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The prognosis of over 90% of infant acute lymphoblastic leukemia (ALL) remains poor because of harboring the mixed-lineage
leukemia gene (MLL) fusion. To give insight into the critical coexpressed genes related to the MLL-rearrangement (MLL-R)
gene in childhood acute lymphoblastic leukemia, we integrated different bioinformatic methods. First, the gene expression data
of MLL-R ALL and normal samples from GSE13159 and GSE13164 were analyzed using “compare” function in the Oncomine
database. The top 150 overexpressed and 150 underexpressed genes were identified by the Oncomine website. Then, we
employed the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) to define functional genes for the 300
DEGs. The Cytoscape identified two important networks for overexpressed genes, including 35 functional genes, among which
PROM1, FLT3, CTGF, LGALS1, IGFBP7, ZNRF1, and RUNX2 were considered as the key genes because of their high
expression in MLL-R ALL compared to the expression in other subclassification of leukemia in the MILE dataset. Further
analysis of GSE68720, GSE19475, and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) ALL
(phase I) database confirmed the robust expression of 7 key genes in MLL-R compared to MLL-germline (MLL-G) childhood
ALL. Kaplan-Meier analysis indicated that childhood ALL patients with high PROM1 and CTGF expression had significantly
poor overall survival. These findings suggest that PROM1 and CTGF represent two potential therapeutic targets for childhood
MLL-R ALL.

1. Introduction

Acute lymphoblastic leukemia (ALL) is the most common
form of childhood malignancies. It is a heterogeneous hema-
tologic disease characterized by clonal proliferation of
immature lymphoid progenitor cells both in bone marrow
and extramedullary sites [1]. Thanks to the development of
risk-directed chemotherapy and targeted therapy against
the gene mutations/fusion, the 5-year survival rate of ALL
exceeds 90% [2, 3]. However, the prognosis of over 90% of
infant ALL and 35–50% of childhood acute myeloid leuke-
mia remains poor because of harboring the mixed-lineage
leukemia gene (MLL) fusion [4–8]. For infant MLL-rear-
rangement (MLL-R) ALL, the 5-year event-free survival is
extremely low, ranging from 20 to 40% [6]. MLL-R ALL

has unique clinical and biologic features, including the pro-
B phenotype, prenatal origin, rapid onset, early relapse,
and hyperleukocytosis.

The MLL gene located in chromosome 11q23 fuses to
generate chimeric genes with over 80 partners at the C-
terminus and forms 135 different MLL rearrangements, of
which the most common ones are AF4, AF9, AF17, ELL,
and ENL [9]. These fusions are responsible for the gene
expression alternation on histone methylation and transcrip-
tional elongation. MLL-R activates target genes via H3K79
methylation by DOT1L, stimulation of elongation through
P-TEFb, and suppression of the polycomb function [10].
However, as the breakthrough of genome-wide sequencing,
a group of MLL target genes was distinguished. It has been
reported that MLL fusion genes act as a global regulator by
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Figure 1: Continued.
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Figure 1: Continued.
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Figure 1: Continued.
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targeting more than 5000 genomic elements [11]. By far, the
association between coexpressed genes and the MLL fusion
gene has not been comprehensively investigated.

To better understand the whole-genome alteration of
leukemia, a retrospective study named Microarray Innova-
tions in LEukemia (MILE) was carried out in 11 laboratories
across three continents and included 3334 patients with leu-
kemia [12, 13]. Blood or bone marrow samples of acute and
chronic leukemia patients were hybridized to the microarray
analysis. On the Gene Expression Omnibus (GEO) website,
the MILE study fell into two stages, GSE13159 and
GSE13164. In this study, we explored the GSE13159 and
GSE13164 datasets on the Oncomine website and defined
the top 300 differentiated expressed genes (DEGs) of MLL-
R pro-B ALL vs. normal samples. Then, we performed Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis for selected
DEGs. Moreover, we investigated their protein-protein

interaction (PPI) network based on the STRING website
and selected functional genes by using Cytoscape software.
The 7 key gene expression pattern and their relationship
with clinical traits were searched on BloodSpot, and the
UCSC Xena website was also constructed. Finally, two
GEO datasets, including GSE68720 and GSE19475, studying
the infant MLL-R and MLL-germline (MLL-G) ALL were
employed to confirm the key genes. Exploring new genes
and pathways associated withMLL-R ALL may help to iden-
tify potential molecular mechanisms, diagnostic markers,
and therapeutic targets for MLL-R ALL.

