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Background. Glioma is the most common primary brain tumor, representing approximately 80.8% of malignant tumors.
Necroptosis triggers and enhances antitumor immunity and is expected to be a new target for tumor immunotherapy. �e
e�ectiveness of necroptosis-related lncRNAs as potential therapeutic targets for glioma has not been elucidated. Methods. We
acquired RNA-seq data sets from LGG and GBM samples, and the corresponding clinical characteristic information is from
TCGA. Normal brain tissue data is from GTEX. Based on TCGA and GTEx, we used univariate Cox regression to sort out
survival-related lncRNAs. Lasso regression models were then built. �en, we performed a separate Kaplan-Meier analysis of the
lncRNAs used for modeling. We validated di�erent risk groups via OS, DFS, enrichment analysis, comprehensive immune
analysis, and drug sensitivity. Results. We constructed a 12 prognostic lncRNAs model after bioinformatic analysis. Subsequently,
the risk score of every glioma patient was calculated based on correlation coe�cients and expression levels, and the patients were
split into low- and high-risk groups according to the median value of the risk score. A nomogram was established for every glioma
patient to predict prognosis. Besides, we found signi�cant di�erences in OS, DFS, immune in�ltration and checkpoints, and
immune therapy between di�erent risk subgroups. Conclusion. Predictive models of 12 necroptosis-related lncRNAs can facilitate
the assessment of the prognosis and molecular characteristics of glioma patients and improve treatment modalities.

1. Introduction

Glioma is the most common primary brain tumor, repre-
senting approximately 80.8% of malignant tumors [1].
Current research has made signi�cant progress in the
treatment of glioma surgery, radiotherapy, and chemo-
therapy. Still, the limitations of the current therapy of gli-
oma, including the impact on patients’ neurological
function, inferior quality of life, and heavy burden on pa-
tients’ families, cannot be ignored [2]. Although immuno-
therapy has made considerable progress as a new treatment
for malignancies, the 5-year overall survival (OS) for glioma
remains below 35% without signi�cant improvement [1]. It

urges us to explore more precise and tolerable therapies
for glioma.

�e utility of necroptosis in cancer is complex. On the
one hand, the expression of key regulators in the necroptosis
pathway is generally downregulated in cancer cells, in-
dicating that cancer cells may escape necroptosis and sur-
vive. On the other hand, the expression levels of key
regulators are instead elevated in certain types of cancer.
Necroptosis has been reported to induce an in¦ammatory
response, promote cancer metastasis, and produce an im-
munosuppressive tumor microenvironment [3, 4]. Nec-
roptosis has also been found to play a crucial role in
neuroin¦ammation and degenerative lesions of the central
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nervous system (CNS). Necroptosis can cause a vigorous
inflammatory reaction that can dramatically alter the local
tissue environment and mediate the pathogenesis of CNS
disease [5]. As a form of programmed death that overcomes
resistance to apoptosis, necroptosis triggers and enhances
antitumor immunity and is expected to be a new target for
tumor immunotherapy.

Long noncoding RNA (lncRNA) is a class of RNA
molecules with a transcription length of over 200 nt. /ey do
not encode proteins but participate in protein-coding gene
regulation in the form of RNA. LncRNA plays an important
role in dose compensation effect, epigenetic regulation, cell
cycle regulation, and cell differentiation regulation [6]. Pre-
vious studies have shown that the p53-inducible lncRNA
TRINGS protects cancer cells from necroptosis induced by
glucose starvation [7]. /is indicates that there is a relation-
ship between lncRNA and necroptosis. Recent research has
shown that lncRNA plays an integral role in glioma pro-
liferation, angiogenesis, stem cells, and drug resistance [8].
LncRNA regulates the malignant phenotype of glioma.
LncRNA can act as a molecular signalingmediator, regulating
the expression of specific genes and corresponding signaling
pathways, such as CRNDE-mTOR signaling [9] and the
TALC-cMet pathway [10]. Most of the glioma-related
lncRNAs serve as “miRNA sponges” to inhibit miRNA ac-
tivity (e.g., miR-128-3p/GREM1 [11], miR-619-5p/CUEDC2
[12], miR-494-3p/PRMT1 [13], and miR-106b-5p/TUSC2
[14]. /is suggests that the function of lncRNA cannot be
negligible in glioma. Necroptosis-related lncRNA has also
been found to have prognostic value and a correlation with
prognosis and therapeutic targets, and immune analysis in
a variety of tumors, for instance, gastric cancer [15], stomach
adenocarcinoma [16], breast cancer [17], and lung adeno-
carcinoma [18]. /erefore, our exploration of the function of
necroptosis-associated lncRNA in glioma is of significance.

