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Background. Malignant tumor is one of the most common diseases that seriously affect human health. The prior literature has
reported the biological function and potential therapeutic targets of SET domain bifurcated histone lysine methyltransferase 1
(SETDB1) as an oncogene. However, SETDB1 has rarely been analyzed from a pan-cancer perspective. Methods. Bioinformatics
analysis tools and databases, including GeneCards, National Center for Biotechnology Information (NCBI), UniProt, Illustrator
for Biological Sequences (IBS), Human Protein Atlas (HPA), GEPIA, TIMER2, Sangerbox 3.0, UALCAN, Kaplan-Meier (K-M)
plotter, cBioPortal, Catalogue Of Somatic Mutations In Cancer (COSMIC), PhosphoSitePlus, TISIDB, STRING, and
GeneMANIA, were utilized to clarify the biological functions and clinical significance of SETDB1 from a pan-cancer
perspective. Results. In this study, the pan-cancer analysis demonstrated that SETDB1 showed significantly differential
expression in most tumor tissues and paracancerous tissues, and SETDB1 expression was associated with clinicopathological
features and clinical prognosis. We also found that SETDB1 mutations occurred in most tumors and were related to
tumorigenesis. In addition, DNA methylation of SETDB1 primarily occurred at the cg10444928 site and was associated with
prognosis in several human tumors. The predicted phosphorylation site of SETDB1 was Ser1006. We found that SETDB1 was
significantly related to the specific tumor-infiltrating immune cell populations and expression of clinically targetable immune
checkpoints and may be a promising immunotherapy target. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses also indicated that SETDB1 may function as crucial regulator in carcinogenesis of human cancers.
Conclusions. SETDB1 is an important oncogene involved in tumorigenesis and tumor progression through different biological
mechanisms. Furthermore, SETDB1 may be a potential therapeutic target for cancer treatment.

1. Introduction

Malignant tumor is becoming a major disease endangering
human health [1]. At present, there are no curative strategies
for malignant tumors. Antitumor therapies, including radi-
cal surgical resection, radiofrequency ablation, transplanta-
tion, chemotherapy, immunotherapy, and targeted therapy,
have been developed [2]. However, the overall survival
(OS) for patients with cancer, especially pancreatic adeno-
carcinoma (PAAD), lung adenocarcinoma (LUAD), and
breast invasive carcinoma (BRCA), remains low because of
the complexity and heterogeneity of tumorigenesis [3–5].

Germline mutations caused by abnormal activation and
expression of oncogenes have also been confirmed as major
inducements of tumorigenesis [6]. The investigation of epi-
genetic changes, expression levels, potential molecular basis,
and clinical significance of oncogene can help understand
the mechanisms of tumorigenesis and improve the treat-
ment of various cancers.

SET domain bifurcated histone lysine methyltransfer-
ase 1 (SETDB1) protein, also known as ERG-associated
protein with SET domain (ESET), KG1T, KMT1E, TDRD21,
and H3-K9-HMTase4, is a member of the SET family
involved in chromatin gene silencing, chromatin remodeling,
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transcriptional suppression, and histone methylation in cells
[7, 8]. The SET family also shows epigenetic regulation,
participating in gene expression and function changes with-
out altering the DNA sequence. SET family is a significant
regulator of tumorigenesis and is important for tumor-
targeted therapy [9, 10]. SETDB1 was first reported in 1999,
and increasing studies have found that SETDB1 is signifi-
cantly related to human tumorigenesis and immune cell
functions [11–13]. SETDB1 is also a well-known histone
H3 lysine 9 (H3K9) methyltransferase that associates with
methylation in various euchromatic regions, which causes
gene silencing [12]. Therefore, it is important to conduct a
comprehensive genomic analysis of SETDB1 and explore its
relation with clinical outcome and potential target of
oncotherapy in human malignant tumors.

In this study, for the first time, we conducted a structure/
function pan-cancer analysis of SETDB1 based on several
online databases to explore its oncogenic role and clinical
significance in various cancers.

2. Material and Methods

2.1. Omics Analysis of SETDB1. Firstly, we acquired the
chromosome localization, coding sequence (CDS), and exon
counts of SETDB1 based on the GeneCards database
(https://www.genecards.org/). Subsequently, the biological
information of the SETDB1 gene and its encoded six protein
isoforms was obtained from the “gene” and “protein”
module of the National Center for Biotechnology Informa-
tion (NCBI) (https://www.ncbi.nlm.nih.gov/), with its 3D
(three-dimensional) protein structure explored in the
UniProt database (https://www.uniprot.org/). In addition,
the CDS in nucleotide sequence and conserved domains in
amino acid sequence were visualized using Illustrator for
Biological Sequences (IBS, version 1.0) [14] (http://ibs
.biocuckoo.org/). The position of conserved domains of
histone-lysine N-methyltransferase SETDB1 isoform 1 pro-
tein was obtained from the “HomoloGene” of NCBI. Con-
served amino acid sequences encoded by SETDB1 and
phylogenetic tree of SETDB1 family were explored by
Constraint-based Multiple Alignment Tool (https://www
.ncbi.nlm.nih.gov/tools/cobalt/) in the NCBI. Finally, the dis-
tribution of SETDB1 protein was obtained fromHuman Pro-
tein Atlas (HPA) (https://www.proteinatlas.org/) database.

2.2. Gene Expression Analysis. The expression levels of
mRNA and encoded protein of SETDB1 in normal tissues
were obtained from several online databases, including
GEPIA [15] (http://gepia.cancer-pku.cn/), HPA, and the
University of California, Santa Cruz (UCSC) Xena browser
(https://xenabrowser.net). The datasets were derived from
The Cancer Genome Atlas (TCGA) (https://www.cancer
.gov/) and Genotype-Tissue Expression Project (GTEx)
(https://www.genome.gov/). Additionally, the immunohisto-
chemical (IHC) staining and hematoxylin-eosin (H&E)
staining displayed the top five significantly expressed tissues
of SETDB1. In this study, we also compared the mRNA
expression of the SETDB1 gene in different cell lines and
single cell specificity. TIMER2 (http://timer.cistrome.org/),

Sangerbox 3.0 (http://vip.sangerbox.com/), UALCAN
(http://ualcan.path.uab.edu/), and GEPIA2 [16] (http://
gepia2.cancer-pku.cn) databases were also applied to explore
and verify the SETDB1 differential expression levels in
tumor tissues and paracancerous tissues.

2.3. Clinicopathological Features Analysis. The “Pathological
Stage Plot”module of GEPIA2 was applied to assess the rela-
tionship between the SETDB1 gene expression and cancer
stage based on TCGA. P < 0:05 was set as the significance
threshold. We also used the UALCAN database to explore
the relationship between the SETDB1 mRNA expression
level and clinicopathological stage, including the within-
stage correlation. Sangerbox 3.0 was applied to confirm the
connection between the SETDB1 mRNA transcription level
and other clinicopathological features, including TNM clas-
sification and clinicopathological grade.