2. Materials and Methods

2.1. Oncomine Analysis. Oncomine is an integrated data-
mining platform that analyzes previously published or
open-access cancer microarray data. Using the keywords
“acute lymphoblastic leukemia” and “Cancer vs. Normal
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Figure 1: The expression profiles of MLL-R pro-B ALL in the MILE study. (a) Top 150 overexpressed DEGs were shown in the table.
(b) GO and KEGG enrichment analyses for top 150 overexpressed DEGs. (c) Top 150 underexpressed DEGs were shown in the table.
(d) GO and KEGG enrichment analyses for top 150 underexpressed DEGs.
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Figure 2: Continued.
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Analysis,” two studies were identified in the Oncomine data-
base (https://www.oncomine.org) with the ID GSE13159 and
GSE13164. Gene expression in pro-B ALL vs. normal was
analyzed by the “compare” function in the Oncomine
database.

According to the description of MILE, all of the pro-B
ALL patients harbored MLL fusion in GSE13159 and
GSE13164. The result orders genes by median rank across
the two analyses and displays the corresponding p values.
The overexpressed and underexpressed genes with rank
orders above 150 and p < 0:05 were selected for further
analysis.

2.2. GO and KEGG Enrichment Analyses. The top 150
over- and underexpressed genes were taken into DAVID
website separately, analyzed by GO and KEGG enrichment
(p < 0:05).

2.3. Protein-Protein Interaction Network. The 300 DEGs
were taken into Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) with the maximum number of
interactors = 0 and a confidence score ≥ 0:4 as the cutoff cri-
teria. Then, to understand the function of the overexpressed
gene, the biofunctional modules in the top 150 overex-
pressed genes were explored using a plug-in MCODE in
Cytoscape with a node score cutoff of 0.2, degree cutoff of
2, and k-Core of 2. The top two gene modules with the high-
est MCODE scores were selected from the network. Then,
the genes were taken into DAVID, as demonstrated above.
KEGG enrichment analyses were carried out with the signif-
icance threshold p < 0:05.

2.4. BloodSpot Website Analysis. BloodSpot is a database of
mRNA expression in healthy and malignant hematopoiesis
and includes data from both humans and mice [14]. The
functional gene names were input into the search bar as a
query. Gene expression data of the MILE study were identi-
fied on the BloodSpot website.

2.5. UCSC Xena Analysis. The gene expression, MLL status,
and minimal residual disease (MRD) monitor were verified
and analyzed in TARGET ALL (phase I) using the UCSC
Xena browser.

2.6. Data Collection and Gene Expression Analysis in the
GEO Dataset. Microarray expression data of GSE68720
and GSE19475 were downloaded from the GEO database.
To explore the relationship between infant MLL-R ALL
and MLL-G ALL, cel files of 17 MLL-G ALL samples and
80 MLL-R ALL samples from GSE68720 and 14 MLL-G
ALL and 58 MLL-R ALL samples from GSE19475 were
selected. The robust multiarray average in R was applied to
explore the gene expression data in the cel files, including
background correction, normalization, and summarization.
All of the above operations were run with scripts in the R
3.6.3 version. The ggplot2 package in R was used to show
the heat map of key genes.

2.7. Kaplan-Meier Analysis. Gene expression was obtained
from UCSC Xena website, and the clinical survival informa-
tion of TARGET ALL (phase I) was downloaded from the
official TARGET database website. The ggplot2 of R soft-
ware was used to plot the Kaplan-Meier survival curve.
The TARGET ALL (phase I) project is obtained from
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Figure 2: PPI network of DEGs by STRING. (a) The Venn diagram showed the top 300 DEGs. (b) The PPI network was constructed by
STRING based on the top 300 DEGs. (c) The functional genes of overexpressed DEGs found by MCODE made up 2 critical
subnetworks. (d) KEGG pathway analysis for functional genes.
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patients enrolled on biology studies and clinical trials man-
aged through the COG, POG 9906 (clinical trial for patients
with newly diagnosed ALL between March 2000 and April
2003 that were defined as high risk for relapse). Patient
samples for full characterization were chosen based on the
following criteria: the disease onset at >9 years of age, did
not have white blood cell count > 50000/μL, did not express
the BCR/ABL fusion gene, were not known to be hypodip-
loid (DNA index > 0:95), and achieved remission (fewer
than 5% blasts) following the standard two rounds of
induction therapy. The primary patient samples were
collected at diagnosis, and gene expression was analyzed
following the protocol of Human Genome U133 Plus 2.0
Array (Affymetrix).

