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Background. Gastric cancer (GC) is one of the gastrointestinal tumors with the highest mortality rate. The number of GC patients
is still high. As a way of iron-dependent programmed cell death, ferroptosis activates lipid peroxidation and accumulates large
reactive oxygen species. The role of ferroptosis in GC prognosis was underrepresented. The objective was to investigate the role
of ferroptosis-related genes (FRGs) in the prognosis and development of GC. Methods. Datasets of GC patients were obtained
from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database that include clinical information
and RNA seq data. Through nonnegative matrix factorization (NMF) clustering, we identified and unsupervised cluster
analysis of the expression matrix of FRGs. And we constructed the co-expression network between genes and clinical
characteristics by consensus weighted gene co-expression network analysis (WGCNA). The prognostic model was constructed
by univariate and multivariate regression analysis. The potential mechanisms of development and prognosis in GC were
explored by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene ontology (GO), tumor immune
microenvironment (TIME), and tumor mutation burden (TMB). Results. Two molecular subclusters with different expression
patterns of FRGs were identified, which have significantly different survival states. Ferroptosis subcluster-related modular genes
were identified by WGCNA. Based on 8 ferroptosis subcluster-related modular genes (collagen triple helix repeat containing 1
(CTHRC1), podoplanin (PDPN), procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2), glutamine-fructose-6-phosphate
transaminase 2 (GFPT2), ATP-binding cassette subfamily A member 1 (ABCA1), G protein-coupled receptor 176 (GPR176),
serpin family E member 1 (SERPINE1), dual specificity phosphatase 1 (DUSP1)) and clinicopathological features, a nomogram
was constructed and validated for their predictive efficiency on GC prognosis. Through receiver operating characteristic (ROC)
analysis, the results showed that the area under the curve (AUC) of 1-, 3-, and 5-year survival were 0.721, 0.747, and 0.803,
respectively, indicating that the risk-scoring model we constructed had good prognosis efficacy in GC. The degree of
immune infiltration in high-risk group was largely higher than low-risk group. It indicated that the immune cells have a
good response in high-risk group of GC. The TMB of high-risk group was higher, which could generate more mutations and
was more conducive to the body’s resistance to the development of cancer. Conclusion. The risk-scoring model based on 8
ferroptosis subcluster-related modular genes has shown outstanding advantages in predicting patient prognosis. The
interaction of ferroptosis in GC development may provide new insights into exploring molecular mechanisms and targeted
therapies for GC patients.
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1. Introduction

GC is one of the gastrointestinal tumors with the highest
mortality rate [1]. The number of GC patients is still high.
By 2022, about 26,380, new cases are expected with a mor-
tality rate of 42% [2]. Although the current predominant
treatment for GC takes the standard surgical strategy com-
bined limited lymph node dissection strategy [3], there are
still patients with heterogeneous prognosis, such as distant
metastases, significant drug resistance, and toxic effects [4].
Meanwhile, early GC commonly lacked dysphagia, weight
loss, and typical gastrointestinal symptoms. So most peo-
ple are diagnosed with advanced GC. The survival for
advanced GC is always low [5]. Therefore, identifying
high-tech diagnostic and prognostic biomarkers is crucial
for the management of GC. Relevant advances in the field
of tumor mutational burden and gene mutation might be
immediately applicable to guide immunotherapeutic effect
of GC [6, 7].

