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Clear cell renal cell carcinoma (ccRCC) is the most common primary malignancy of renal cancer in adults. Ferroptosis is critically
associated with the prognosis of ccRCC. However, knowledge of long noncoding RNA- (lncRNA-) related ferroptosis that affects
the prognosis of ccRCC is still insufficient. Using the LASSO regression, we created a risk model based on differentially expressed
ferroptosis-related lncRNAs (FRLRS) in ccRCC. /e analysis of Kaplan–Meier for survival, area under the curve (AUC) for
diagnosis, nomogram for predicting overall survival, and gene expression for immune checkpoints were performed based on the
screened independent prognostic factors. Nine lncRNAs were found to be associated with ccRCC prognosis. Furthermore, the
prognostic AUC of the FRLRS signature was 0.78, demonstrating its usefulness in predicting ccRCC prognosis. /e lncRNA risk
model outperformed the standard clinical variables in predicting ccRCC prognosis. Finally, /e Cancer Genome Atlas revealed
that T cell functions, such as cytolytic activity, human leukocyte antigen activity, inflammation regulation, and type II interferon
response coordination, are significantly different between two different risk levels of ccRCC. Immune checkpoints were also
expressed differently in programmed cell death 1 receptor, inducible T cell costimulator, cytotoxic T-lymphocyte antigen-4, and
leukocyte-associated immunoglobulin-like receptor 1. /e nine FRLRS signature models may affect the prognosis of ccRCC.

1. Introduction

By far the most common type, renal cell carcinoma (RCC) is
thought to originate in the renal epithelium in the kidney
and affects over 400,000 individuals worldwide annually
[1, 2]. Previous studies have reported that ccRCC is char-
acterized as a highly metabolic disease, and fetal tumors are
likely to be fundamental to the development of renal cancer-
related deaths [3].

Currently, localized ccRCC can be treated with partial or
radical nephrectomy [4], ablation [5], or active surveillance
[6]. Approximately 30% of ccRCC who recur with the lo-
calized disease eventually develop metastases following
curative nephrectomy [7–9], which be associated with higher

mortality and requires systemic therapy. Mammalian targets
of the rapamycin pathway have been developed. However,
the response to treatment varies, and most ccRCC patients
eventually make progression [10]. Treatment seems to have
had a positive effect on the prognosis of patients based on the
expression of clinical diagnostic markers. /erefore, iden-
tifying biomarkers is essential for effective and rapid in-
tervention and treatment of ccRCC patients [11, 12].

Recently, a novel form of cell death, termed ferroptosis,
was first proposed by Dixon in 2012 [13]. Ferroptosis is a
form of unique iron-reliant and reactive oxygen autophagy-
dependent on cell death with characteristics of cytological
changes, such as diminished or decreased mitochondrial
cristae and mitochondrial membrane condensed [14–17].
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Mounting evidence indicates that ferroptosis is involved in
diverse physiological and pathological conditions in human
disease [18]. Hepatocellular carcinoma [19], gastric cancer
[20, 21], and other cancers [22, 23] have been proven to be
ferroptosis-related. /erefore, these include targeting fer-
roptosis has been suggested in cancer therapeutic [17]. Bi-
ologically, kidney disease is a metabolic disorder and is
associated with the iron metabolism [24]. Recent studies
demonstrated that ferroptosis is associated with ccRCC
[25, 26]. Long noncoding RNAs (lncRNAs) have a critical
predictive value in various cancers’ occurrence, progression,
and prognosis [27–29]. Wu conducted a novel ferroptosis-
associated genes model based on the clinical significance in
predicting pancreatic cancer [30]. An increasing number of
genes related to ferroptosis have been found. However, the
association between ferroptosis-related lncRNAs (FRLRS),
and their prognostic value in ccRCC is yet to be understood.

Here, we provide new insights to assess the prognostic
value of FRLRS in ccRCC. Using bioinformatics analysis, we
established independent prognostic multiple FRLRS signa-
tures and estimated lncRNAs in the immunotherapy re-
sponse by inhibitory concentration.