2.8. Statistical Analysis. Student t-test of variance was used
for comparing the statistical differences of gene expression

of samples in GSE19475 and GSE68720. All the analyzes
were two sided and p < 0:05 was considered to be significant.

3. Results

3.1. Identification of the Top DEGs in MLL-r ALL. The gene
expression data of MLL-R ALL and normal samples from
GSE13159 and GSE13164 were analyzed using the “com-
pare” function in the Oncomine database. The median rank
of the overexpressed and underexpressed genes with rank
orders above 150 was identified as the genes and selected
for further analyses (Figures 1(a) and 1(c)).

Based on the result from the DAVID online analysis
tool, the KEGG pathway and GO analysis were carried out
to better understand the biological function of the key DEGs
in MLL-R ALL. The GO enrichment analysis result showed
that the overexpressed genes were mainly enriched in
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Figure 3: Key gene expression on the BloodSpot website. The box plot showed the expression of PROM1, FLT3, CTGF, LGALS1, IGFBP7,
ZNRF1, and RUNX2 in different subclassifications of ALL on the BloodSpot website.
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biological processes, including the B cell receptor signaling
pathway, B cell activation, and negative regulation of tran-
scription from the RNA polymerase II promoter, while
KEGG pathway analysis showed that the result was signifi-
cantly enriched in the B cell receptor signaling pathway,
transcriptional misregulation in cancer, and primary immu-
nodeficiency (Figure 1(b)). As for underexpressed genes, GO
enrichement analysis demonstrated that they were mainly
enriched in platelet degranulation pathway. KEGG pathway
analysis showed that the underexpressed genes were
mainly enriched in the hematopoietic cell lineage pathway
(Figure 1(d)).

A functional gene usually refers to what is significant in
regulation and biological processes and closely interacts with
other genes in a network. A total of 300 DEGs, including 150
overexpressed and 150 underexpressed genes, were shown in
the overlap of the Venn diagram (Figure 2(a)). To further
investigate the function of the DEGs in the GSE13159 and
GSE13164 at the protein level, the STRING was employed
to screen for functional genes. The PPI network consisted
of 295 nodes and 1378 edges (Figure 2(b)). Afterwards, the
interactive relationship of overexpressed genes was analyzed
separately in Cytoscape. The MCODE, a plug-in in Cytos-
cape, was employed to calculate the k-Core of each gene.
The top two significant modules in MCODE with high

scores were selected from the PPI network, including mod-
ule A (MCODE score = 7:556 with 10 nodes) and module
B (MCODE score = 4:75 with 25 nodes) (Figure 2(c)). These
genes were involved in 4 important KEGG pathways,
including the hematopoietic cell lineage, transcriptional
misregulation in cancer, ubiquitin-mediated proteolysis,
and phagosome (Figure 2(d)).

3.2. Validation of Key Genes in MLL-R ALL. To demonstrate
the role of 35 functional genes in ALL subclassifications, we
used the BloodSpot website to check their expression in dif-
ferent subclassifications of leukemia. As shown in Figure 3,
PROM1, FLT3, CTGF, LGALS1, IGFBP7, ZNRF1, and
RUNX2 were found highly expressed in the MLL-R pro-B
ALL compared to the other subclassification of leukemia.

To further verify the identified 7 key genes in MLL-R
ALL, we detected the expression of PROM1, FLT3, CTGF,
LGALS1, IGFBP7, ZNRF1, and RUNX2 between MLL-R
ALL and MLL-G ALL in GSE68720 and GSE19475 datasets
by using the R software. In both GSE68720 and GSE19475
datasets, the 7 key genes were significantly overexpressed
in MLL-R compared to the MLL-G ALL samples, especially
for PROM1. The heat map of the 7 key genes were shown
in Figures 4(a) and 4(b). Further analysis in UCSC Xena
demonstrated that high expression of these genes was
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Figure 4: Key gene expression in MLL-R compared to MLL-G in GSE19475 and GSE68720. (a) Scatter plot and heat map of 7 key gene
expression in GSE19475 according to the value of jlogFCj. (b) Scatter plot and heat map of 7 key gene expression in GSE68720
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Figure 5: Kaplan-Meier analysis of PROM1 and CTGF expression in childhood ALL. (a) The relationship of key gene expression with the
MLL status in the TARGET ALL (phase I) dataset. (b) Survival cure comparing patients with high (blue) vs. low (red) PROM1 expression
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significantly associated with the MLL status in the TARGET
ALL (phase I) database, presenting a high correlation with
the status of MLL fusion (Figure 5(a)). These results demon-
strated that 7 key genes have extremely high expression in
MLL-R ALL and maybe the critical targets for MLL fusion.

