GSE96058 Cohort. To evaluate the robustness of the
IRGS, we defned GSE96058 dataset (n= 3069) as an external
validation cohort to test the prognostic power of this IRGS.
Te same risk score formula used in the TCGA training
cohort was used to generate risk scores for each patient in the
validation cohort (Figure 3(a)). According to the distribu-
tion of the IRGS risk scores and survival status of patients,
patients at high risk had a higher probability of death than
those at low-risk (Figure 3(b)). In the validation cohort,
patients were divided into the high-risk (n= 1315) and low-

risk (n= 1754) groups based on the same cutof value as in
the TCGA cohort. Patients with a low-risk score had sub-
stantially longer OS than those with a high-risk score (P
< 0.001) (Figure 3(c)). Te AUC for 1-, 3-, and 5-year OS of
IRGS was 0.611, 0.613, and 0.600, respectively (Figure 3(d)).
Tese fndings were consistent with the fndings from the
TCGA cohort and supported the prognostic value of this
IRGS. To further validate the fndings, the protein expression
of genes from the IRGS was measured using data from the
Human Protein Atlas database, which includes IHC images
of cancer and normal tissues (Figure 4).

3.3. Te Correlation of IRGS Risk Score with Clinical Char-
acteristics in Breast Cancer. To determine whether the IRGS

RNA expression data of
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from TCGA (n=1222)
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RNA expression data of
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from GSE96058
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Figure 1: Flow chart of sample collection and analysis.
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Figure 2: Construction of the IRGS using the TCGA cohort. Te prognostic signature was developed by LASSO Cox regression analysis (a)
and multivariate analysis (b) of candidate genes that were associated with OS of breast cancer patients in the TCGA cohort. (c) Breast cancer
patients in the TCGA cohort were separated into the high-risk and low-risk groups with the median value of risk score. (d) Te survival
status and risk score distribution in the TCGA cohort. (e) Kaplan–Meier curves of OS between the high-risk and low-risk groups in the
TCGA cohort. (f ) ROC curves of the risk score to predict the 1-, 3-, and 5-year OS in the TCGA cohort.
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risk score was correlated with clinical characteristics, we
analyzed the diferences in the risk scores among the various
subgroups stratifed by clinical characteristics. In the TCGA
cohort, the risk scores were found to be closely related to age,
PR, and HER2 status (Supplementary Figure 2A). Te risk
score in the stage and ER status subgroups, however, was not
statistically diferent (Supplementary Figure 2A). In the
GSE96058 cohort, except for the ER status, the risk score was
signifcantly associated with age, grade, PR, and HER2 status
(Supplementary Figure 2B). Further, we explored the
prognostic value of IRGS in diferent subgroups based on
clinical characteristics. In the TCGA cohort, a high-risk
score was associated with a worse prognosis than a low-
risk score in all subgroups except the HER2-positive

subgroup (Figure 5(a)). In the GSE96058 cohort, except for
the age ≤ 60, ER-negative, andHER2-positive subgroups, the
risk score can efectively predict the OS of patients with
various clinicopathological features (Figure 5(b)). Taken
together, the results suggest that the risk score is closely
associated with the clinical characteristics of breast cancer
and can be used to predict the prognosis of breast cancer
patients.

3.4. Independent Prognostic Value of the IRGS in the TCGA
and GSE96058 Cohorts. To further determine whether the
IRGS can be used as an independent prognostic factor for
OS, the risk score and clinical factors were integrated into

High–risk
Low–risk

12

0 500 1000 1500
Patients (increasing risk score)

2000 2500 3000

Ri
sk

 sc
or

e
10

8

6

4

2

0

(a)

Dead
Alive

0 500 1000 1500
Patients (increasing risk score)

2000 2500 3000

7

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

6

5

4

3

2

1

0

(b)

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.75

0.50

0.25
P < 0.001

0.00

0 2
Time (years)

4 6

High–risk
Low–risk

(c)