Programmed cell death (PCD) includes cell apoptosis,
necroptosis, autophagy, pyroptosis, cuproptosis, and ferrop-
tosis. They have different morphologies and biochemical
characteristics. For example, apoptosis is usually associated
with cell contraction, while necrotizing apoptosis involves
cell swelling and leakage of cell contents [8]. Necroptosis is
a form of regulated cell death that critically depends on
receptor-interacting serine-threonine kinase 3 (RIPK3) and
mixed lineage kinase domain-like (MLKL) and generally
manifests with morphological features of necrosis [9].
Autophagy is a process by which cellular material is
degraded by lysosomes or vacuoles and recycled [10].
Cuproptosis is a new type of cell death and is characterized
by the dependence on mitochondrial respiration and protein
lipoylation [11]. As a way of iron-dependent programmed
cell death, ferroptosis activates lipid peroxidation and accu-
mulates large reactive oxygen species [12]. The main mech-
anism of ferroptosis is to catalyze the production of lipid
peroxidation of highly expressed unsaturated fatty acids on
cell membranes under the action of divalent ferroxygenase
or ester oxygenase, thereby inducing cell death. In addition,
it also showed a decrease of GPX4, the core enzyme regulat-
ing the antioxidant system (glutathione system) [13]. The
main characteristics of ferroptosis were as follows: (1) In
terms of cell morphology, ferroptosis could lead to smaller
mitochondria, increase membrane density, and reduce crest.
There was no obvious morphological change in the nucleus.
(2) In terms of cell components, iron death showed
increased lipid peroxidation and ROS. This process is pres-
ent in tumor development and therapeutic response, includ-
ing genetic mutations, stress response pathways, and
epithelial-to-mesenchymal transition [14]. Ferroptosis was
closely associated with antitumor, drug resistance and
metastasis. Ni et al. have illustrated miR-375/SLC7A11 reg-
ulatory axes triggering gastric cancer stem cell iron sagging,
attenuated metastasis, and drug resistance [15]. Other stud-
ies have shown that poor prognosis in patients with GC was
largely associated with cancer cell antiferroptosis, and its
underlying mechanisms may involve alterations in cancer
stem cells and regulation of cell cycle-related proteins [16].

In addition, inducing ferroptosis was one of the main mech-
anisms mediating antitumor activity. Liu et al. found that
Jiyuan oridonin A (JDA) was a natural compound isolated
from Jiyuan Rabdosia rubescens with antitumor activity,
which could inhibit the growth of GC cells by inducing fer-
roptosis [17]. However, the role of ferroptosis in GC progno-
sis was underrepresented, especially with the presence of
mutant types of GC. Therefore, in this study, a novel GC
prognosis model was constructed through ferroptosis
subgroup-related module genes.

In this study, we aimed to identify FRG co-expression
modules in GC through WGCNA, develop a risk-scoring
model to quantify the level of ferroptosis in individual
patients, and explore its prognostic role in GC patients. In
addition, functional studies were conducted on tumor
immune microenvironment and mutation burden to initially
elucidate the mechanisms that affect prognosis, providing a
basis for clinical diagnosis, personalized immune targeted
therapy, and antitumor drug resistance.

2. Methods

2.1. Sources of Data. The mRNA sequencing and somatic
mutation data of GC patients were obtained from the Cancer
Genome Atlas (TCGA) (https://tcga-data.nci.nih.gov/tcga/),
which contains 375 GC samples. And these samples were
used as a training set for this study, while the validation set
was selected from the GSE84437 dataset in the Gene Expres-
sion Omnibus (GEO) database (https://www.ncbi.nlm.nih
.gov/geo/). The dataset contains gene expression data from
433 patients with GC. 383 FRGs were derived from ferropto-
sis database (http://www.zhounan.org/ferrdb/) [18–20]. The
“limma” package was used for integration and difference
analysis between datasets [21].

2.2. Identification of Subclusters of FRGs in GC. The NMF
algorithm has a great advantage in the distance [22]. The
“NMF” package in R was used to identify and unsuper-
vised cluster analysis of the expression matrix of FRGs
obtained from the TCGA dataset. Each parameter was
selected in the following way, using the “brunet” package
in R, with the number of iterations (nrun) set to 10 and
ranks set from 2 to 10. Then the new subcluster classifica-
tion was obtained.