/e effectiveness of necroptosis-related lncRNAs as
potential therapeutic targets for glioma has not been elu-
cidated. Studies should be made to figure out the relation
between them to provide new ideas for molecular biology
diagnosis and treatment targets.

2. Materials and Methods

2.1.Datasets forGliomaPatients. We acquired RNA-seq data
sets (HTSeq—Counts and HTSeq—FPKM) of Lower Grade
Glioma (LGG) and Glioblastoma Multiforme (GBM) sam-
ples, and the corresponding clinical characteristic in-
formation is from /e Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/). Normal brain tissue data is
from Genotype-Tissue Expression Project (GTEX, https://
www.gtexportal.org/home/index.html) database. TCGA
data is downloaded for the training group. We use R (4.1.2)
software and data. table, dplyr, and tidyr R packages to
synthesize the data matrix and perform the analysis.

2.2. Acquisition of Necroptosis-Related Genes and lncRNAs.
We combined the published literature, the Gene Set En-
richment Analysis (GSEA, https://www.gsea-msigdb.org/

gsea/index.jsp) data, and the use of the KEGGREST R
package to download all genes of the necroptosis pathway on
KEGG (https://www.genome.jp/kegg/) to obtain
159 necroptosis-related genes (supplementary materials). We
then used the limma R package to identify differentially
expressed lncRNAs (Log2 fold change (FC)> 1, false dis-
covery rate (FDR)< 0.05). /e selected differentially
expressed mRNAs were then subjected to KEGG and GO
analysis to explore their functional clustering. Correlation
analysis of these differential lncRNAs and necroptosis-related
genes has proceeded, yielding necroptosis-associated lncRNA
with Pearson correlation coefficients >0.5 and p< 0.001.

2.3. Establishment and Validation of Prognostic Model.
Based on TCGA and GTEx, we used univariate Cox pro-
portional hazards regression analysis to sort out survival-
related lncRNAs in necroptosis-related lncRNAs (p< 0.05).
Lasso regression models were then built using survival-
related lncRNAs, and 1000 iterations were performed to
acquire a robust model. We select lncRNAs related to
progression based on the penalty parameter (λ). We per-
formed a separate Kaplan-Meier analysis of the lncRNAs
used for modeling. /e screened lncRNAs were used for the
multivariate Cox regression model. Risk scores were cal-
culated for the prognostic models. We used the following
formula to calculate the risk score:

Risk score � 
n

k�1
coef IncRNAk

 ∗ exp IncRNAk
 , (1)

where the coef (lncRNAk) was the short form of the co-
efficient of lncRNAs correlated with survival in the Cox
model and exp (lncRNAk) was the expression of lncRNAs.
And then, high- and low-risk groups are established based
on the median risk score. To assess the significance of the
prognostic model, we used the Kaplan-Meier method to
generate survival curves for overall survival (OS) and
disease-free survival (DFS). We then combined clinical
information using age (≥65, <65), gender (male, female),
tumor grade (II, III, IV), IDH status (mutation, mild),
MGMT status, and risk score to generate univariate and
multivariate forest plots and heat maps for determining the
applicability of the prognostic model to the clinic. /en, the
receiver operating curves (ROC) of 1, 3, and 5 years were
used to test the predictive ability of the prognostic model
(‘survivalROC’package).

2.4. Nomogram and Calibration. /e age, gender, tumor
grade, IDH status, MGMTstatus, and risk score were used to
set up the nomogram./e Hosmer–Lemeshow test was used
to generate correction curves to test whether the predicted
results matched the actual.

2.5. Gene Set Enrichment Analysis. We used GSEA software
and the KEGG gene set to select significantly enriched
pathways in high- and low-risk groups. /e screening cri-
teria were p< 0.05 and FDR< 0.05.
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2.6. Immune Infiltration Analysis and Immune Checkpoints.
To explore the relationship between the prognostic model
and the immune microenvironment features, we calculated
the immune infiltration statuses between the different
groups with the application of TIMER (https://timer.
cistrome.org/). Wilcoxon signed-rank test, limma, scales,
ggplot2, ggpubr, and ggtext R packages were performed to
analyze differences in immune infiltrating cells between
high- and low-risk groups. In addition, we made compar-
isons about TME scores and immune checkpoint activation
between low- and high-risk groups by the ggpubr R package.
Besides, the immune and stromal scores were analyzed
between two different risk subgroups by the ESTIMATE R
package. In addition, tumor immune dysfunction and ex-
clusion (TIDE) (https://tide.dfci.harvard.edu) indicates that
a higher score corresponds to worse immunotherapy.