2. Materials and Methods

2.1.DataCollection. RNA sequences of ccRCC patients’ data
were downloaded from TCGA-KIRC (72 patients were
normal, 539 patients had tumors). Taking the corresponding
genes related to ferroptosis in FerrDb [31] provides the most
comprehensive database of iron bacteria and related disease
markers by a web-based alliance. Our study identified 259
ferroptosis-related genes (Figure 1, Supplementary
Table S1). If the correlation |R| was >0.5 at p< 0.05, the
association between FRLRS and ccRCC was considered
significant. /e clinical information data collected from
patients with ccRCC included gender, age, stage, grade,
tumor-node-metastasis (TNM), survival status, and follow-
up time. /e additional biological function of the differ-
entially expressed FRLRS was analyzed based on GO and
KEGG data using R software via the package “cluster pro-
file,” “ggplot2,” and “enrichplot.”

2.2. Construction of the FRLRS PrognosticModel. A machine
learning method (LASSO) was used to identify hub genes
more efficiently. Univariate Cox analysis combined with
multivariate Cox regression analysis identified significant
increments associated with FRLRS. LASSO was utilized to
construct the FRLRS signature. /e equation of risk
score � (β1 × FRLRS − 1) + (β2 × FRLRS − 2) +· · ·+ (βn ×

FRLRS − n). We established the hybrid nomogram using
the selected FRLRS prognostic signature and independent
factors in TCGA-KIRC. Based on the median expression
levels of FRLRS, ccRCC patients were divided into dif-
ferent risk groups (high-risk and low-risk groups).
According to the clinical variables and FRLRS in the
hybrid nomogram, the ROC analysis was performed to
estimate the accuracy of 1-year, 3-year, and 5-year over
survival (OS).

2.3. Molecular Mechanism and Immune Infiltration Enrich-
ment Analyses. Six enrichment analyses algorithms, in-
cluding the CIBERSORT [32, 33], ESTIMATE, MCPconuter
[34], ssGSEA [35], TIMER [36], and xCell algorithms, were
compared to evaluate enrichment scores and cellular
components in the two risk levels groups according to screen
lncRNA signature. Enrichment analyses algorithms were
applied to definite enrichment scores representing the gene
set absolute enrichment in each sample with the “GSVA”
package. Potential immune checkpoints were retrieved from
the published literature [37]. Moreover, the TIDE model,
trained from treatment-naive tumor data, can predict the
likelihood of the immunotherapeutic response [38–40].

2.4. Statistical Analysis. LASSO, Cox analysis, and heatmaps
were used to assess the correlation between FRLRS and
clinicopathological characteristics. /e therapeutic response
was estimated by the TIDE model and the half-max in-
hibitory concentration (IC 50) obtained from the GDSC
website. Kaplan–Meier survival curves analysis and principal
component analysis (PCA) evaluated patients with ccRCC
based on the FRLRS signature. Our analyses were performed
in the R statistical (4.0.2).

3. Results

According to TCGA and FerrDb data, 76 ferroptosis-related
DEGs were identified (42 upregulated and 34 downregulated
genes) (Supplementary Table S2). BP is involved in cell
production in response to chemical stress, hypoxia, cofactor
metabolism, and oxidative stress. MF mainly regulates iron
ion binding, coenzyme binding, and oxidoreductase activity.
It acts on a single donor by combiningmolecular oxygen and
nicotinamide adenine dinucleotide phosphate oxidase. CC
was mainly elevated in the apical part of the cell, apical
plasma membrane, and basolateral plasma membrane.
KEGG analysis shows overexpressed genes were mainly
involved in HIF-1, microRNA in cancer, Kaposi sarcoma-
associated herpesvirus infection, arachidonic acid meta-
bolism, proteoglycan in cancer, human giant cell virus in-
fection, ferroptosis, biosynthesis of amino acids, fluid shear
stress and arteriosclerosis, autophagy-animal, and seroto-
nergic synapse (Figure 2(a) and Supplementary Table S3).
/e waterfall plot displays mutation information of the 76
ferroptosis-related DEGs in TCGA-KIRC entire set
(Figure 2(b)) and in two risk groups (Figures 2(c) and 2(d)).