2.3. Identification of Ferroptosis Subcluster-Related Modular
Genes in GC. The differential expression genes with different
ferroptosis genotyping between cluster 1 (C1) and cluster 2
(C2) group were identified with the “limma” R package
according to the cut-off value FDR<0.05, log2|fold change
(FC)|≥2. The co-expression network between genes and
clinical characteristics was constructed using the “WGCNA”
R package [23], and the samples with an expression less than
0.5 were removed. Subsequently, we computed the topolog-
ical matrix of the scale-free distribution. We used the “Pick-
SoftThreshold” function to select the optimal soft threshold
β and then calculated the Pearson correlation coefficient
for each gene. We construct a neighbor-joining matrix using
weighted correlation coefficients. Then, a topological overlap
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Figure 1: Continued.
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matrix was constructed based on the neighbor-joining
matrix to construct a clustering tree. The number of genes
in the module greater than 150 was retained, and the mod-
ules with similarities greater than 0.25 were merged. Finally,
the significant models were identified, and the genes of the
significant modules were extracted.

The “VennDiagram” package was applied to calculate
the intersection genes of difference genes between C1 and
C2 and the FRGs of the significant modules. That is the fer-
roptosis subcluster-related modular genes.

2.4. Construction and Validation of a Prognostic Model. The
TCGA dataset was used as the training set, and the genes
associated with patients’ prognosis were screened out
through COX regression analysis. Using the least absolute
shrinkage and selection operator (LASSO) regression
method, these genes were analyzed by the “glmnet” soft-
ware package in R. And the λ min with the lowest error
was chosen after 10-fold cross-validation [24] to construct
a stable prognostic model. Followed by multivariable cox
regression analysis to construct the best risk-scoring model
and calculate regression coefficient for each gene regression
coefficient. The risk score in the model was calculated by
the following formula: riskScore =∑n

x=1ðcoef mRNA × Expr
mRNAÞ. The risk score for each sample was calculated

using this formula, and the low- and high-risk groups were
divided by the median [25]. Through “survival” and “time-
ROC” package in R, the Kaplan-Meir (K-M) survival curve
and ROC curve were, respectively, plotted to determine the
efficacy of the model. In addition, for more intuitive pre-
diction, we incorporated clinical characteristics (including
age, gender, tumor location, and metastasis) into the
model, constructed a nomogram using the “Regplot” pack-
age in R, and validated the stability with calibration and
ROC curves.

To demonstrate accuracy of the model, we used the
GSE84437 dataset for external validation of the risk model
construction, including survival curves and ROC curves.

2.5. Functional Analysis of Prognostic FRGs. Functional
enrichment analysis of GO and KEGG pathways were per-
formed to describe functions of prognostic FRGs. Through
the “clusterProfiler” package in R, functional enrichment
analysis of prognostic FRGs was performed. Items with
adjusted P < 0:05 were selected from the enrichment results
for display.

2.6. Analysis between Immune Infiltration and Risk Score of
GC. Through the single-sample GSEA (ssGSEA) algorithm,
the “GSVA” package of R was applied to calculate the
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Figure 1: Identification of ferroptosis-associated subclusters. (a) Through NMF consensus clustering using FRGs, the optimal k value was
determined to be 2. Patients were divided into C1 and C2. (b) K-M survival curves of OS in C1 and C2. (c) K-M survival curves of PFS in C1
and C2. C1: cluster 1; C2: cluster 2; OS: overall survival; PFS: progression-free survival; GC: gastric cancer; NMF: nonnegative matrix
factorization; K-M: Kaplan-Meir; FRG: ferroptosis-related genes.
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relative content of different kinds of immune cells in the
TCGA cohorts and explore the differences in immune infil-
tration. And we applied the “estimate” package to perform
ESTIMATE algorithm to analyze the data of TCGA cohorts
and evaluate the TIME from three aspects: tumor purity,
immunity score, and matrix score.

2.7. Tumor Mutational Burden (TMB) Analysis of GC. Based
on the corresponding mutation data, we calculated their
nonsynonymous mutations to determine the TMB of GC
patients with different ferroptosis subclusters. We extracted
GC patient driver gene data from the R “maftool” package
and compared the somatic changes in driver genes of differ-
ent ferroptosis subtypes. Finally, the overall mutation level
was represented by the top 20 driver genes by mutation
frequency.