1.0

0.8

0.6

0.4

0.2

0.0

Se
ns

iti
vi

ty

0.0 0.2 0.4
1 – specificity

0.6 0.8 1.0

AUC at 1 year: 0.611
AUC at 3 years: 0.613
AUC at 5 years: 0.600

(d)

Figure 3: Validation of the prognostic value of the IRGS in the GSE96058 cohort. (a) Breast cancer patients in the GSE96058 cohort were
separated into the high-risk and low-risk groups with the median value of the risk score in the TCGA cohort. (b)Te survival status and risk
score distribution in the GSE96058 cohort. (c) Kaplan–Meier curves of OS between the high-risk and low-risk groups in the GSE96058
cohort. (d) ROC curves of the risk score to predict the 1-, 3-, and 5-year OS in the GSE96058 cohort.
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univariate and multivariate analyses. Te risk score was
signifcantly correlated with OS in both TCGA (hazard
ratio (HR) � 1.232, 95% CI � 1.142–1.330, P< 0.001;
Figure 6(a)) and GSE96058 (HR � 1.114, 95%
CI � 1.017–1.222, P= 0.021; Figure 6(b)) cohorts after

adjusting for other clinical characteristics indicating that
risk score was an independent indicator for OS of breast
cancer patients. Together, these results strongly dem-
onstrate that the IRGS risk score can independently
predict the OS of breast cancer patients.
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Figure 4: IHC staining of infammatory response-related genes (ANO6, APOD, BCL6, CXCL13, HYAL3, PTGER3, SCG2, SCGB1A1, and
SDC1) expression in breast cancer and normal tissues in the Human Protein Atlas database.Te IHC data for RASGRP 1 and TSLP were not
available in the Human Protein Atlas database.
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Figure 5: Continued.
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3.5. Construction of a Prognostic Nomogram to Predict the OS
of Breast Cancer Patients. A nomogram was constructed in
the TCGA cohort to quantitatively predict the survival
probability of breast cancer patients. Te risk score, age, and
tumor stage were integrated into the nomogram to predict
the OS of breast cancer patients (Figure 7(a)). Furthermore,
the predictive performance of the nomogram was evaluated
by computing the C-index and generating the calibration
curve of the model for 1-, 3-, and 5-year survival rates. As
a result, the C-index of the nomogram was 0.800, and the
calibration curves suggested that the predicted survival rate
was similar to the actual survival rate of 1-, 3-, and 5-year
(Figures 7(b)–7(d)), indicating the nomogram had the great
predictive ability.

3.6. Identifying Biological Function and Immune Cells Related
to the IRGSinBreastCancer. To determine whether the IRGS
risk score can predict immune characteristics, we evaluated

the relationship between the risk score and the immune
status of breast cancer patients. Using GSEA, we found that
the immune-related gene sets were enriched in patients with
low risk in the TCGA cohort (Figure 8(a), P< 0.05 for all).
Te fndings of the ESTIMATE algorithm revealed that
samples from the low-risk group had signifcantly higher
immune scores than those from the high-risk group, sug-
gesting that the level of immune cell infltration increased in
the low-risk group (Figure 8(b)). To further investigate the
relationship between the risk score and immune cell sub-
populations, CIBERSORT and ssGSEA were employed. Te
immune cell infltration analysis showed a dramatically
inverse correlation between the IRGS risk score and the
abundance of most immune infltrating cells (Figures 8(c)–
8(d)).Ten, to investigate the potential clinical value of IRGS
in immunotherapy, we compared the expression levels of 8
immune checkpoint-related genes (PDCD1LG2, PDCD1,
PD-L1, LAG3, TIGIT, HAVCR2, IDO1, and CTLA-4) be-
tween the high-risk and low-risk groups in the TCGA
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Figure 5: Kaplan–Meier curves analysis of patients with diferent clinical characteristics. Te prognostic value of IRGS in diferent
subgroups in the TCGA cohort (a) and the GSE96058 cohort (b).
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cohort. We found that PDCD1LG2, PDCD1, PD-L1, LAG3,
TIGIT, IDO1, and CTLA-4 were signifcantly upregulated in
patients with low-risk scores (Supplementary Figure 3).
Together, our fndings suggest that IRGS can be used as
a promising predictive indicator and therapeutic target for
breast cancer immunotherapy.