3.1. Identification of Prognostic FRLRS Signature in ccRCC.
We obtained 1502 FRLRS in the TCGA-KIRC cohort
(Supplementary Table S4). Combined with multivariate Cox
regression analysis, univariate Cox analysis identified 106
significant increments associated with FRLRS. Subsequently,
106 lncRNAs were included in the TCGA cohort for LASSO.
Overall, 9 differently expressed lncRNAs (AC026401.3,
LINC01615, PRKAR1B-AS1, LINC02609, LINC00460,
AC084876.1, AC008870.2, LINC02747, and AC103706.1)
were uncovered to be independent prognosis predictors in
TCGA-KIRC (Figures 3(a) and 3(b), Supplementary
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Ontology ID Description
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oxidoreductase activity, acting on

single donors with incorporation of
molecular oxygen

MF GO:0016702

oxidoreductase activity, acting on
single donors with incorporation of
molecular oxygen, incorportion of

two atoms of oxygen

MF GO:0005506 iron ion binding

KEGG hsa04066 HIF-1 signaling pathway

KEGG hsa00590 Arachidonic acid metabolism

KEGG hsa04216 Ferroptosis

CC GO:0016323 basolateral plasma membrane
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Figure 2: 76 ferroptosis-related DEGs in TCGA-KIRC. (a) GO and KEGG enrichment analysis. (b) /e mutation information in the entire
set. (c) /e mutation information in the high-risk group. (d) /e mutation information in the low-risk group.
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Figure 1: /e research process flowchart.

Journal of Oncology 3



−4.5 −4.0 −3.5 −3.0 −2.5 −2.0

13

14

15

16

17

Log (λ)

Pa
rt

ia
l L

ik
el

ih
oo

d 
D

ev
ia

nc
e

106 86 62 57 43 39 35 30 26 21 14 9 4 2 0

(a)

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0

−1.0

−0.5

0.0

0.5

1.0

Log Lambda

C
oe

ffi
ci

en
ts

106 78 40 30 14 3

(b)

Risk

Protect

lncRNA Risk TypemRNA

ZNF419

TRIB3

TAZ

STMN1

SLC2A6
SLC1A5
SETD1B

RRM2

RGS4
PRKAA2

PML

PHKG2

PANX1

NCOA4

MAPK1
LINC00472

HSF1
HRAS

HELLS

GABPB1
FBXW7

FANCD2

CHAC1

CDKN2A

CD44
CARS1

BRD4

BID

AURKA

ATM
ATF4

ALOX12

AC008870.2

AC026401.3

AC084876.1

AC103706.1

ARHGEF2-AS2

FOXD2-AS1

LINC00460

LINC00941

LINC01615
LINC02609
LINC02747

SLBP-DT

UST-AS2

PRKAR1B-AS1

TUBE1

(c)

AC026401.3

LINC01615

PRKAR1B−AS1

LINC02609

LINC00460

AC084876.1

AC008870.2

LINC02747

AC103706.1

risk
Age
Gender**
Grade***
Stage***
T***
M***
N

N

N0

N1

unknow

M***

M0

M1

unknow

T***

T1

T2

T3

T4

Stage***

Stage I

Stage II

Stage III

Stage IV

unknow

Grade***

G1

G2

G3

G4

unknow

Gender**

FEMALE

MALE

Age

<=65

>65

risk

high

low

−10

−5

0

5

10

(d)

Figure 3: (a)/e tuning parameters of LASSO. (b) LASSO coefficient profile of FRLRS. (c) Sankey diagram for ferroptosis-related genes and
FRLRS. (d) /e heatmap for 9 FRLRS with prognostic feature and clinicopathological variables.
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Table S5). Sankey relational diagram for ferroptosis-related
DEGs and FRLRS is shown in Figure 3(c). /e correlation
analysis was also examined with a heatmap between the
FRLRS feature and clinical variables (Figure 3(d)). Cox
analyses revealed that the lncRNA signature (hazard ratio
(HR): 1.069, 95% confidence interval (CI): 1.052–1.086),
grade (HR: 2.32, CI: 1.879–2.864), age (HR: 1.031, CI:
1.018–1.045), and stage (HR: 1.911, CI: 1.671–2.185) were
independent prognostic factors for OS (Figures 4(a) and
4(b)). Figure 4(c) shows the association between lncRNAs
and mRNAs. /e correlations heatmap of FRLRS and DEGs
are shown in Supplementary Figure S1.

