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Objectives. A more accurate preoperative prediction of lymph node metastasis (LNM) plays a decisive role in the selection of
treatment in patients with laryngeal carcinoma (LC). Tis study aimed to develop a machine learning (ML) prediction model for
predicting LNM in patients with LC. Methods. We collected and retrospectively analysed 4887 LC patients with detailed de-
mographical characteristics including age at diagnosis, race, sex, primary site, histology, number of tumours, T-stage, grade, and
tumour size in the National Institutes of Health (NIH) Surveillance, Epidemiology, and End Results (SEER) database from 2005 to
2015. A correlation analysis of all variables was evaluated by the Pearson correlation. Independent risk factors for LC patients with
LNM were identifed by univariate and multivariate logistic regression analyses. Afterward, patients were randomly divided into
training and test sets in a ratio of 8 to 2. On this basis, we established logistic regression (LR), k-nearest neighbor (KNN), support
vector machine (SVM), extreme gradient boosting (XGBoost), random forest (RF), and light gradient boosting machine
(LightGBM) algorithm models based on ML. Te area under the receiver operating characteristic curve (AUC) value, accuracy,
precision, recall rate, F1-score, specifcity, and Brier score was adopted to evaluate and compare the prediction performance of the
models. Finally, the Shapley additive explanation (SHAP) method was used to interpret the association between each feature
variable and target variables based on the best model. Results. Of the 4887 total LC patients, 3409 were without LNM (69.76%), and
1478 had LNM (30.24%). Te result of the Pearson correlation showed that variables were weakly correlated with each other. Te
independent risk factors for LC patients with LNM were age at diagnosis, race, primary site, number of tumours, tumour size,
grade, and T-stage. Among six models, XGBoost displayed a better performance for predicting LNM, with fve performance
metrics outperforming other models in the training set (AUC: 0.791 (95% CI: 0.776–0.806), accuracy: 0.739, recall rate: 0.638, F1-
score: 0.663, and Brier score: 0.165), and similar results were observed in the test set. Moreover, the SHAP value of XGBoost was
calculated, and the result showed that the three features, T-stage, primary site, and grade, had the greatest impact on predicting the
outcomes. Conclusions. Te XGBoost model performed better and can be applied to forecast the LNM of LC, ofering a valuable
and signifcant reference for clinicians in advanced decision-making.

1. Introduction

Laryngeal carcinoma (LC) is one of the most common
primary malignancies in the head and neck region, with an

increasing incidence annually [1]. Te incidence and mor-
tality of LC have reached 2.76/105 and 1.66/105 in the world,
which pose a serious threat to human health [2]. Currently,
the treatment of LC is dominated by surgery and
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supplemented by chemotherapy, radiotherapy, targeted
therapy, and immunotherapy [3]. Despite multiple strategies
and interventions, the prognosis for LC is still unsatisfactory,
with a 5-year survival rate of only 50% to 60% in patients and
a third of the cases relapsing [4].

For patients with LC, lymph node metastasis (LNM) is
one of the most important factors in their treatment and
prognosis [5]. In clinical diagnosis and treatment, the pal-
pation of neck nodes using ultrasonography (US), computed
tomography (CT), magnetic resonance imaging (MRI), or
positron emission tomography-computed tomography
(PET-CT) is frequently used to evaluate lymph node status
[6, 7]. However, several defciencies remain with respect to
sensitivity and specifcity in the abovementioned methods
[8]. Previous studies have reported that a large proportion of
LC patients diagnosed with LNM preoperatively who un-
derwent intraoperative cervical lymph node dissection
(LND) have a negative pathological diagnosis after surgery
[9]. Conversely, some patients with clinically negative cer-
vical lymph nodes have positive pathology results after
surgery, leading to delayed treatment or even secondary
surgery [10]. Terefore, the development of new diagnostic
tools for accurately determining preoperative cervical lymph
node status is highly essential for selecting appropriate
therapy and determining prognosis.