2.8. Statistical Analysis. All data were statistically analyzed
using R (Version 3.6.2). K-M method, Log-rank test, and
Cox regression were used to analyze the prognosis of each
characteristic value, the survival curve, and the independent
prognostic factors, respectively. ROC curve analysis was

used to predict overall survival with R package “pROC”.
Continuous variables (e.g., age, gender, stage, and tumor
grade) were transformed into dichotomous variables. Stu-
dent’s t-test and chi-square test were adopted to compare
differences in pathology and molecular characteristics
between different patient groups. And Welch’s t test was
used when appropriate. When P < 0:05, analysis was consid-
ered statistically significant.

3. Results

3.1. Construction of Subclusters of FRGs in GC. Through
NMF clustering analysis of FRGs, 375 GC samples from
TCGA were divided into two subclusters: C1 and C2
(Figure 1(a)). Survival analysis showed that there were sig-
nificant differences between the C1 and C2 in the overall
survival (OS) and progression-free survival (PFS). The sur-
vival rate of the C1 is superior to the C2, and K-M curve is
shown in Figures 1(b) and 1(c).

3.2. Difference Analysis of Subclusters in GC and
Construction of Ferroptosis-Related Modules by WGCNA.
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Figure 2: Identification of differential molecular subcluster genes associated with ferroptosis. (a) Volcano plots of mRNA-seq differential
analysis for C1 and C2. (b) Based on the hierarchical clustering analysis of the TCGA dataset, genes with similar characteristics are
assigned to modules of the same color. (c) Heat map of correlations between eigenvalues and individual modules. C1: cluster 1; C2:
cluster 2; TCGA: the Cancer Genome Atlas.
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Difference analysis of C1 and C2 was performed through the
“limma” package, and a total of 1846 differential genes met
the requirements, and the differential genes were displayed
in a volcanic map (Figure 2(a)). During the analysis of
WGCNA, we calculated the soft threshold β = 5 using R,
and then obtained a hierarchical cluster tree by dynamic cut-
ting method (Figure 2(b)), and combined similar modules to
obtain a total of 15 modules. From the Pearson correlation
analysis matrix of the module features, the green yellow
and yellow modules were related to the ferroptosis-related
phenotype in GC. The green yellow module showed the
highest correlation (R = −0:5, P < 0:001) (Figure 2(c)). To
construct a risk-scoring model associated with ferroptosis,
555 genes in the green yellow module were taken to intersect
with 1846 DEGs for C1 and C2, and finally, 80 key genes
were obtained.

3.3. Construction and Validation of Risk-Scoring Model.
Through univariate Cox regression analysis, with P < 0:01
as a filter, 29 genes associated with GC prognosis were
obtained in the training set (Figure 3(a)). To prevent the
model from overfitting, we took Lasso regression analysis
to test these 29 genes and determined that there was no
over-fitting of the model for these 29 genes (Figures 3(b)
and 3(c)). Finally, we identified 8 prognostic-related genes
using multivariate Cox regression analysis (Figure 3(d))

and plotted K-M curves for 8 genes (Figure 4). Based on
these 8 genes, we constructed a risk-scoring model for GC.
Risk Score = 0:320∗CTHRC1 + ð−0:364Þ∗PDPN + 0:410∗
PLOD2 + ð−0:575Þ∗GFPT2 + 0:418∗ABCA1 + 0:570∗GPR
176 + 0:237∗SERPINE1 + 0:192∗DUSP1. According to the
median risk score value, the GC samples were divided into
high- and low-risk group. And we have drawn the K-M
curve through “survival” package of R (Figure 5(a)). It was
demonstrated that there was a significant survival difference
between the low- and high-risk groups. In addition, the ROC
analysis showed that the AUC of 1-, 3-, and 5-year survival
were 0.721, 0.747, and 0.803, respectively. (Figure 5(b)) It
meant that the model we constructed had great diagnostic
efficacy in GC.