3.2. FRLRS Set Analyses andConstructionHybridNomogram.
GO analysis and GSEA for the biological function of these
FRLRS are shown in Figure 5. /e novel FRLRS prognostic
signature regulated could be found in tumor and immune-

related pathways, including cytokine-receptor interaction,
glycerophospholipid metabolism, homologous recombina-
tion, IgA production, primary immunodeficiency, endo-
metrial cancer, peroxisome, propanoate metabolism,
prostate cancer, valine leucine, and isoleucine degradation
(Supplementary Table S6). As shown in Figure 6(a), we
found a distinct distribution pattern between two different
groups of ccRCC patients in regard to prognosis. Figure 6(b)
shows the survival status and time of ccRCC patients in two
different risk levels of ccRCC patients. Figure 6(c) shows the
relative expression of 9 FRLRS for each ccRCC patient.
Moreover, the prognosis AUC of FRLRS signature was 0.78,
outperforming traditional clinical characteristics in pre-
dicting ccRCC patients (Figure 6(d)). /e DCA of the risk
level and other clinicopathological features shows that the
prognostic risk model of 9 FRLRS for ccRCC was com-
paratively dependable (Figure 6(e)). /e concordance index
(C-index) shows that the risk model performs better than
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Figure 4: (a) Univariate Cox of FRLRS. (b) Multivariate Cox of FRLRS. (c) /e correlations between FRLRS and mRNA.
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other traditional clinical factors (Figure 6(f )). We estab-
lished the hybrid nomogram using 9 FRLRS prognostic
signatures and independent factors in TCGA-KIRC
(Figure 7(a)). /e OS of AUC is predictive for 1-year
(AUC� 0.78), 3-year (AUC� 0.734), and 5-year
(AUC� 0.77) (Figure 7(b)). /e calibration plot of the
nomogram is shown in Figure 7(c).

3.3. Principal Component Analysis (PCA) and Survival
Analysis. /e PCA schematic diagram shows two different
risk levels of ccRCC patients in entire gene expression
(Figure 8(a)), 76 ferroptosis genes (Figure 8(b)), 1502 fer-
roptosis-related lncRNAs (Figure 8(c)), and 9 lncRNA risk
models (Figure 8(d)). In the TCGA-KIRC dataset, the K-M

curve showed that OS of low-risk ccRCC group patients
stratified by TNM stage, gender, and tumor grade was
significantly better (p< 0.001, Figures 9(a)–9(o)).

3.4. FRLRS Set Enrichment Analyses and Immunity Gene
Expression. Figure 10 shows an immune response heatmap
based on different enrichment analyses algorithms, the
TIMER, MCPcounter, GSEA, and XCELL algorithms. Be-
cause of the importance of immunotherapy based on
checkpoint inhibitors, we studied the difference of immune
checkpoint genes expression in two different risk groups of
ccRCC. Our study indicated significant difference expres-
sion genes, such as ICOS, CTLA4, LAIR1, LGALS9, IDO2,
TNFRSF18, TNFSF9, TNFSF4, TMIGD2, TNFRSF8, CD44,
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Figure 5: (a) GO analysis for FRLRS based on the TCGA-KIRC dataset. (b) GSEA analysis for FRLRS based on TCGA-KIRC.
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TNFSF14, PDCD1, CD80, CD40, CD244, NRP1, CD28,
CD27, CD70, TNFRSF9, CD86, LAG3, TNFRSF14, BTLA,
and TIGIT (Figure 11(a)). Using TCGA-KIRC, data revealed
that Tcell functions, including APC costimulation and CCR,
checkpoint, cytolytic activities, promoting inflammation,
parainflammation, and IFN response, were different be-
tween both risk groups of ccRCC patients (Figure 11(b)).

3.5. Evaluation of the �erapeutic Response with IC50 and
TIDEAlgorithm. Our study used the prophetic algorithm to
assess potential drug targeting with the 9 FRLRS model for
treating ccRCC./e low-risk group was more sensitive in 10
compounds with significant differences (A.443654,
A.770041, ABT.888, AG.014699, AKT.inhibitor.VIII,
AMG.706, AP.24534, AS601245, AZ628, and AZD.0530) by
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the estimated IC50. Figures 12(a)–12(j) show 10 different
compounds that may be used to analyze ccRCC patients
further. According to the prediction of the TIDE algorithm,
the low-risk ccRCC group patient has better immunotherapy
response (Figure 12(k)).