3.3. Survival Analysis of PROM1 and CTGF in Childhood
ALL. To delineate the prognostic value of potential key
genes, the overall survival analyses of 7 key gene expression
were detected in the TARGET ALL (phase I). The result
showed that a high expression level of PROM1 and CTGF
was associated with inferior overall survival of ALL
(Figure 5(b)).

4. Discussion

Although studies have demonstrated numerous fusion
partner proteins, the target genes of MLL-fusion and the
molecular mechanism involved in target genes were poorly
understood. In the past decade, genomic analyses have revo-
lutionized our understanding of the coexpression network in
MLL-R ALL. HOX cluster genes and its cofactorMEIS1 were
the most well-known target genes for the MLL fusion gene
[15]. Both HOXA genes and MEIS1 are highly expressed in
the stem cells and early progenitor cells. MLL drives the
proliferation and self-renewal of immature hematopoietic
cells by upregulating posterior HOX genes and their cofactor
MEIS1 [16, 17]. Coincidentally, in this study, we examined
the Oncomine website and investigated DEGs related to
MLL-R ALL in the MILE study. Using PPI analysis, the crit-
ical pathway of functional genes was found involved in the
hematopoietic cell lineage and transcriptional misregulation
in cancer, including HOXA10,MEIS1, FLT3, CD14, PROM1,
RUNX2, and RUNX1 (data not shown), indicating the dom-
inant roles of HOXA and MEIS1 in MLL-R ALL.

Posttranslational modifications of PROM1 play a critical
role in MLL-R ALL [18, 19]. It was reported that AF4
recruited and activated DOT1L at the H3K79me2/3 locus
of the PROM1 promoter, which is required for the growth
of MLL-AF4 B-cell ALL cells [20–22]. CD133 is a kind of
transmembrane glycoprotein encoded by the PROM1 gene.
It is associated with cancer stem cells in diverse human
tumors, including brain, liver, stomach, endometrium,
ovary, and colorectum and gliomas and medulloblastoma
[23]. Recent studies demonstrated that CD19/CD133 tan-
dem CAR T induces robust cytotoxicity against CD19+
CD133+ and CD19− CD133+ B-cell lines, suggesting
CD133 a promising target MLL-R ALL immunotherapy
[24]. However, this study was challenged by “on-target off-
tumor” myeloablative and life-threatening toxicity, because
the CD133 was expressed in the hematopoietic stem and
progenitor cells [25].

CTGF, CCN2 as the official name, is an extracellular
matrix- (ECM) associated protein of 36–38 kDa and a mem-
ber of the CCN family of proteins. It plays a great role in cell
adhesion, proliferation, migration, and differentiation and
improves the development of numerous tumor metastases
[26–29]. Interestingly, elevated CTGF expression is also a
feature of precursor B-cell ALL [30–33]. By analyzing COG

trial P9906, high expression of BMPR1B, CTGF, TTYH2,
IGJ, NT5E (CD73), CDC42EP3, and TSPAN7 was found to
be associated with poor outcomes in precursor-B ALL
patients [34]. Ruling out the possibility of structure alterna-
tion, amplification, or base mutation, Welch et al. demon-
strated that the CTGF locus is hypomethylated in pediatric
pre-B ALL [35]. Anti-CTGF monoclonal antibody attenu-
ated tumor growth of precursor-B ALL from pediatric
patients propagated in mice [36]. Here in this study, PROM1
and CTGF were overexpressed inMLL-R compared toMLL-
G patients and those with high PROM1 and CTGF expres-
sion had significantly poor OS (Figure 5(b)). Further in vitro,
in vivo, and clinical studies are warranted to delineate the
role of PROM1 and CTGF in MLL-R ALL.

In conclusion, we first demonstrated the top DEGs of
GSE13159 and GSE13164 by using the Oncomine website.
After integrated analyses, we identified from the 300 DEG
genes that PROM1, FLT3, CTGF, LGALS1, IGFBP7, ZNRF1,
and RUNX2 were the key genes, as they were highly
expressed inMLL-R ALL compared toMLL-G ALL. Further
investigation demonstrated that PROM1 and CTGF were the
poor prognostic markers for childhood MLL-R ALL. Thus,
we provide an insight into ALL that PROM1 and CTGF
may be the novel potential target genes for the MLL fusion
gene in childhood MLL-R ALL.
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