To ensure the accuracy of the risk-scoring model, we
verified the model on an external validation set (GEO data-
base) and found that the survival of low- and high-risk
groups of the GEO dataset was significantly different in the
K-M survival curve (Figure 5(c)). The ROC analysis showed
that the AUC of 1, 3, and 5 years were 0.605, 0.615, and
0.594, respectively (Figure 5(d)). It demonstrated that the
prognostic model of FRGs had good accuracy in the valida-
tion set.

3.4. Nomogram Construction through Risk Score and
Clinicopathological Features. In the risk-scoring model
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Figure 3: Screening of prognostic FRGs. (a) Univariate Cox regression analysis screened out 29 prognostic FRGs. (b) Trajectory changes of
8 genes. (c) Confidence interval for each λ value. (d) Multivariate Cox regression analysis screened out 8 prognostic FRGs. C1: cluster 1; C2:
cluster 2; FRGs: ferroptosis-related genes.
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Figure 4: Continued.
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constructed based on 8 ferroptosis subcluster-related modu-
lar genes, we incorporated clinicopathological features in
GC. Then, the analysis of eigenvalues was followed by Cox
regression analysis. Prognosis of GC was correlated with
age and risk score. And both of them were independent
prognostic factors (Figure 6). At the same time, the analysis
of K-M survival curves showed significant differences in sur-
vival at different age, gender, tumor grade, and stage
(Figure 7). Based on clinicopathological features and risk
score, we established a nomogram that could predict the
prognosis of GC (Figure 8(a)). The 1-, 3-, and 5-year survival
of GC could be predicted by scoring each characteristic
value. Besides, we used ROC curves to determine their accu-
racy (Figure 8(b)). Through results of decision curve analysis
(DCA), we believe that the nomogram has high clinical
application value (Figure 8(c)). In conclusion, the model
could accurately predict the survival of GC patients.

3.5. Functional Enrichment Analysis.We preformed GO and
KEGG enrichment analysis to annotate the biological char-
acteristics of 8 genes by “clusterProfiler” package in R
(Figures 9(a) and 9(b)). GO enrichment analysis indicated
that these genes were mainly enriched in extracellular
matrix, organization extracellular structure, organization
external encapsulating, wound healing, and other biological
processes (BP). Besides, they were enriched in collagen-
containing extracellular matrix, endoplasmic reticulum
lumen, collagen trimer, and other cellular constituents
(CC). Molecular functions (MF) were enriched in growth
factor binding, extracellular matrix structural constituent,
and cytokine binding extracellular matrix. KEGG analysis
indicated that they were related to PI3K−Akt, TGF, JAK
−STAT, and other metabolic signaling pathway.

3.6. Analysis of Immune Cell Infiltration. Through ssGSEA
algorithm, we obtained 16 kinds of immune cells and 13 kinds
of immune-related mechanisms in GC. It demonstrated that
the degree of immune infiltration in low-risk group was
lower than that in high-risk group (Figures 10(a) and

10(b)). Macrophages, mast cells, neutrophils, Treg, and T
helper cells showed significantly different distribution,
and T cells were the most abundant immune cells in GC
tissue infiltration. The result suggested that the immune
cells have a good response in high-risk group of GC.
According to the ESTIMATE algorithm of “estimate” R
package, the heat map showed that compared with the
low-risk group, the high-risk group had lower tumor
purity and higher stromal score, immune score, and esti-
mate score. The tumor purity of TME decreased, and the
infiltration of stromal and immune cells increased signifi-
cantly (P < 0:05) (Figure 10(c)).

3.7. Analysis of TMB for GC. The TMB was a way for
somatic cells to increase the types of antigens by mutation
and thus resist cancer [26]. The TMB was calculated and
compared between two groups by “maftools” package
(Figures 11(a) and 11(b)). Higher TMB could generate more
mutations and was more conducive to the body’s resistance
to the development of cancer. In this study, the waterfall dia-
grams showed that TTN and TP53 genes in the two groups
had the highest mutation rates. TTN gene was 44% of muta-
tions in both groups, while TP53 was 43% of the mutations
in high-risk group and 33% of the mutations in low-risk
group.