3.7. Te Expression of IRGS Signature Genes Is Signifcantly
Correlated with the Sensitivity of Cancer Cells to Chemo-
therapy Drugs. Next, Pearson correlation analysis was
performed to explore the relationship between the expres-
sion of the signature genes and drug sensitivity. Te results
showed that high expression of TSLP, RASGRP1, APOD,
and PTGER3 was correlated with cancer cell drug sensitivity
to a variety of chemotherapeutic drugs, especially APOD,
which was highly correlated with drug sensitivity to ARQ-
680, SB-590885, PLX-4720, vemurafenib, and others.
However, enhanced expression of APOD was associated
with increased drug resistance to Varbulin, Rigosertib, and
RX-5902 in cancer cells. Similarly, high expression of BCL6
was correlated with drug resistance to amonafde (Figure 9).
All results of the correlation analysis with a P< 0.05 were
shown in Supplementary Table S4.

4. Discussion

In this study, we constructed and validated a novel prog-
nostic IRGS with 11 infammatory response genes, and this
model was able to efciently predict the prognosis of breast
cancer patients. We found that the IRGS risk score was
closely associated with the clinical characteristics of breast
cancer patients. Besides, the IRGS risk score was able to
independently predict the OS of breast cancer patients.
Furthermore, we constructed a nomogram using the IRGS
risk score, age, and tumor stage in the TCGA cohort to
predict the 1-, 3-, and 5-year OS of breast cancer patients. It
was found the IRGS risk score was correlated with tumor
immune status. Finally, we found that the expression levels
of the prognostic genes were signifcantly correlated with
tumor cell sensitivity to chemotherapeutic drugs.

In recent years, accumulating evidence has indicated that
infammation mediators including cytokines, chemokines,
pattern recognition receptors, activated transcriptional
factors, and tumor microenvironment regulatory factors
play important roles in the growth, metastasis, and prog-
nosis of a variety of human tumors, including breast cancer
[19–22]. In this study, we analyzed the public human breast
cancer expression profle in the TCGA cohort and chose 243
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Figure 6: Univariate and multivariate Cox regression analyses of the IRGS on OS in the TCGA cohort (a) and the GSE96058 cohort (b).
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infammatory response-related genes for analysis. Further-
more, we used univariate Cox regression analysis, LASSO
regression analysis, and multivariate Cox regression to
screen and identify 11 genes (ANO6, APOD, BCL6,
CXCL13, HYAL3, PTGER3, RASGRP1, SCG2, SCGB1A1,
SDC1, and TSLP) to construct a prognostic risk score model.
Notably, these signature genes are closely associated with the
progression and prognosis of various cancers including
breast cancer. A previous study demonstrated that ANO6 is
associated with the metastatic potential of breast cancer [23].
Low APOD expression predicts poor prognosis in colorectal

cancer [24], ovarian cancer [25], and breast cancer [26].
Furthermore, previous studies have shown that BCL6 is
overexpressed in breast cancer and BCL6 expression con-
tributes to breast cancer progression [27]. It was found that
a high serum level of CXCL13 protein is a potential good
prognosis indicator for hepatocellular carcinoma, but it was
also found to be associated with a poor prognosis in patients
with prostate cancer and breast cancer [28]. In a study based
on breast cancer cell lines, HYAL3 mRNA expression was
demonstrated to be associated with low invasive potential
[29]. In another study, high expression of the HYAL3-v1
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splice variant was found to be associated with a better
prognosis in lung carcinomas [30]. Previous studies have
found that the PTGER3 gene is upregulated in various breast
cancer subtypes [31]. High RASGRP1 expression was
demonstrated to be associated with a better prognosis in
breast cancer [32]. It was found that SCG2 can predict
prognosis in breast cancer [33], nonsmall cell lung cancer
[34], and colorectal cancer [35]. Previous reports demon-
strated that SCGB1A1 is a tumor suppressor that is
downregulated in human lung cancer [36–38]. High SDC1
expression is correlated with a poor prognosis in breast
cancer [39]. TSLP is a cytokine that promotes T2-mediated
immune activity and is associated with a poor prognosis in
breast cancer and other epithelial cancers [40].