2.7. Investigation of Drug Sensitivity. We explored the cor-
relation between 138 kinds of drugs and the subgroups
identified with prognostic signature genes using the
“pRRophetic” package in R to explore the therapeutic re-
sponse of necroptosis-related lncRNAs, with their drug
sensitivity determined by the half-maximal inhibitory
concentration (IC50) of glioma patients.

2.8. Statistical Analysis. /e R software 4.12 and its corre-
sponding packages were utilized for statistical analyses.

3. Results

3.1. Identification of Necroptosis-Related lncRNAs in Patients
with Glioma. /e detailed process is shown in Figure 1.
From TCGA and GTEx matrix, we obtained 1152 normal
samples and 667 tumor samples. According to the expres-
sion of 159 necroptosis-related genes (Table 1) and 48
differentially expressed mRNAs between normal and tumor

samples (Figure 2(a)), GO results showed that differentially
expressed necroptosis-associated mRNAs are mainly clus-
tered in response to the virus, type 1 interferon signaling
pathway, endosomal membrane, and cytokine receptor
binding (Figure 2(b)). KEGG pathway analysis revealed that
mRNAs were mainly enriched in necroptosis, influenza A,
NOD-like receptors, COVID-19, and hepatitis B and C
signaling pathways (Figure 2(c)). We finally got
354 necroptosis-related lncRNAs (Pearson correlation co-
efficients >0.5 and p< 0.001), including 32 downregulated
lncRNAs and 322 upregulated lncRNAs. /e correlation
between necroptosis genes and necroptosis-related lncRNAs
is shown in Table S1. /ese will contribute to investigating
the role and mechanisms of necroptosis-related lncRNAs in
glioma and other related diseases.

3.2. Construction of a Prognostic Model according to
Necroptosis-Related lncRNAs in Glioma Patients. Using the
univariate Cox regression analysis, we screened
225 necroptosis-related prognostic lncRNAs (Figure S1),
which were significantly correlated with OS from
354 necroptosis-related lncRNAs in the whole TCGA set
(Table S1). To avoid overfitting and improve the accuracy of
the prognostic signature, we performed the LASSO-
penalized Cox analysis on these lncRNAs. We acquired
29 lncRNAs related to necroptosis in glioma when the first-
rank value of Log(λ) was the minimum likelihood of de-
viance bias (Figures 2(d)-2(e)). Finally, 12 lncRNAs were
identified after multivariate Cox regression (Figure 2(f )),
and seven lncRNAs were regulated positively by necroptosis
genes. Subsequently, the risk score of every glioma patient
was calculated based on correlation coefficients calculated,
and the patients were split into low- and high-risk groups
according to the median value of the risk score. /e risk
score was calculated as follows:

risk score � (0.712∗AC010226.1 exp.) +(0.6578∗AC025857.2 exp.) +(0.529∗POLR2J4 exp.)

+(0.501∗ SLC25A21 − AS1 exp.) +(0.480∗AC099850.3 exp.) +(0.352∗AC092718.4 exp.)

+(0.302∗AL590094.1 exp.) +(−0.431∗AC109439.2 exp.) +(−0.489∗AC083864.2 exp.)

+(−0.511∗ZNF236 − DT exp.) +(−0.814∗AL513534.1 exp.) +(−0.823∗AC023024.1 exp.).