4. Discussion

GC is a common tumor worldwide, with a large number of
cases, especially in East Asian countries. The prognosis of
GC varies widely between countries. Early detection and
intervention could improve the prognosis [1]. In this study,
we developed a unique prognostic model for FRG in GC
using TCGA and GSE84437 cohort data. Then, we con-
structed a quantitative scoring system and further evaluated
the effect of FRG on immune infiltration. Ferroptosis, a
novel form of cell death, is characterized by unique mor-
phology, gene expression, and molecular pathways. Previous
studies identified that GSH, GPX4 activity inhibition, and
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Figure 4: K-M survival curves of 8 genes with independent prognostic potency. K-M: Kaplan-Meir.
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iron-dependent ROS burst were the critical factors inducing
ferroptosis [27]. FRGs are associated with TIME and TMB,
which is helpful to predict the prognosis of GC. Mutations
in DNA damage-responsive genes are the main cause of ele-
vated TMB and can be used to predict immune checkpoint
inhibitor responses. Many mutations in the exon region of
somatic cells lead to an increase in the production of neoan-
tigens recognized by T cells, thereby enhancing the antitu-

mor immune response. As a result, patients with high
TMB may develop a stronger immune response and be more
sensitive to immune checkpoint inhibitor therapy [28]. For
example, activation of the Keap1/Nrf2/HO-1 pathway and
ferritin phage-mediated ferroptosis contributed to EMT
inhibition of GC cell proliferations and altered the cellular
redox environment [29]. Besides, ferroptosis-related
lncRNA regulated the invasiveness of GC. lncRNA-BDNF-
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Figure 5: Identification and validation of FRGs signatures. (a) K-M survival curves of low- and high-risk groups in TCGA total cohort. (b)
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AS/WDR5/FBXW7 axis regulated VDAC3 ubiquitination
and then mediates ferroptosis in GC peritoneal metastasis
[30]. Ferroptosis can also inhibit drug resistance in GC. Fer-
roptosis induced by ATF3 overexpression can reduce cis-
platin resistance in GC [31]. Other studies have shown that
change in lipid metabolism around cancer cells under stress
determines the ferroptosis sensitivity of GC [32]. Interest-
ingly, TMB was significant in high-risk group. Therefore,
we can reasonably speculate that FRGs were key genes for
the prognosis of GC.

In this study, through TCGA dataset, we identified two
FRGs subclusters (C1 and C2) through NMF cluster analy-
sis. There were significant differences in the survival status
of the two clusters. WGCNA was applied to identify ferrop-
tosis subcluster-related modular genes. Through Cox regres-
sion analysis, we selected the prognostic genes related to
ferroptosis and established the prognostic risk-scoring
model. We also used GSE84437 dataset to externally verify
the prognostic risk-scoring model. At the same time, we

integrated clinicopathological features and risk-scoring
model to construct a nomogram for clinical application.
The function of TIME and TMB was studied to preliminarily
clarify the mechanism of its influence on prognosis, so as to
provide basis for clinical diagnosis, individualized immune-
targeted therapy, and antitumor drug resistance.

Based on the above intersection genes, a novel prognos-
tic model integrating 8 FRGs (CTHRC1, PDPN, PLOD2,
GFPT2, ABCA1, GPR176, SERPINE1, and DUSP1) was
firstly constructed. For example, CTHRC1 was used as a
marker of colorectal cancer (CRC) intratumoral metastasis,
and Zhang et al. confirmed that CTHRC1 promoted liver
metastasis of CRC and earlier predicted targets by TGF-β
remodeling infiltrating macrophage signaling [33]. PDPN
(+) CAF, the representative of immunosuppressive microen-
vironment of lung adenocarcinoma, can induce macrophage
M2 polarization and inhibit immune-related lymphocytes,
serving as a bridge between fiber microenvironment and
immunosuppression [34]. In patients with large tumor or