2.4. Survival Analysis. GEPIA2 is also an available compre-
hensive prognosis analysis database, and its target gene was
used as input for survival analysis in various human cancers.
In this study, we first used the “Survival Map” module of
GEPIA2 to explore the OS and disease-free survival (DFS)
significance map data of SETDB1 among all tumors from
TCGA datasets. The patients with cancer were divided into
the high- and low-expression subgroups according to the
median expression levels of SETDB1. Subsequently, the
“survival analysis” module of GEPIA2 was used to draw
the significance of the Kaplan-Meier (K-M) curves for
patients with cancer, and P < 0:05 was set as the significance
threshold. Furthermore, the Cox analyses based on Sanger-
box 3.0 database were performed for disease-specific survival
(DSS) and progression-free interval (PFI) of SETDB1 across
various cancers samples, and the results were displayed by a
forest plot. Then, we explored the prognostic value of
SETDB1 in ovarian cancer, liver hepatocellular carcinoma
(LIHC), LUAD, and BRCA based on the K-M plotter [17]
(http://kmplot.com/analysis/). The survival datasets were
derived from TCGA and Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/).

2.5. Genetic Alteration Analysis. A total of 32 studies con-
taining 10967 samples were selected from the “TCGA Pan-
Cancer Atlas Studies” module of cBioPortal (https://www
.cbioportal.org) online database. The genetic alteration levels
of SETDB1 were further explored using 110443 samples with
mutation data. The totality genetic alteration samples of
SETDB1 across TCGA tumors were generated from the
“OncoPrint” module of cBioPortal. According to the “Can-
cer Types Summary” module of cBioPortal, the alteration
frequency, number of genetic mutations, type of SETDB1
mutations, and copy number variation (CNV) in each tumor
type were analyzed. The mutated site information of
SETDB1 was shown in the amino acid sequence containing
conserved domain sites and the 3D structure by the
“Mutations” module. The Sangerbox 3.0 online serve was
used to comprehensively analyze the mutational landscape
of SETDB1. The GSCA database (http://bioinfo.life.hust
.edu.cn/GSCA/#/) was used to analyze the CNV percentage
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in each cancer and the relationship between SETDB1 expres-
sion and CNV. The Catalogue Of Somatic Mutations In
Cancer (COSMIC) (https://cancer.sanger.ac.uk/cosmic) is
also a comprehensive alteration analysis database for explor-
ing the mutation of SETDB1 in human cancers.

2.6. Methylation and Protein Phosphorylation Analysis. We
first assessed the differential expression of SETDB1 pro-
moter methylation in tumor tissues and normal tissues with
the UALCAN online database. Furthermore, the relation-
ship between SETDB1 expression and RNA modification-
related genes was explored using the Sangerbox 3.0 online
service. The MethSurv [18] (https://biit.cs.ut.ee/methsurv/)
online database was used to obtain the relative expression
level of single CpGs of SETDB1 methylation and their prog-
nostic value. MethSurv database is specifically designed to
compare the relative expression level of a single CpG and
perform multivariable survival analysis using DNA methyla-
tion data. The prognostic value of single CpG of SETDB1 in
25 cancers was also assessed using the “all cancers” and
“single CpG” modules of the MethSurv database.

Subsequently, the PhosphoSitePlus (version 6.6.0.2,
https://www.phosphosite.org/) was used to investigate the
protein phosphorylation sites of SETDB1 in amino acid
sequence. The UALCAN online database was also used to
compare SETDB1 phosphorylation levels between tumor
tissues and paracancerous tissues. The protein phosphoryla-
tion data were sourced from the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) (https://proteomics.cancer
.gov/programs/cptac), and BRCA, glioblastoma multiforme
(GBM), PAAD, head and neck squamous cell carcinoma
(HNSC), and LUAD.

2.7. Immune and Molecular Subtype Analysis, Immune
Infiltration Analysis, and Immune Checkpoint Inhibitor-
Related Gene Analysis of SETDB1. We then logged into the
TISIDB [19] (http://cis.hku.hk/TISIDB/index.php) database
with submitting “SETDB1” to assess the association of
SETDB1 expression status with immune cell and molecular
subtypes in various human cancers. The “Immune-Gene”
module of the TIMER2, which is specifically designed to
analyze the immune infiltration across all TCGA cancers,
was applied to explore the association between the SETDB1
expression and tumor-related immune cell infiltration levels.
The SETDB1 expression was related to the abundance of
tumor-infiltrating cells, including cancer-associated fibro-
blasts (CAFs), CD8+ T cells, CD4+ T cells, regulatory T cells
(Tregs), and B cells. The scatterplots were used to present
the correlation between SETDB1 mRNA expression and
the abundance of infiltrating CAFs. The TISIDB database
was also used to analyze the association of SETDB1
expression with immune checkpoint inhibitor-related genes,
including immunoinhibitor and immunostimulator. Part of
the results with significant correlation was presented as scat-
terplots. To identify potential groups that may benefit from
immunotherapy, we used the radar chart to display the asso-
ciation between microsatellite instability (MSI) and tumor
mutational burden (TMB) in various cancers based on the
Sangerbox 3.0.

2.8. Function and Pathway Analysis. The STRING (https://
string-db.org/) database was used to explore the targeting
gene-binding proteins by searching protein name “SETDB1”
and organism type “Homo sapiens.” By setting parameters
of STRING, the experimentally determined SETDB1-
binding proteins were obtained. Using GeneMANIA
(http://genemania.org/) online database, we predicted the
possible function of SETDB1-related genes according to
their association with genes with assigned biological func-
tions. To clarify the functions of the target genes, the Gene
Ontology (GO) functional enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis of SETDB1-related genes were performed by R
(version R 3.6.3, https://www.r-project.org/). Furthermore,
the HALLMARK terms were analyzed by Sangerbox 3.0. In
order to construct the mRNA-miRNA-lncRNA network,
we first predicted the miRNA targeting SETDB1 based on
TargetScanHuman (Release 7.2 March 2018, http://www
.targetscan.org/), mirDIP (http://ophid.utoronto.ca/mirDIP/),
and miRWalk (http://mirwalk.umm.uni-heidelberg.de/). Then,
the complementary sequences of SETDB1 and miRNA
targeting SETDB1 were displayed using the TargetScan-
Human database. Finally, the lncRNA targeting miRNAs
were predicted by the LncBase Predicted v2 module of
DIANA tools (http://carolina.imis.athena-innovation.gr/
diana_tools/web/index.php?r=site/index).