(2)

/e survival status and survival time of patients in the
two different risk groups are shown in Figures 3(a)-3(b)./e
individual expression of the 12 prognostic necroptosis-
related lncRNAs for each patient is shown in Figure S2.
/e survival analysis shows that the low-risk group has
longer OS than the high-risk group. /ere was a statistical
difference in the survival curve between the low-risk and
high-risk groups (p< 0.001). In addition, we performed
PCA on the entire gene expression profiles, 159 necroptosis

genes, 354 necroptosis-related lncRNAs, and a risk model
classified by the 12 necroptosis-related lncRNAs to detect
differences between high and low-risk groups. According to
the results of the risk model, there is a discrepancy in the
distribution of low- and high-risk groups (Figure 3(c)).
/ese results indicate that the prognostic model can dis-
tinguish between the low- and high-risk groups. In addition,
the AUCs were 0.907, 0.936, and 0.902 for 1, 3, and 5 years
for the risk score (Figure 3(d)).
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GBM and LGG RNA sequencing data in TCGA and
Normal brain RNA sequencing data in GTEx

159 necroptosis genes 14142 lncRNAs

354 necroptosis related lncRNAs (|pearson R|>0.5 and P<0.001)

GBM and LGG Clinical 
information in TCGA

Univariate COX regression analysis to select 29
necroptosis-related lncRNAs significantly linked to OS

LASSO-penalized Cox analysis to select 12 necroptosis-
related lncRNAs significantly linked to OS

Construction of 12 necroptosis-related lncRNAs risk model

Kaplan-Meier
curve analysis Enrichment analysis Predicting drug

response 
Nomogram

and assessmentPCA analysis Correlation of
immune factors

ROC
curve

OS and DFS validation

Figure 1: Flowchart of this study.

Table 1: 159 necroptosis-related genes from KEGG and GSEA.

AIFM1 H2AB1 IFNAR1 SHARPIN
ALOX15 H2AB2 IFNAR2 SLC25A31
BAX H2AB3 IFNB1 SLC25A4
BCL2 H2AC1 IFNG SLC25A5
BID H2AC11 IFNGR1 SLC25A6
BIRC2 H2AC12 IFNGR2 SMPD1
BIRC3 H2AC13 IL1A SPATA2
CAMK2A H2AC14 IL1B SPATA2L
CAMK2B H2AC15 IL33 SQSTM1
CAMK2D H2AC16 IRF9 STAT1
CAMK2G H2AC17 JAK1 STAT2
CAPN1 H2AC18 JAK2 STAT3
CAPN2 H2AC19 JAK3 STAT4
CASP1 H2AC20 JMJD7-PLA2G4B STAT5A
CASP8 H2AC21 MACROH2A1 STAT5B
CFLAR H2AC4 MACROH2A2 STAT6
CHMP1A H2AC6 MAPK10 TICAM1
CHMP1B H2AC7 MAPK8 TICAM2
CHMP2A H2AC8 MAPK9 TLR3
CHMP2B H2AJ MLKL TLR4
CHMP3 H2AW NLRP3 TNF
CHMP4A H2AX PARP1 TNFAIP3
CHMP4B H2AZ1 PGAM5 TNFRSF10A
CHMP4C H2AZ2 PLA2G4A TNFRSF10B
CHMP5 HMGB1 PLA2G4B TNFRSF1A
CHMP6 HSP90AA1 PLA2G4C TNFSF10
CHMP7 HSP90AB1 PLA2G4D TRADD
CYBB IFNA1 PLA2G4E TRAF2
CYLD IFNA10 PLA2G4F TRAF5
DNM1L IFNA13 PPIA TRPM7
EIF2AK2 IFNA14 PPID TYK2
FADD IFNA16 PYCARD USP21
FAF1 IFNA17 PYGB VDAC1
FAS IFNA2 PYGL VDAC2
FASLG IFNA21 PYGM VDAC3
FTH1 IFNA4 RBCK1 VPS4A
FTL IFNA5 RIPK1 VPS4B
GLUD1 IFNA6 RIPK3 XIAP
GLUD2 IFNA7 RNF103-CHMP3 ZBP1
GLUL IFNA8 RNF31
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Figure 2: Continued.
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3.3. Assessment of the Necroptosis-Related lncRNAModel and
Clinical Features of Glioma Patients. To determine whether
the predictive signature is independent prognostic factors
for patients with glioma, Cox regression analysis was per-
formed on the entire set. Univariate Cox regression analysis
showed that age, grade, and risk score were notably asso-
ciated with the OS in glioma patients. /e HR of the risk
score and 95% confidence interval (CI) were 1.064 and
1.054–1.074