Age

Gender

Grade

Stage

T

M

N

Risk score

0.015

0.185

0.102

0.002

0.066

0.120

0.009

<0.001

p value

1.026 (1.005-1.048)

1.363 (0.863-2.152)

1.441 (0.930-2.234)

1.492 (1.163-1.914)

1.283 (0.983-1.673)

1.730 (0.866-3.454)

1.288 (1.066-1.556)

1.847 (1.534-2.223)

Hazard ratio

Hazard ratio
0.0 0.5 1.0 1.5 2.0 2.5 3.0

(a)

Age

Gender

Grade

Stage

T

M

N

Risk score

0.002

0.185

0.190

0.505

0.588

0.089

0.436

<0.001

p value

1.038 (1.014-1.063)

1.376 (0.858-2.205)

1.369 (0.856-2.190)

1.175 (0.731-1.888)

1.115 (0.752-1.654)

2.175 (0.888-5.329)

1.114 (0.849-1.462)

1.781 (1.462-2.170)

Hazard ratio

Hazard ratio
0 1 2 3 4 5

(b)

Figure 6: (a) Univariate and (b) multivariate Cox regression analysis of clinicopathological features.
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Figure 7: Survival analysis of clinicopathological features. (a–h) K-M survival curves of low- and high-risk groups at age (≤65, >65), gender
(female, male), stage (stage I-II, stage III-IV), and grade (G2, G3).
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solid tumor metastases, PDPN expression induced poor
prognosis in cancer-associated fibrous tissue [35]. And
PLOD family genes can affect the progression and prognosis
of human digestive tract tumors. As a member of them,
PLOD2 was not only related to the histological grading of
pancreatic cancer, but also overexpressed in TP53 and KRAS
types [36]. GFPT2 in the study was also closely related to the
prognosis, microenvironment, immunity, and drug sensi-
tivity of other digestive system tumors, and the specific
internal mechanism remained to be further studied [37].
Besides, GFPT2 expression was inhibited by the oxidative
stress regulator GSK3-β. GFPT2 was a marker of poor
prognosis in the D492 EMT model of breast cancer, which
controlled growth and invasion [38]. Compared with other
FRGs, ABCA1 may be a tumor suppressor that was meth-
ylated after dysregulation of transforming growth factor-β
signaling in ovarian cancer, presenting a poor prognosis.
In contrast, SERPINE1-upregulated GC patients showed
poor OS and PFS. It was considered that it may regulate
VEFF and JAK-STAT3 inflammatory signaling pathways
to affect GC cell proliferation and migration [39]. DUSP1
was also observed to be an oncogene associated with drug
resistance during cancer intervention. At present, the role

of GPR176 in GC prognosis is unclear. Upregulation of
GPR176 stimulates the function of Sirtuin6. Sirtuin6 over-
expression inhibited breast cancer stem cell biogenesis in
cells with a PI3K mutation and murine PyMT mammary
tumor progression in vivo [40]. And there are few reports
on the use of ferroptosis to correlate TIME and TMB in
GC prognostic models.