2.9. Drug Sensitivity and Resistance Analysis. The drug sensi-
tivity analysis and resistance analysis were performed based
on the Genomics of Drug Sensitivity in Cancer (GDSC)
(https://www.cancerrxgene.org/) database, and the volcano
plot was displayed. The IC50 values of Ara-G and Bleomycin
(50μM) for SETDB1 mutation were analyzed. GSCALite
(http://bioinfo.life.hust.edu.cn/web/GSCALite/) is a compre-
hensive web-based analysis platform for gene set cancer
analysis and drug sensitivity analysis. DrugBank (https://
www.drugbank.com/) database was used to explore the
chemical formula and structural formula for Ara-G and
Bleomycin (50μM).

2.10. Validating Expression of SETDB1 by IHC. Six pairs of
paraffin-embedded digestive system tumors, including
LIHC, CHOL, COAD, ESCA, PAAD, and STAD, and corre-
sponding adjacent tissues were collected in the Shulan
(Hangzhou) Hospital. Collected tissues were embedded in
paraffin and sliced into 4μm sections, then baked in an oven
at 65°C for 2 hours, and hydrated. These tissues were
incubated with 1 : 25 dilution of anti-SETDB1 monoclonal
antibody (catalog number: KHC0067). After incubation with
the anti-rabbit secondary antibody (ORIGENE) at room
temperature for 1 h, diaminobenzidine (DAB) was used to
reveal the color of antibody staining. Finally, the stained sec-
tions were observed under the microscope.

3. Results

3.1. Multiomics Analysis of SETDB1. The details of the pan-
cancer analysis are summarized and presented in Figure 1.
This study was aimed at investigating the oncogenic role of
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SETDB1 in human cancers. SETDB1 (Gene ID: 9869) is
located at 1q21.3 and contains 23 exons (Figure 2(a)). The
CDS of SETDB1 in nucleotide sequence was displayed
(Figure 2(a)). The SETDB1 encoded six protein isoforms,
including histone-lysine N-methyltransferase SETDB1 iso-
forms 1-6, which were mainly distributed in the nucleoplasm
(Figure S1A). The mRNA, protein reference sequences
(Refseq), and the conserved domains of SETDB1 were
summarized (Table 1). Histone-lysine N-methyltransferase
SETDB1 isoform 1 was the dominant isoform and the
main undertaker of histone-lysine N-methyltransferase
SETDB1 functions. To better understand the biological
function and structural information of histone-lysine N-
methyltransferase SETDB1 protein isoform 1, structure-
function analysis was conducted, and the protein domains,
region, and nucleotide compositional bias were displayed.
As shown in Figure 2(b), the protein structure of SETDB1
consists of six domains, five regions, one coiled coil, and
ten nucleotide compositional biases. For multiple species,
the SETDB1 contains six domains, including two Tudors
(cl02573), MBD (cl00110), pre-SET (cl02622), SET
(cl02566), post-SET, and SEEEED (cl19208) (Figure 2(d)).
The pre-SET, SET, and post-SET domains are required for
methyltransferase activity. Additionally, the protein 3D
structure was also displayed (Figure 2(c)). According to the
NCBI online database, the SETDB1 protein was conserved
in different species, such as chimpanzee, rhesus monkey,
dog, cow, mouse, rat, chicken, zebrafish, and frog
(Figure S1B). The phylogenetic tree of SETDB1 protein was
produced using the fast minimum evolution, and it

presented the evolutionary relationship among different
species (Figure S1C). We also found that SETDB1
protein was mainly localized in the nucleoplasm of A-
431 (human epithelial carcinoma cell line), U-2 OS
(human osteosarcoma cells), and U-251 MG (human
brain glioblastoma astrocytoma cancer cells) and vesicles
of U-2 OS cell lines (Figure S1D).

3.2. Gene Expression Analysis of SETDB1.We first confirmed
that SETDB1 was widely expressed in human normal and
tumor tissues (Figure S2A and Table S1). Then, the
SETDB1 mRNA expression levels were compared in
nontumor tissues based on the HPA and GTEx database
(Figure 3(a) and Figure S2B). The bar charts showed that
SETDB1 had the highest expression level in the testis,
followed by the thymus, tonsil, spleen, and lymph node,
indicating that the SETDB1 was mainly expressed in the
bone marrow and lymphoid tissues. The SETDB1
expression level was high in most normal tissues,
indicating the low tissue specificity of the SETDB1 mRNA
expression. Additionally, the IHC and H&E staining results
of the top five normal tissues in terms of SETDB1
expression level were displayed based on HPA online
database (Figures 3(b) and 3(c)). No data related to the
IHC and H&E staining assessment of SETDB1 in thymus
tissues were obtained. The expression levels of SETDB1 in
different cell lines were assessed. The results from the HPA
database showed that SETDB1 was significantly enriched
in U-698, followed by the BEWO, THP-1, NTERA-2, and
SH-SY5Y (Figure 3(d)). In addition, SETDB1 single cell
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Figure 1: The workflow of the study.
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Figure 2: Gene structure, protein structure, and conserved domain of SETDB1. (a) Chromosome localization and gene coding sequence
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Figure 3: Continued.
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specificity is displayed in Figure S2C. The SETDB1 expression
level was significantly higher in late spermatids, early
spermatids, spermatocytes, oligodendrocytes, and microglial
cells. Finally, the SETDB1 expression patterns in testis
tissues were assessed using published RNA-sequencing data
(Figure S2D).

In order to further explore the expression levels of
SETDB1 in different tumor tissues and paracancerous tis-
sues, we further performed the differential expression analy-
sis using several online databases. In the TIMER database,
the SETDB1 expression level was elevated in bladder urothe-
lial carcinoma (BLCA), BRCA, CHOL, colon adenocarci-
noma (COAD), esophageal carcinoma (ESCA), GBM,
HNSC, KIRC, LIHC, LUAD, lung squamous cell carcinoma
(LUSC), rectum adenocarcinoma (READ), stomach adeno-
carcinoma (STAD), thyroid carcinoma (THCA), and uterine
corpus endometrial carcinoma (UCEC) (Figure 4(a)). How-
ever, compared with the SETDB1 expression level in para-
cancerous tissue, that in KICH (kidney chromophobe) was
lower (Figure 4(a)). The mRNA expression levels of SETDB1
in HNSC-HPV+ tumor and SKCM-Metastasis tissues were
higher than those in HNSC-HPV- tumor and SKCM pri-
mary tumor tissues (Figure 4(a)). These data are in agree-
ment with the expression levels of SETDB1 in tumor
tissues and paracancerous tissues in Sangerbox and UAL-
CAN databases (Figure S3). The expression of SETDB1 in
SKCM was lower in patients with primary tumors than
that in patients with metastasis tumors, indicating that a
high expression level of SETDB1 in SKCM may imply
metastasis (Figure 4(a)). In the GEPIA2 online database,
combined with the TCGA and GTEx datasets, the

differential expression analysis showed that SETDB1 was
highly expressed in the thymoma (THYM), lower grade
glioma (LGG), acute myeloid leukemia (LAML), GBM,
lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),
and CHOL, while it was lowly expressed in THCA, prostate
adenocarcinoma (PRAD), KICH, and adrenocortical
carcinoma (ACC) and was not expressed in other cancers
(Figure 4(b)).