(p< 0.001, Figure 4(a)). Multivariate Cox regression
analysis (Figure 4(b)) also showed that age, IDH status,
grading, and risk score were significantly associated with the
OS in glioma patients. /e results of IDH status were

contrary to the age, grading, and risk score. /e HR of risk
score was 1.027, and the 95% CI was
1.011–1.043 (p< 0.001). To identify false positives, we also
performed ROC analysis for clinical features and the risk
score. /e AUC of the risk score was also higher than the
AUCs of other clinicopathological characteristics, showing
that the prognostic risk model was relatively reliable
(Figure 4(c)). Heatmaps have valuable data visualization
capabilities. We plotted a heatmap for age, gender, grade,
risk, survival station, and other common clinicopathological
features, describing the overall distribution of clinical in-
formation and lncRNA expression in 667 patients in TCGA
(Figure 4(d)). Besides, we also explored the differences
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Figure 2: Steps of constructing the prognostic lncRNAs. (a) /e differential analysis between glioma (including GBM and LGG patients)
and normal brains. (b)-(c) Enrichment analysis of identified differentially expressed mRNA. (d) /e lambda plot of necroptosis-related
LncRNA by LASSO regression. (e) /e LASSO coefficient profiles. (f ) Forrest of 12 established LncRNA after multivariate Cox regression
analysis.
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between high-risk and low-risk patients in different clini-
copathological subtypes (Figure S3).

3.4. Validation of the Prognostic Model for OS and DFS in
TCGA. To test the predictive competence of the prognostic
model, we used the uniform formula to calculate risk scores
for every patient in TCGA for overall survival and disease-
free survival. We randomly and equally divided all glioma

patients in the study into cohort 1 and cohort 2. Besides, we
downloaded DFS information from cbioportal (https://
www.cbioportal.org/) for a portion of glioma patients
(n� 131) in TCGA.We divided these patients into high- and
low-risk groups using the calculations of the previous model
and denoted all patients as cohort 3. Figures 5(a)–5(d) depict
the distribution of risk grades, the pattern of survival status
and survival time, and the expression of the necroptosis-
related lncRNAs in TCGA regarding overall survival and
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Figure 3: Survival analysis of high- and low-risk patients and calculation of AUC values for such scoring methods. (a) Kaplan-Meier curve
indicates the significant difference between the two subgroups. (b) Demonstration of survival status for patients with different scores.
(c) PCA analysis. (d) AUCs for this risk score method at 1, 3, and 5 years.
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disease-free survival. Survival analysis (Figure 5(e)) showed
that it is consistent with the results of the TCGA training set.
Significant differences display between low- and high-risk
groups. /e low-risk group has a longer OS than the high-
risk group. To test the sensitivity and specificity of the
predictive model, we used time-dependent receiver oper-
ating characteristics (ROC) along with the area under the
ROC curve (AUC) to determine the outcome. As shown in
Figure 5(f), the 1-, 3-, and 5-year AUCs of the TCGA cohorts
1 and 2 were 0.824, 0.943, and 0.956. Similarly, the AUCs for
DFS were 0.853, 0.645, and 0.794, respectively. /is suggests
that our prognostic model is approaching clinical reality in
terms of OS and DFS.

3.5. Construction and Calibration of the Nomogram. We
predicted the prognostic model’s 1-, 3- and 5-year OS
probability by constructing a nomogram containing risk

classes and clinical risk factors. Based on clinical charac-
teristics, including age, gender, MGMT methylation, IDH
status, WHO grade, subtype, and risk score, the nomogram
was established (Figure 6(a)). Additionally, the OS and
model prediction rates for years 1, 3, and 5 achieve satis-
factory agreement in the calibration curves for TCGA gli-
oma patients (Figure 6(b)).

3.6. Investigation of the Immune Factors Based on Prognostic
Models. We further analyzed the activity and enrichment of
multiple immune cells, immune pathways, and functions
based on the prognostic model. /ere are significant dif-
ferences in the expression levels of immune indicators be-
tween the low- and high-risk groups. Vioplot indicated more
immune cells in the immune microenvironment of the high-
risk group, such as CD8+ T cells, monocytes, and macro-
phages (Figure 7(a)). We next conducted a study of immune
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function between low-andhigh-risk groups. Immune pro-
cesses are more aggressive in the high-risk group, e.g., APC
coinhibition, APC costimulation, cytolytic activity, and
inflammation-promoting (Figure 7(b)). Most immune
checkpoints also displayed better activation in the high-risk
group. /is suggests using appropriate immune checkpoint
inhibitors for the high-risk group (Figure 6(c)). /en, the