FRGs plays a crucial role in TME, as shown in
Figure 10(a). By comparing the immune infiltration
between risk score groups, we found that T cells were
the most extensively infiltrated immune cells in GC sam-
ples, and macrophages, mast, and T helper cells showed
significantly different distribution [41, 42]. Some studies
have reported the immune potential of tertiary lymphocyte
structures around primary GC, in which DC was a set that
affected the reactivity, cytotoxicity, and monitoring escape
status of anticancer cells [43]. Clinical validation of GC
suggested that TAM M1 macrophages were associated
with antitumor activity. M2 promoted pro-angiogenic
and immunosuppressive signals in tumors, such as diffuse
GC subtypes [44]. In the high-risk group, T cell infiltra-
tion levels were elevated. It meant that high-risk group
with FRGs had a better chance of taking advantage of
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Figure 9: GO and KEGG analysis of prognostic FRGs. (a) Histogram of GO enrichment analysis for prognostic FRGs. (b) Histogram of
KEGG enrichment analysis for prognostic FRGs. GO: gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FRGs:
ferroptosis-related genes.
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cellular immune-personalized therapy regiments. We also
enriched biological signaling pathways, for instance, PI3K
−Akt, TGF-β, and JAK-STAT. Recent studies have indi-
cated that MAPK pathway participated in resistance to
GC ferroptosis. And inhibition of MAPK signaling can
protect GC cells from ferroptosis [45]. In addition, acti-
vated TGF-β was identified to promote ferroptosis [46].
In our study, the tumor purity of TME decreased, and
the infiltration of stromal and immune cells increased sig-
nificantly. Low purity of GC in high-risk group was asso-
ciated with poor prognosis. Therefore, these results

detailed the conditions and ways in which FRGs regulate
GC development, which may be conducive to further
study of immune escape surveillance. In addition,
ferroptosis-related reactive oxygen species and iron uptake
could lead to somatic nonsynonymous mutations and
microsatellite instability, resulting in increasing immuno-
genicity and immune infiltrates [47, 48], which was consis-
tent with our findings.

There are still a few limitations. First, all data sources
came from public databases. There is a lack of real world
samples and prospective clinical data validation. Secondly,
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Figure 10: Analysis of immune infiltration. (a) Analyze the immune differences between low- and high-risk groups from 16 immune cells.
(b) Analyze the immune differences between low- and high-risk groups from 13 immune-related functions. (c) Heat map of stromal score,
immune score, and estimate score in low- and high-risk groups.

17Journal of Oncology



0

1984

TM
B

CSMD1
PIK3CA
SPTA1

ZFHX4
RYR2

OBSCN
HMCN1

FAT3
KMT2D
DNAH5

PCLO
CSMD3

FAT4
FLG

SYNE1
LRP1B

ARID1A
MUC16

TP53
TTN

11%
12%
14%
9%
14%
10%
12%
14%
14%
12%
12%
23%
9%
19%
21%
17%
19%
26%
43%
44%

0 57
No. of samples

Risk

Missense_Mutation
Nonsense_Mutation
Frame_Shift_Del

In_Frame_Del
Frame_Shift_Ins
Multi_Hit

Risk

High

Low

Altered in 115 (89.15%) of 129 samples.

(a)

Risk

High

Low

0

5079

TM
B

CSMD1
PIK3CA
SPTA1

ZFHX4
RYR2

OBSCN
HMCN1

FAT3
KMT2D
DNAH5

PCLO
CSMD3

FAT4
FLG

SYNE1
LRP1B

ARID1A
MUC16

TP53
TTN

14%
16%
14%
16%
13%
19%
15%
13%
17%
18%
20%
16%
21%
20%
23%
25%
26%
31%
33%
44%

0 56
No. of samples

Risk

Frame_Shift_Del
Frame_Shift_Ins
Missense_Mutation

Nonsense_Mutation
In_Frame_Del
Multi_Hit

Altered in 109 (86.51%) of 126 samples.

(b)

Figure 11: The waterfall diagram demonstrates the top 20 driver genes with the highest mutation frequency in high-risk group (a) and low-
risk group (b).
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ferroptosis is not a unique mechanism in GC, and whether
ferroptosis is involved in the mechanism of TIME is still
uncertain. Besides, FRGs obtained from previous studies
may be incomplete, which requires further improvement of
the FRGs database from future studies. Finally, whether
prognosis FRGs directly regulates the ferroptosis process in
GC requires further experimental verification.

5. Conclusion

In conclusion, the risk-scoring model based on 8 ferroptosis
subcluster-related modular genes has shown outstanding
advantages in predicting patient prognosis. The interaction
of ferroptosis in GC development may provide new insights
into exploring molecular mechanisms and targeted therapies
for GC patients.
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