For acquiring more comprehensive expression informa-
tion, HPA and UALCAN online databases were combined
to assess the protein expression of SETDB1 in various can-
cers and normal tissues. In HPA online dataset, the protein
of SETDB1 was observed in 45 normal tissue samples.
Among them, 15 samples showed a high expression score,
nine samples exhibited a medium expression score, 11 sam-
ples exhibited a low expression score, and 10 samples had no
expression score (Figure 5(a)). In tumor samples, most can-
cers were weakly stained or negative. Moderate to strong
nuclear and cytoplasmic positivity was observed in several
gliomas, lymphomas, melanomas, colorectal cancer, endo-
metrial cancer, and testicular cancer (Figure 5(b)). Further-
more, the classic IHC staining was performed. The results
showed that SETDB1 had high expression levels in brain gli-
oma and Hodgkin’s lymphoma, had medium levels in
THCA and BLCA, and had a low level in endometrium
adenocarcinoma (Figure 5(c)). In the “CPTAC” module of
UALCAN, we accessed the differences in protein expression
of SETDB1 between various cancers and paracancerous
tissues. Compared with SETDB1 protein expression levels
in the adjacent normal tissues, those in BRCA (p = 2:85E −
12), OV (p = 1:05E − 05), KIRC (p = 7:92E − 45), UCEC

Brain
Liver & gallblader
Gastrointenstinal tract
Pancreas
Male reproductive system

Female reproductive system

Kidney & urinary bladder
Skin
Eye

Proximal digestive tract
Lung

Endothelial
Muscle
Mesenchymal
Lymphoid
Myeloid

(d)

Figure 3: The expression levels of SETDB1 in normal tissues and cell lines. (a) The mRNA expression levels of SETDB1 in normal tissues
(data from HPA dataset). (b) Immunohistochemistry results of SETDB1 assessed in testis tissues, tonsil tissues, spleen tissues, and lymph
node tissues. (c) Hematoxylin-eosin results of SETDB1 assessed in testis tissues, tonsil tissues, spleen tissues, and lymph node tissues.
(d) The mRNA expression levels of SETDB1 in cell lines.

8 Journal of Oncology



(p = 1:91E − 12), LUAD (p = 2:91E − 31), HNSC (p = 2:21E
− 08), PAAD (p = 3:71E − 02), GBM (p = 2:65E − 19), and
LIHC (p = 1:56E − 41) were significantly higher (Figure 5(d)).

3.3. Association of SETDB1 Expression with
Clinicopathological Features. GEPIA2 and UALCAN online
databases were also applied to assess the association between
SETDB1 expression and the clinicopathological stages of
various cancers. The results showed that SETDB1 expression
was significantly related to clinicopathological stages of
tumors, including PAAD (p = 0:0444), LIHC (p = 0:0132),
KICH (p = 0:00939), and testicular germ cell tumors
(TGCT) (p = 0:0468) (Figure 6(a)). Additionally, in the
UALCAN online databases, we found that 13 tumors at dif-

ferent clinicopathological stages showed higher SETDB1
expression levels than corresponding normal tissues, and
these tumors are BLCA, BRCA, CHOL, COAD, ESCA,
HNSC, kidney renal clear cell carcinoma (KIRC), LIHC,
LUAD, LUSC, READ, STAD, and UCEC (Figures 6(b)–
6(n)). These findings suggested that SETDB1 may be an
oncogenic gene in these human malignant tumors. In con-
trast, the SETDB1 expression level was higher in normal tis-
sues than that in three tumor tissues, namely, KICH, PAAD,
and THCA, at clinicopathological stages (Figures 6(o)–6(q)).
The results indicate that SETDB1 may be a protective factor
in these tumors. Furthermore, for uveal melanoma (UVM)
and TGCT patients, the SETDB1 expression levels in cancers
at advanced clinicopathological stages were significantly
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Figure 4: The mRNA expression levels of SETDB1 between cancer and normal tissues. (a) SETDB1 mRNA expression levels in different
tumor types and corresponding normal tissue from TCGA datasets. (b) The differences in expression levels of SETDB1 in different
tumors and normal tissues from TCGA and GTEx datasets.
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lower than those in tumors at early stages, implying that
decreased SETDB1 expression may indicate the tumor pro-
gression in these patients (Figures 6(r) and 6(s)). These
results demonstrated that abnormal expression of SETDB1
may be associated with the initiation and progression of
various human cancers.

We further investigated the association of SETDB1
expression with other clinicopathological features, such as
TNM classification and clinicopathological grade based on
Sangerbox 3.0. SETDB1 expression in GBM, BRCA, ESCA,
SARC (Sarcoma), and PRAD was significantly associated
with tumor T classification (Figure 6(t)). SETDB1 expres-
sion is significantly associated with N classification in
LGG, LIHC, and READ and is related to M classification
in LUAD, PAAD, and UVM (Figures 6(u) and 6(v)). Addi-
tionally, the clinicopathological grade of LUSC, UCS (uter-
ine carcinosarcoma), and SARC is associated with SETDB1
expression (Figure 6(w)).

3.4. Survival Analysis of SETDB1. To explore the prognostic
value of SETDB1 in various human cancers, we classified the
cancer samples into high- and low-expression subgroups
according to the median expression value of SETDB1. First,
the GEPIA2 database was used to perform the OS and DFS
analyses in pan-cancer cohorts. In terms of OS, higher
expression of SETDB1 was associated with poorer clinical
outcomes in ACC (p = 0:0055) and LIHC (p = 0:0290)
(Figure 7(a)). The results also revealed a correlation between
high SETDB1 expression levels and poor DFS in ACC
(p = 3:9e − 05), READ (p = 0:0180), and PRAD (p = 0:0150)
(Figure 7(a)). It is indicated that abnormally expressed
SETDB1 may be a prognostic indicator in these tumors.
For acquiring a more comprehensive prognostic value of
SETDB1, the Cox analyses based on Sangerbox database