high-risk subgroup in TCGA shows significantly higher
scores in immune, stromal, and ESTIMATE scores
(Figures 7(d)-7(e)). In addition, the CAF, Exclusion, and
MDSC scores were higher in the high-risk subgroup
(Figures 8(a)–8(c)), while dysfunction, IFNG, Merck18,
TAM M2, and TIDE scores were higher in the low-risk
group (Figures 8(d)–8(h)).
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3.7. Drug Filtering for Necroptosis-Related lncRNA Prognostic
Model and Environment Analysis. To investigate potential
drug targeting in the prognostic model for glioma patients’
treatment, we estimated treatment response by half-maximal
inhibitory concentration (IC50). We screened 138 drugs
with IC50s that differed significantly between the two
groups. /e IC50 of Imatinib in the high-risk was higher,
while the IC50 of Cisplatin, Docetaxel, Paclitaxel, and
Sunitinib was higher in the low-risk group (Figures 9(a)–
9(e)). In addition, the top5 KEGG enrichment results of the
high-risk and low-risk subgroups were shown in

Figures 8(f )–8(g), and GO enrichment results were shown in
Figures 9(h)–9(i).

4. Discussion

Various cell death modalities in glioma have become a hot
topic in the prognostic marker of glioma, where necroptosis,
a form of programmed cell death, has demonstrated its
robust prognostic ability in gastric, colon, and breast cancers
[17, 19]. Identifying a specific and reliable prognostic marker
is extremely important to improve the prognosis of glioma
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patients. While there are many other lncRNA predictive
signatures of survival outcomes in glioma patients,
necroptosis-related lncRNA predictive signatures have not
been reported. We screened prognostic necroptosis-related
lncRNA and utilized the prognostic necroptosis-related

model to explore comprehensive immune analysis and
drug sensitivity. Our study employs a biomarker approach to
screen a large number of genes for possible therapeutic
targets in glioma. /e aim is to provide a new perspective
with a limited number of gene markers to provide realistic
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prognostic assessments and treatment options for patients
with glioma. /e results of our chosen modeling method are
more stable and reproducible, and the predicted prognosis
constructed with this method proved to be relatively ac-
curate. In addition, the lncRNAs that were not previously
identified in gliomas were screened out, which provides new
directions for us to continue our in-depth studies in the
future.

Apoptosis resistance exists widely in tumor tissue and is
the main obstacle to the success of tumor therapy. Bypassing
apoptosis and inducing cancer cell death is an excellent
therapeutic strategy. Necroptosis is a novel programmed
death that is not regulated by Caspase and is mainly me-
diated by Receptor-Interacting Protein 1 (RIP1), RIP3, and
Mixed Lineage Kinase Domain-Like (MLKL) [20]. RIPK3
causes plasma membrane disruption and cell lysis leading to
cell necrosis through phosphorylation of MLKL. Cell-type
and environment-based activation of RIPK1 may lead to
apoptosis or inflammation [21]. In the mature nervous
system, RIPK1 kinase-dependent necroptosis is the primary
enforcer of cell death in response to extracellular in-
flammatory signals.

In this study, we obtained 354 differentially expressed
necroptosis-related lncRNAs. 12 necroptosis-related
lncRNAs highly associated with OS in glioma patients
were identified by lasso and univariate and multifactorial
Cox regression, and risk prognostic models were