4. Discussion

We first identified FRLRS signatures using a combined
analysis of TCGA-KIRC and FerrDb datasets in this study.
/is novel approach may lead to new immunotherapeutic
targets for tumor treatment. During the development of
immunotherapy, we explored whether FRLRS are correlated
with immune cells and immunotherapy response in ccRCC
prognosis. /ese findings led to the identification of po-
tential biomarkers or immunotherapy targets in ferroptosis
signaling pathways. According to TCGA and FerrDb data,

76 ferroptosis-related DEGs were identified. We obtained
1502 FRLRS in TCGA-KIRC. Combined with LASSO Cox
analysis, 106 FRLRS were identified. KEGG analysis revealed
that the genes mainly involved in Kaposi sarcoma-associated
herpesvirus infection, miRNAs in cancer, arachidonic acid
metabolism, proteoglycans in cancer, human cytomegalo-
virus infection, ferroptosis, biosynthesis of amino acids, fluid
shear stress and atherosclerosis, autophagy-animal, and
serotonergic synapse. Furthermore, the in-depth analysis
revealed 9 differentially expressed lncRNAs (AC026401.3,
LINC01615, PRKAR1B-AS1, LINC02609, LINC00460,
AC084876.1, AC008870.2, LINC02747, and AC103706.1).
PCA shows that the model using FRLRS can distinguish well
between ccRCC patients with two different risk levels. /e
K-M curve shows that ccRCC patients in the low-risk group
have a better survival prognosis. /ese FRLRS may be in-
dependent prognostic biomarkers for ccRCC patients.
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Among these lncRNAs, LINC01615 was identified as a
metastasis-related lncRNA in HCC [41]. LINC00460 was
also found to be critical for multiple tumorigeneses. A recent
study found that LINC00460 could promote epithelial-
mesenchymal transition in HNSCC by facilitating perox-
iredoxin-1 [42]. A related study suggested that LINC00460 is

a potential biomarker related to outcomes in malignant
tumors [43], which provides critical insights into the tar-
geting of FRLRS in predicting ccRCC. Recently, high
LINC02747 expression was significantly associated with
advanced tumor TNM stage, histological grade, and poor
outcome, thus promoting the proliferation of ccRCC
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according to inhibit miR-608 [44]. Collectively, these
findings provide an essential basis for this study regarding
the association between lncRNAs and ccRCC. Nevertheless,
our findings may provide a research direction on the role of
FRLRS in ccRCC prognosis for cancer treatment.

/e ssGSEA algorithm revealed that T cell functions,
such as APC costimulation and CCR checkpoint, and cy-
tolytic activities, promoting inflammation and para-
inflammation, were significantly different in different risk
groups of ccRCC. Combination ferroptosis with ICIs can
synergistically promote antitumor activity, even in ICI re-
sistance [45]. Because of the importance of immunotherapy
based on checkpoint inhibitors, our data revealed a sub-
stantial difference expression with immune checkpoint-re-
lated genes in both groups of ccRCC patients, highlighting

the potential significance of FRLRS in regulating ICIs. /e
total number of somatic encoding mutation (TMB) is a
potent biomarker for predicting the response to immuno-
therapy. As in other studies [40], TMB exceeded the high-
risk ccRCC group. Furthermore, several studies have vali-
dated that TIDE algorithms can serve as a predictive model
for immunotherapy [38–40]. In this study, ccRCC patients
in the low-risk group have better immunotherapy response.
Ten candidate compounds for KIRC differentiation were
identified in our study.

Based on the characteristics of these 9 lncRNAs, we
suggest that it could assist in developing diagnostic and
prognostic kits for ccRCC and offer potential comprehensive
targets for the future intervention of ccRCC. We agree that
in future, more prominent translational and clinical studies
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Figure 11: (a) /e expression of immune checkpoints between two different risk groups of ccRCC patients. (b) /e association between
immune cell subpopulations and related functions of ccRCC patients.
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confirm this signature observed in our study setting. /e
findings of our study provide new insight into the under-
lying mechanisms by FRLRS that can predict the prognosis
of ccRCC. Nevertheless, limitations still exist, and future
studies are warranted for further investigation. We only use
samples from the TCGA cohort to build the model. Further
validation using different cohorts is needed to verify the
signature profiles in this setting. Second, we use the retro-
spective data of the public database to construct and verify
FRLRS. Information from prospective data to evaluate its
clinical efficacy for ccRCC is limited, and its molecular
mechanism has not been determined—more basic experi-
ments need further to validate the interaction between
lncRNA and ferroptosis genes. /us, considering that
clinical samples do not verify the results of this study, there is
no guarantee that reliability can be directly tested.

5. Conclusion

In summary, we elucidated that specific FRLRS in the
prognostic prediction of ccRCC. Furthermore, our current
findings may provide more valuable insights for future
ccRCC research by much more large clinical trials.
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