were performed for DFI and DSS of various cancer samples.
The results revealed that SETDB1 expression influenced DFI
in patients with ACC (p = 4:1e − 7, HR = 3:27, 95% CI 2.07-
5.16), PRAD (p = 2:1e − 3 2, HR = 2:14, 95% CI 1.32-3.48),
KIPAN (p = 3:5e − 3, HR = 1:36, 95% CI 1.11-1.67), KICH
(p = 0:01, HR = 4:38, 95% CI 1.43-13.43), LIHC (p = 0:02,
HR = 1:24, 95% CI 1.03-1.49), and cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC)
(p = 0:04, HR = 1:66, 95% CI 1.03-2.66), and READ
(p = 0:04, HR = 3:90, 95% CI 1.06-14.30) (Figure 7(b)).
However, abnormally expressed SETDB1 was associated
with DSS for patients with ACC (p = 5:1e − 5, HR = 2:91,
95% CI 1.75-4.85), KICH (p = 2:1e − 4, HR = 34:02, 95% CI
4.43-260.98), pheochromocytoma and paraganglioma
(PCPG) (p = 1:4e − 3, HR = 61:75, 95% CI 3.38-1127.99),
THCA (p = 7:6e − 3, HR = 26:07, 95% CI 2.86-237.32),
KIPAN (p = 0:01, HR = 1:38, 95% CI 1.07-1.79), LUSC
(p = 0:02, HR = 1:45, 95% CI 1.07-1.97), and LIHC
(p = 0:04, HR = 1:33, 95% CI 1.01-1.75) (Figure 7(c)). We
focused on the association between SETDB1 expression
and the breast cancer, ovarian cancer, lung cancer, and gas-
tric cancer prognosis. In order to evaluate the prognostic
abilities of SETDB1 in these cancers, independent clinical
factors were selected as the subgroups (Table S2-S6).

3.5. Genetic Alteration Analysis of SETDB1. Malignant
tumor is caused by genetic alterations, and mutated genes
offer potential molecular therapeutic targets [20, 21]. Given
that SETDB1 genetic alterations were associated with molec-
ular therapeutic targets for various human cancers, we inves-
tigated the genetic alteration levels of SETDB1 in various
human cancers based on TCGA datasets. The results showed
that SETDB1 altered 630 cases (6%) out of 10439 cases (data
from PanCancer Atlas and TCGA) (Figure 8A). We also
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Figure 6: Continued.
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found that missense mutation was the main type of SETDB1
mutation, followed by the truncating mutation and splice
mutation (Figure 8(a) and Figure S4A). Furthermore, the
primary SNV class was C > T (29.81%), followed by G > A
(21.12%), A > G (11.47%), and G > T (10.56%)
(Figure S4B). By analyzing genetic alterations and
expression, we found that SETDB1 genetic alterations
induced a switch in the mRNA expression levels of
SETDB1 in human tumors. However, few differences were
observed in the genetic alteration by deep deletion
(Figure S4C). Furthermore, the genetic alteration type in
cholangiocarcinoma (CHOL) (8.99% of 523 cases), PCPG
(3.37% of 178 cases), DLBC (7.5% of 440 cases), and
THYM (0.81% of 123 cases) (Figure 8(b)) was
amplification. The genetic alteration type in kidney renal
papillary cell carcinoma (KIRP) (1.81% of 276 cases),
LAML (0.5% of 200 cases), and THCA (0.2% of 490 cases)
(Figure 8(b)) was missense mutation. Additionally, the
SETDB1 mutation frequency in patients with mixed
endometrial carcinomas was the highest (15.09% of 517
cases), including 8.51% (44 cases) mutation and 6.58% (34
cases) amplification (Figure 8(b)). The structural variant
and deep deletion were rare in human cancers and were
only identified in five cancers among cancers included
in this research, namely, LIHC, BRCA, and SKCM
(structural variant) and ESCA and SARC (deep deletion)
(Figure 7(b)). We used the “mutation” module of the
cBioPortal database to investigate the type and site of
SETDB1 mutation (NM_001145415/ENST00000271640) in
each sample. The R1256W/L/Q mutation and translation
from R (Arginine) to W (Tryptophan) or L (Leucine) or Q
(Glutamine) were observed in the SET conserved domain
and occurred in one case of GBM (R1256W), one case
of skin cutaneous melanoma (SKCM) (R1256L), one case
of STAD (R1256W), and two cases of colorectal
adenocarcinoma (R1256W and R1256Q). However, the
function of R1256W/L/Q mutation remained unknown
(Figure 8(d)). The mutation spectrum of SETDB1 was
explored by Sangerbox 3.0 (Figure S4D). Finally, the 3D
structure of SETDB1 protein and the mutation of the

sequence were displayed (Figure 8(c)). However, the
R1256W/L/Q mutation was not displayed in the 3D
structure of the SETDB1 protein. The CNV pie chart also
showed that the heterozygous amplification of CNV was
distributed in most cancers, whereas the heterozygous
deletion was predominantly distributed in the KICH
(Figure S4E). A significant positive correlation was
observed between SETDB1 expression and CNV in various
cancers (Figure S4F).

3.6. Methylation Analysis of SETDB1. Growing evidence
showed that aberrant methylation was associated with onco-
genesis and may have a significant clinical value [22]. There-
fore, we assessed the DNA methylation levels of SETDB1
and its prognosis value in various human cancers. Firstly,
we compared the levels of SETDB1 promoter methylation
in tumors and paracancerous tissues based on the UALCAN
database. The results showed that the promoter methylation
levels of SETDB1 in BLCA, BRCA, COAD, ESCA, HNSC,
LIHC, LUAD, LUSC, PRAD, READ, TGCT, and UCEC
were significantly reduced compared with those in paracan-
cerous tissues (Figures 9(a)–9(l)). Correlation analysis
showed that SETDB1 expression was significantly positively
correlated with RNA modification-related genes (Figure S5).
In the MethSurv online database, we evaluated the DNA
methylation level and prognostic value of SETDB1 in
various human cancers, and the relative methylation level
was displayed in Figure S6. It can be seen that cg10444928
site of SETDB1 in 25 human tumors showed the highest
DNA methylation level. To analyze the association of the
cg10444928 site of SETDB1 with prognosis across various
human cancers, we explored the prognosis value of single
CpG (cg10444928) of SETDB1 based on the “single CpG”
module of MethSurv database. The results showed that
cg10444928 of SETDB1 was significantly associated with
the prognosis of UCS (p = 1:50E − 02, HR = 2:514), UVM
(p = 6:30E − 04, HR = 0:196), mesothelioma (MESO)
(p = 8:40E − 03, HR = 1:893), LGG (p = 7:00E − 03, HR =
1:628), KIRP (p = 2:10E − 02, HR = 2:673), KIRC
(p = 2:30E − 02, HR = 0:638), and CESC (p = 0:03, HR =
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Figure 6: Association analysis of SETDB1 expression with clinicopathological features. (a) The association between SETDB1 expression and
pathological clinical stage. (b–s) Correlation between SETDB1 expression and normal as well as pathological clinical stage. (t–w) Correlation
between SETDB1 expression and TNM classification (t–v) and clinicopathological grade (w).
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0:526) (Figures 9(m)–9(s)). The prognostic value of other
single CpGs of SETDB1 in 25 cancers was also assessed
using the “all cancers” module of the MethSurv database
(Table S7).