constructed by risk score (i.e., AC025857.2, AC092718.4,
AL513534.1, AC083864.2, ZNF236-DT, AC099850.3,
AL590094.1, AC010226.1, POLR2J4, AC023024.1,
SLC25A21-AS1, and AC109439.2). In these lncRNAs,
AC092718.4 has been reported to be highly correlated with
ovarian cancer as a predictive signature [22]. AC099850.3
has been found to promote proliferation and invasion in
hepatocellular carcinoma via the PRR11/PI3K/AKTpathway
and is also a major participant in prognostic models for
squamous cell carcinoma of the tongue and non-small-cell
lung cancer [23–25]. High expression of AL590094.1 has
been found to be a risk factor for patients with clear cell renal
cell carcinoma [26]. AC010226.1 as an m6-related lncRNA
could be a new therapeutic target for squamous cell carci-
noma of the head and neck [27]. POLR2J4 functioned as an
oncogene in colorectal through the microRNA-203a-3p.1
and CREB1 axis and is highly expressed in hepatocellular
carcinomas [28, 29]. SLC25A21-AS1 as ferroptosis-related
lncRNA mediated prognosis associated with immune
landscapes and radiotherapy responses in glioma, which
may shed some light on our study [30]. AC109439.2 had the
potential to be used as an adjunct biomarker for TNM
staging and more accurate segmentation of esophageal
squamous cell carcinoma patients [31]. Five remaining
lncRNAs are reported for the first time (i. e., AC025857.2,
AL513534.1, AC083864.2, ZNF236-DT, and AC023024.1).
/ere have been no previous studies on their function.
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ZNF236-DT is a divergent transcript of its neighboring
protein-coding gene ZNF236, located on chromosome 18.
AC023024.1 is involved in the degradation process of mis-
folded proteins in the endoplasmic reticulum and has a role in
inflammation control [32]. All 12 lncRNAs can be used as
diagnostic and prognostic biomarkers for glioma and function
as targets for immunotherapy. Meanwhile, we need further
basic experiments to verify their functionality. Our method for
screening lncRNAs has been validated, and the model vali-
dation approach is common practice with reliable results. /e
results showed that the low-risk group had a longerOS than the
high-risk group and were consistent with clinical reality, in-
dicating that our prognostic model was accurate.

GSEA-GO shows high expression of cranial nerve
morphogenesis, deoxyribose phosphate metabolism, ana-
phylatoxin one rich granules, anaphylatoxin one rich
granules lumen, and vesicle lumen, and low expression of
retrograde transport endosome to golgi, ubiquitin ligase
substrate adaptor activity, torc1 signaling, peptidyl lysine
demethylation, and cytoplasmic microtubule organization.
GSEA-KEGG indicates high expression of a signaling
pathway, that is, systemic lupus erythematosus, n glycan
biosynthesis, amino sugar, and nucleotide sugar metabolism,
cell cycle and glutathione metabolism, and low expression of
a signaling pathway, that is, wnt, inositol phosphate meta-
bolism, butanoate metabolism, long-term depression, and
taste transduction. /ese signaling pathways and biological
processes may inspire future exploration of glioma forma-
tion and treatment mechanisms.

Immunotherapy is currently used in many tumors but is
still being explored for gliomas as immune surveillance in
the CNS is more complex [33]. At the same time, the CNS

has a unique immune microenvironment and has long been
considered an immune-privileged site, which has caused
some disturbance in the immunotherapy of gliomas. In
addition, a study has shown that standard therapies for
glioma such as surgery, radiotherapy, temozolomide che-
motherapy, and glucocorticoids may all be immunosup-
pressive, further highlighting the desirability of developing
treatment options that target the immune response [34].
Vaccine therapy, oncolytic virus therapy, immune check-
point inhibitors, and chimeric antigen receptor (CAR) t-cell
therapy are the immunotherapeutic modalities currently
being investigated in glioma. Current vaccine approaches
that may take advantage of the adaptive immune system
include rindopepimut, a peptide vaccine against epidermal
growth factor receptor (EGFR) variant III [35]. Dendritic
cell- (DC-) based vaccines that use autologous tumor tissue
to generate tumor antigens have also been developed, such as
DCVax-L [36]. A recombinant lysozyme poliovirus
PVSRIPO that activates antitumor immune response has
improved OS in glioma patients in a trial [37]. Tests pri-
marily targeting PD-1/PD-L1 or CTLA-4 immune check-
point inhibitors have been conducted in glioma [38]. Recent
studies show that GD2-CAR-T cells are effective in treating
diffuse midline gliomas with h3k27m mutations [39]. /e
efficacy of these immunotherapeutic strategies for glioma
has not been fully demonstrated, and their authenticity and
efficacy are open to question.

4.1.Limitation. We did not perform experimental validation
of the prognostic model. /e inevitable batch effect also
confounded the model to some extent. For a large
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Figure 9: Differential analysis of drug sensitivity and GSEA analysis. (a)–(e) ICI50 of Imatinib, Cisplatin, Docetaxel, Paclitaxel, and
Sunitinib between high-risk and low-risk groups.
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population of glioma patients, a sample of nearly two
thousand is not fully representative of the overall population.

5. Conclusion

Predictive models of 12 necroptosis-related lncRNAs can
facilitate the assessment of the prognosis and molecular
characteristics of glioma patients and improve treatment
modalities, which can be further applied in the clinic.
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