In both the training and validation sets, we found that
patients with a high-risk score had signifcantly shorter OS
than those with a low-risk score. Furthermore, we used IHC

images from the Human Protein Atlas to determine the
protein expression of genes in the IRGS in breast cancer
tissues and normal tissues. Numerous studies have found
that infammatory mediators are signifcantly associated
with a variety of clinical characteristics of breast cancer
[41, 42].We investigated the relationship between risk scores
and clinical characteristics and found that the risk scores
were closely related to age, PR, and HER2 status in both the
training and validation sets. Further, we found that a high-
risk score was associated with a worse prognosis than a low-
risk score in age > 60, ER-positive, PR-negative, PR-positive,
and HER2-negative subgroups in both the training and
validation sets. Furthermore, multivariate Cox regression
analysis and a nomogram revealed that the risk score was an
independent prognostic factor that could efectively predict
the survival rate of breast cancer patients.Te results suggest
that the risk score was closely associated with various
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clinicopathological features of breast cancer patients and
could be used as an efective tool to predict the prognosis of
breast cancer patients.

TME is well known to be closely associated with tumor
cell proliferation, survival, invasion, and metastasis [43].
T cells, myeloid-derived suppressor cells (MDSCs), tumor-
associated macrophages (TAMs), and dendritic cells (DCs)
are components of TME and have a signifcant impact on
breast cancer development and outcomes [4]. Te in-
fammatory response is a vital part of the systematic immune
reaction, and it is important in the early recruitment of

infammatory factors and TME formation [44]. Numerous
studies have suggested that infammatory response-related
genes not only activate the immune system and participate
in the infammatory response but also play a role in TME
[45]. It has been demonstrated that CXCL13 plays an im-
portant role in immune cell recruitment and adaptive im-
mune response, suggesting that it may play multiple roles in
young breast cancer patients [46]. BCL6 is a key regulator of
humoral immune responses and it has been shown to afect
germinal center B-cell functions and immune responses
[47]. In this study, we found that genes related to adaptive
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immune response, immune efector process, lymphocyte-
mediated immunity, and positive regulation of immune
response gene signatures were enriched in low-risk patients.
We also found that the IRGS risk score had a dramatically
inverse correlation with the abundance of immune in-
fltrating cells. Immunotherapy has emerged as a new
treatment modality in breast cancer, with immune check-
point blockade (ICB) to target and block PD-1, PD-L1, and
CTLA-4 approved as frst-line therapy in metastatic triple-
negative breast cancer [48–50]. Terefore, we examined the
relationships between the risk scores and the expression
levels of immune checkpoint-related genes and found that
PDCD1LG2, PDCD1, PD-L1, LAG3, TIGIT, IDO1, and
CTLA-4 were signifcantly upregulated in patients with low-
risk scores in the TCGA cohort, suggesting that patients with
low-risk scores may beneft from ICB treatment. Taken
together, our fndings suggest that genes of this IRGS are
critical in regulating the immune responses to breast cancer.

Our study suggests that the IRGS risk score could be used
to predict the immune status and prognosis of breast cancer
patients. Because this predictive model was constructed and
validated using retrospective data from the TCGA and GEO
public databases, more data based on prospective studies are
needed to verify its clinical applicability.
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