3.7. Protein Phosphorylation Analysis of SETDB1. Protein
phosphorylation may be a promoter or a suppressor of
oncogenesis. Therefore, exploring protein phosphorylation
is beneficial to developing a novel antitumor agent in human
tumors [23]. We first explored the protein phosphorylation
site of SETDB1 based on the PhosphoSitePlus database. As
shown in Figure 9(t), the most predominant protein phos-
phorylation locus for the SETDB1 is Ser1006 (flanking
sequence: RNYGYNPsPVkPEGL) located in the SET con-
served domain. Subsequently, we assessed the differences
in phosphorylation levels at the single phosphorylation site
of SETDB1 between tumor tissues and paracancerous tissues
using the CPTAC dataset. The Ser1006 locus of SETDB1
possessed a higher phosphorylation level in BRCA (p =
1:55E − 08), GBM (p = 1:27E − 02), PAAD (p = 1:00E − 11),
HNSC (p = 1:16E − 33), LUAD (p = 1:91E − 32), and KIRC
(p = 8:36E − 17) (Figures 9(u)–9(z)). These results implied
that protein phosphorylation of SETDB1 at Ser1006 locus
may play an important role in the development and progres-

sion of those tumors. Our previous findings suggested that
SETDB1 protein was mainly located in the nucleoplasm.
However, whether the protein phosphorylation of SETDB1
at Ser1006 locus affects its location or its function remains
unknown and requires more investigations.

3.8. Immune and Molecular Subtype Analysis of SETDB1.
We assessed the relationship between SETDB1 expression
status and immune activity as well as molecular subtypes
in human cancers based on the TISIDB database. According
to immune activity, the tumor tissues were divided into C1
(wound healing), C2 (IFN-gamma dominant), C3 (inflam-
matory), C4 (lymphocyte depleted), C5 (immunologically
quiet), and C6 (TGF-b dominant). In order to verify the
dynamic relationship between SETDB1 expression status
and immune activity, we assessed the immune activity levels
of the six subtypes in various cancers. The results showed
that SETDB1 expression was significantly associated with
immune subtypes in BLCA, COAD, KICH, KIRC, LIHC,
LUAD, LUSC, ovarian serous cystadenocarcinoma (OV),
SARC, STAD, and TGCT (Figure 10(a)). Similarly, the
SETDB1 expression was associated with molecular subtypes
in ACC, BRCA, COAD, GBM, HNSC, KIRP, LGG, LUSCOV,
PCPG, PRAD, SKCM, STAD, and UCEC (Figure 10(b)).

Disease specific survival
Cancercode p value Hazard ratio (95%CI)

Log2 (Hazard ratio (95%CI))

–6 –4 –2 0 2 4 6 8 10

(c)

Figure 7: Correlation between SETDB1 expression and survival prognosis of cancers in TCGA datasets. (a) Overall survival. (b) Disease-free
survival. (c) Progression-free survival. (d) Disease-specific survival.
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These results implied that SETDB1 expression status was
relevant to the immune subtypes and molecular subtypes of
various cancers.

3.9. Immune Infiltration Analysis of SETDB1. Considering
the importance of the immune microenvironment in tumor-
igenesis and cancer progression, we characterized immune
infiltration levels of SETDB1 based on several databases.
CAFs are the fibroblasts around tumor cells and the major
stromal cells in the tumor microenvironment. They play a
significant role in the initiation and progression of tumors
[24, 25]. It has been demonstrated that targeting CAFs is
an effective treatment strategy for various cancers [26]. The
EPIC, MCPCOUNTER, and TIDE algorithms were applied
to assess the relationship between the infiltration level of
CAFs and SETDB1 gene expression in various human
cancers. We observed a significantly positive correlation
between SETDB1 expression and infiltration level of CAFs

in ACC (Rho = 0:358, p = 1:88e − 03), BRCA (Rho = 0:15, p
= 6:31e − 04), CESC (Rho = 0:279, p = 2:34e − 06), COAD
(Rho = 0:2, p = 8:73e − 04), HNSC (Rho = 0:204, p = 5:07e
− 06), HNSC-HPV (Rho = 0:25, p = 3:97e − 07), KIRP
(Rho = 0:306, p = 5:57e − 07), LIHC (Rho = 0:374, p = 6:64e
− 13), and READ (Rho = 0:329, p = 1:57e − 03) but a
strongly negative correlation in TGCT (Rho = −0:339, p =
2:63e − 05) (Figure 11). Furthermore, partial correlation
analysis between SETDB1 expression and immune cell infil-
tration was conducted using the TIMER2.0 database. The
results demonstrated a remarkable correlation between
SETDB1 expression and CD8+ T cells, CD4+ T cells, Tregs,
and B cells (Figure S7A-7D).

3.10. Correlation Analysis of Immune Checkpoint Inhibitor-
Related Genes. Accumulating evidence suggests that immune
checkpoint inhibitors are a class of biologics that interact
with the immune system to encourage antitumor response
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Figure 9: Methylation and protein phosphorylation analysis. (a–l) The differential DNA methylation level of SETDB1 promoter in twelve
tumor types. (a) UCEC, (b) TGCT, (c) READ, (d) PRAD, (e) LUSC, (f) LUAD, (g) LIHC, (h) HNSC, (i) ESCA, (j) COAD, (k) BRCA, and
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by immune cells [27]. We also demonstrated a significant
correlation between SETDB1 expression and each immune
checkpoint-related gene (immunoinhibitor and immunosti-
mulator) in diverse cancers in TCGA (Figures 12(a) and
12(b)). For example, in KIRC, SETDB1 expression has a sig-
nificantly positive correlation with the expression of TIGIT,
PDCD1, CTLA4, CD96, CD244, CD160, BTLA, ADORA2A,

TGFBR1, LAG3, HHLA2, CXCR4, CD80, CD70, CD48, etc.
(Figure 12(d)). The MHC is a human leukocyte antigen
(HLA) that plays an important role in tumor immunother-
apy by activating T cells [28, 29]. According to our results,
the association between SETDB1 expression and HLA-
related genes varies markedly among cancer types. The
SETDB1 expression and HLA-related genes in ACC, CESC,
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Figure 10: The immune and Molecular Subtypes analysis of SETDB1. (a) The SETDB1 gene differential expression in different immune
subtypes. (b) The SETDB1 gene differential expression in different molecular subtypes.
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and KIRC were positively correlated but were negatively cor-
related in other cancers in TCGA (Figure 12(c)). TMB and
MSI are emerging predictors associated with survival and
response to immunotherapy [30, 31]. This study showed
that SETDB1 was positively correlated with MSI in BLCA,
CESC, LUAD, LUSC, READ, and SARC, while negatively
correlated with MSI in DLBC, but did not show correlation
with MSI in other cancers (Figure 12(e)). SETDB1 expres-
sion was positively correlated with TMB in BLCA, BRCA,
LGG, LUAD, and STAD, while negatively correlated with
TMB in THCA and UCS, but did not correlate with TMB
in other cancers (Figure 12(f)).

3.11. Function and Pathway Analysis of SETDB1-Related
Genes. To further elucidate the biological function and
molecular mechanism of SETDB1 and provide theoretical
support for the study of tumorigenesis, we identified the

targeting SETDB1-binding proteins with the STRING tool
and conducted bioinformatics analyses. The interaction
network analysis showed interaction information of
SETDB1 and these proteins with 51 nodes and 715 edges
(Figure S8A). These genes were considered the target
genes to obtain enriched GO terms and significant
KEGG pathways. In GO analysis, 364 GO categories
were detected, including 251 biological process (BP), 40
cellular component (CC), and 73 molecular function
(MF). In the GO-BP category, the target genes were
mainly enriched in covalent chromatin modification
(GO:0016569), histone modification (GO:0016570), and
peptidyl-lysine modification (GO:0018205) (Figure 13(a)).
In the GO-CC category, the genes were related to
heterochromatin (GO:0000792), chromosomal region
(GO:0098687), chromosome, and telomeric region
(GO:0000781) (Figure 13(a)). In the GO-MF category,
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Figure 11: Correlation analysis between SETDB1 expression and immune infiltration of cancer-associated fibroblasts.
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(e)

(f)

Figure 12: Correlation between SETDB1 expression and immunoinhibitor, immunostimulatory, human leukocyte antigen- (HLA-)
associated genes, microsatellite instability, and tumor mutational burden. (a) Immunoinhibitor, (b) immunostimulator, and (c) human
leukocyte antigen- (HLA-) associated genes. Red color indicates positive correlations; blue color indicates negative correlations. (d) SETDB1
expression significantly correlated with immunoinhibitor and immunostimulator in KIRC tissues. (e) Microsatellite instability and (f) tumor
mutational burden.
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target genes were mainly enriched in transcription
coregulator activity (GO:0003712), methylated histone
binding (GO:0035064), and methylation-dependent protein
binding (GO:0140034) (Figure 13(a)). In KEGG pathway
analysis, 51 genes were categorized into 11 KEGG
pathways. As a result, lysine degradation, thyroid hormone
signaling pathway, and cell cycle were identified and
marked as main KEGG pathways (Figure 13(b)). These
results are consistent with the results of GSEA analysis
(Figures 13(c) and 13(d)). Additionally, in terms of the
HALLMARK, a high expression level of SETDB1 was
significantly enriched in the mitotic spindle, unfolded
protein response, and PI3K-AKT-MTOR signaling. In
contrast, the low expression level of SETDB1 was
significantly enriched in the inflammatory response,
allograft rejection, coagulation, and epithelial-mesenchymal
transition (Figures 13(e) and 13(f)). Furthermore, the
results of GeneMANIA also revealed that SETDB1 and
targeting SETDB1-binding proteins were mainly related to
chromatin assembly, chromatin assembly or disassembly,
DNA packaging, DNA conformation change, protein-DNA
complex, nucleosome organization, and DNA packaging
complex (Figure S8B). CeRNA is important for
tumorigenesis by forming an extensive ceRNA network

involving mRNA, miRNA, and ncRNA. We identified hsa-
miR-29a-3p as the most vital miRNA regulator by
overlapping predictions of three databases (Figure S8C).
We then explored the complementary sequences between
SETDB1 and hsa-miR-29a-3p using the TargetScanHuman
database (Figure S8D). We also predicted the twelve target
lncRNAs by interacting with miRNA and lncRNA
sequences in the LncBase database. Then, the lncRNA-
miRNA-mRNA network was constructed based on
lncRNA-miRNA and miRNA-mRNA regulation pairs
(Figure S8E).

3.12. Drug Sensitivity Analysis. Genetic mutations can influ-
ence the efficacy of chemotherapy and targeted therapy.
Therefore, we evaluated the role of SETDB1 in chemother-
apy or targeted therapy and investigated the drug sensitivity
and drug resistance of cancer cell lines from the GDSC data-
sets. ANOVA analysis showed that drug sensitivity toward
Arg-G (nelarabine), Nilotinib, and KIN001-042 was signifi-
cantly correlated with the expression of SETDB1 (negative
correlation with IC50). However, the drug resistance toward
Bleomycin (50μM), JAK3_7406, and FGFR_0939 was corre-
lated with the expression of SETDB1 (positive correlation
with IC50) (Figure 14(a)). The correlation between GDSC
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Figure 13: Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Set
Enrichment Analysis (GSEA) for SETDB1 and its related genes. (a) GO analysis for SETDB1-related genes. (b) KEGG analysis for
SETDB1-related genes. (c) The enriched gene sets in KEGG collection by the high SETDB1expression sample. (d) The enriched gene sets
in KEGG by samples with low SETDB1 expression. (e) Enriched gene sets in HALLMARK by samples of high SETDB1 expression. (f)
Enriched gene sets in HALLMARK by the low SETDB1 expression.
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drug sensitivity and SETDB1 expression showed that most
drugs were negatively correlated with SETDB1 expression,
while 17-AAG and trametinib showed a positive correlation
with SETDB1 expression (Figure 14(b)). Furthermore, the
IC50 values of nelarabine and Bleomycin (50μM) for
SETDB1 (Mut and wild type) were displayed. The chemical
formulas of nelarabine and Bleomycin are C11H15N5O5 and
C55H84N17O21S3, respectively, and their structural formulas
are shown in Figures 14(c) and 14(d).

3.13. Validating Expression of SETDB1 by IHC. For further
validation, the expression level of SETDB1 gene was ana-
lyzed by IHC. Since gastrointestinal malignancies are the

most frequent primary tumors, we focus on the expression
level of SETDB1 gene in the most common gastrointestinal
malignancies including LIHC, CHOL, COAD, ESCA,
PAAD, and STAD. The results showed that SETDB1 was
highly expressed in tumor tissues and rarely expressed in
normal tissues (Figure 15). These results are similar to those
we have previously reported for different database.

4. Discussion

The SETDB1 gene, first identified in 1999 by Harte et al.
[11], with a length of 38.6 kilobases (kb), is located on the
human chromosome 1q21.3. Chromosome numbers and
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Figure 14: Drug sensitivity analysis based on SETDB1 mutation. (a) Genomics of drug sensitivity in cancer. (b) Correlation between GDSC
drug sensitivity, drug resistance, and SETDB1 mutation. (c) Nelarabine (Ara-G) IC50 values for SETDB1 mutation. (d) The structural
formulas of Nelarabine (Ara-G). (e) Bleomycin IC50 values for SETDB1 mutation. (f) The structural formulas of Bleomycin.

35Journal of Oncology



structural abnormalities are important factors for tumori-
genesis and the therapeutic response [32, 33]. Tumor tissues
have many chromosomal variants. Chromosome 1q gains
occurred in various human cancers, such as LUAD, LIHC,
OV, BRCA, and multiple myeloma [32, 34, 35]. Chromo-
some 1q21.3 abnormalities are related to breast cancer
recurrence, and they can promote cell proliferation and
DNA damage response in metastatic melanoma [35, 36].
SETDB1 is located in the 1q21.3 region that encodes a
histone methyltransferase which regulates transcriptional
repression, histone methylation, and gene silencing [37, 38].
This study has demonstrated that the SETDB1 is differen-
tially expressed in most tumors and normal tissues, indicat-
ing that it also plays an oncogenic role in these tumors. The
amplification of SETDB1 in human tumors is significantly
associated with immune exclusion and tumor progression,
but its biological and functional role or contribution to tumor
prognosis is unknown [12]. This paper is the first pan-cancer
analysis of SETDB1 across 33 different tumors based on the
data of TCGA, CPTAC, and GEO databases. The results
show that SETDB1 is significantly correlated with tumori-
genesis and clinical outcomes.

SETDB1 has specific domains [39], such as two Tudors,
MBD, pre-SET, SET, and post-SET, and this result is consis-
tent with our finding. The most biological function of
SETDB1 is ascribed to the SET domain, which is highly con-
served across species and originally identified in the Dro-
sophila Trithorax (TRX) and human MLL proteins [40].
SETDB1 is a member of SET family and is an H3K9 methyl-
transferase that modulates gene activity. The pre-SET, SET,
and post-SET domains are crucial for histone methyltrans-
ferase activity. Furthermore, SETDB1 protein has a canoni-

cal CpG DNA methyl binding domain (MBD) at the N-
terminus, which can bind methylated DNA at one site
[41]. Growing evidence suggests the involvement of MBD
genes in cancers [42]. MBD is involved in various signaling
pathways and cellular functions, including DNA damage
repair, chromatin remodeling, histone methylation, and X
chromosome inactivation [42]. MBD can also potentially
coordinate the functions of DNA methyl-CpG binding and
H3K9 methylation, both of which can promote epigenetic
marks [42, 43]. SETDB1 also contains a unique tandem
Tudor domain that recognizes histone H3 sequences con-
taining acetylated lysines and methylated [44]. SETDB1 bio-
logical function is a two-edged sword. On the one hand, it
may downregulate antioncogenes through histone methyla-
tion. On the other hand, it may inhibit tumor-intrinsic
immunogenicity, enabling cancer cells to evade immune
responses [12, 45].

A recent study indicated that tumor cell-intrinsic epige-
netic alterations drive tumorigenesis and cancer progression
[46]. The epigenetic characters reflect the heterogeneity of
tumors and indicate potential epigenetic changes, which lead
to cancer cell invasion during tumor progress [46, 47]. As an
important player in tumor epigenetics, SETDB1 expression
is significantly differential in most cancerous tissues and
adjacent healthy tissues [8, 48–51], which is consistent with
our findings. It is demonstrated that SETDB1 is an oncogene
and an important prognostic factor in some tumors.
SETDB1 expression is upregulated in LIHC tissues and is
associated with tumor size, enhanced stage, and TNM classi-
fication [52]. Similarly, for TCGA-LIHC patients, we
observed that the expression level of SETDB1 is significantly
elevated in tumor tissues compared to that in paracancerous
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Figure 15: Immunohistochemistry results of SETDB1 performed in normal and tumor tissues of human.
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tissues. LIHC tissues from patients with advanced-stage
tumors show significantly higher expression levels of
SETDB1 compared with those from patients with early-
stage tumors. We also observed that the expression levels
of SETDB1 were significantly lower in the stage 4 tumor
than those in early-stage tumors. However, this result may
be inaccurate due to the sample size limitation (six samples
with stage 4 tumor). Therefore, a large sample size study is
needed to further verify the conclusion.

Cancer develops as a result of genetic mutational events
that lead either to the overexpression of growth-promoting
oncogenes or the inactivation of cell cycle-controlling tumor
suppressor genes [53]. Growing evidence implies that
SETDB1 is a potential oncogene for tumorigenesis [8].
Therefore, comprehensively understanding the biological
functions of SETDB1 mutations can help to inhibit tumori-
genesis and develop effective antitumor agents. It has been
reported that mutated SETDB1 is widespread and occurs
in most malignant pleural mesothelioma [54, 55]. The fre-
quent SETDB1 mutation indicates that there may be a
potential therapeutic target for malignant pleural mesotheli-
oma [55]. We first used the cBioPortal online database to
explore genetic mutation levels of SETDB1 in various can-
cers. The pan-cancer mutation spectra showed that a high
mutant frequency of SETDB1 occurred in most human
tumors, with the highest frequency in UCEC (15.09% of
517 cases). These results also demonstrated that SETDB1
mutation played a significant role in tumorigenesis.

Cancer is an increasingly health-threatening disease that
has a poor prognosis due to the lack of effective treatment.
The progression and recurrence of the tumor challenge the
effectiveness of therapies [56, 57]. Due to the therapeutic
resistance and tumor relapse after therapy, the paradigms
of cancer-centric therapeutics are not sufficient to eradicate
the malignancy [58]. Targeting tumor microenvironment
(TME) is a novel tumor treatment strategy in recent years.
CAFs are the most abundant stromal cells in the TME and
play significant roles in tumor development. Our results also
revealed the significant association between SETDB1 expres-
sion and tumor-related immune cell infiltration level of
CAFs in certain tumors, including ACC, BRCA, CESC,
COAD, HNSC, HNSC-HPV, KIRP, LIHC, READ, and
TGCT. Furthermore, we used the online databases to
explore the correlation between SETDB1 expression and
immune cell infiltration level in human cancer and found
that tumor-related immune cells significantly increased in
tumor tissues with high SETDB1 expression levels. These
results also demonstrated that the expression levels of
SETDB1 influenced tumor growth, metastasis, and prognosis.

Immunotherapy has emerged as a new pillar of cancer
treatment in recent years. The introduction of PD-1, PD-
L1, and CAR-T cell immunotherapy into the therapeutic
strategy of advanced cancer leads to unprecedentedly pro-
longed survival for patients [59]. According to our findings,
increased expression of SETDB1 has a significantly negative
correlation with immunoinhibitor and immunostimulator in
most cancers. Therefore, we speculated that decreasing
SETDB1 expression in tumor cells might enhance immuno-
therapeutic responses.

5. Conclusion

In summary, we conducted the pan-cancer analysis of
SETDB1 oncogenes for the first time. The omics analysis,
prognostic analysis, methylation and phosphorylation analy-
sis, immune analysis, and enrichment analysis of SETDB1
were performed. The mRNA and protein expression levels
and gene alteration levels were analyzed. It is expected that
the investigation and characterization of SETDB1 biological
function can help to identify the key targets and regulatory
pathways and promote human cancer treatment in the
future.
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