Te machine learning (ML) algorithm has been widely
used in developing disease prediction models in recent years
[11]. Compared with conventional statistical methods, ML
can more accurately predict outcomes from multiple un-
related datasets by using high-level computing to construct
algorithms for automated data-driven predictions or de-
cisions [12, 13]. Nevertheless, there is no relevant research
on the ML to predict the LNM of LC. In this study, we aimed
to identify risk factors associated with LNM in LC patients
and developed multiple ML-based models for the pre-
operative prediction of LNM by using clinical and histo-
pathological parameters in Surveillance, Epidemiology, and
End Results (SEER) public data. In addition, we chose the
best MLmodel for predicting the risk of LNM in LC patients
by comparing the assessment indicators of predictive per-
formance, which aim to identify an accurate prediction
method and guide the selection of clinical diagnoses and
treatment plans. Meanwhile, the correlation between LNM
and clinicopathological characteristics in LC patients was
interpreted through the Shapley additive explanation
(SHAP) value to help clinicians understand the output of
the model.

2. Materials and Methods

2.1. Study Population. Te SEER database, managed by the
National Cancer Institute, is a publicly available large
population-based cancer registry database that covers almost
30% of the population of the United States [14]. All patient
data in this study were downloaded from the SEER database
after receiving approval and permission from SEER. Patient
data with a confrmed diagnosis of LC were screened from
“Incidence-SEER 18 Regs Research Data, Nov 2020 Sub
(2000–2018).” Te study was limited to the period between

2005 and 2015. Te inclusion criteria are as follows: (1) the
primary tumour site was in the larynx; (2) the pathological
diagnosis was classifed as “positive”; (3) the histology of the
tumour was categorized as “malignant.” Te exclusion
criteria are as follows: (1) unknown information about race,
T-stage, grade, tumour size, regional lymph nodes, and
surgery of the primary site; (2) the M stage was not “M0.”
Overall, 4887 patients fulflled the selection criteria and were
chosen for further analysis. Te International Classifcation
of Diseases for Oncology, version 3 (ICD-O-3), was used to
determine tumour location, grade, and histology. Tumour
staging was determined based on the 6th edition of the
American Joint Committee on Cancer (AJCC) staging. Te
patient screening procedure is displayed in Figure 1.

2.2. Data Classifcation. In this study, nine demographics
and clinicopathological variables from the SEER database
that may afect LNM in LC patients were selected, including
age at diagnosis, race, sex, primary site, histology, number of
tumours, T-stage, grade, and tumour size.

Patients were divided into groups according to their age
at diagnosis: <50 years, 50–65 years, and ≥65 years. Patients
were divided into groups according to race: white, black, and
others. Patients were classifed into groups based on sex:
male and female. According to the primary site, the patients
were divided as follows: supraglottis, glottis, subglottis,
larynx, and others. According to histology, the patients were
classifed into squamous cell carcinoma and nonsquamous
cell carcinoma groups. Based on the number of tumours, the
patients were classifed into 1 and >1 groups. According to
tumour size, the patients were classifed into ≤3 cm and
>3 cm groups. Te grades were categorized as follows: grade
I, grade II, grade III, and grade IV. Te T-stage was cate-
gorized as follows: T1, T2, T3, and T4.

2.3. Statistical Analyses. In this study, all statistical analyses
were carried out using SPSS (version 22.0, IBM). Patients
involved in this study were separated into two groups:
nonlymph node metastasis (NLNM) and LNM. Te chi-
square test was performed to compare the diferences be-
tween the two groups. A p value less than 0.05 was con-
sidered to indicate that the identical attributes were
signifcantly diferent between the two groups. A correlation
analysis of all variables was evaluated by the Pearson cor-
relation, and the results are displayed as a heatmap. In
addition, univariate and multivariate logistic regression
analyses were used to identify independent risk factors for
LNM. In the univariate analyses, variables with p values less
than 0.05 were regarded as statistically signifcant and
chosen for multivariate analyses. Ten, variables with p

values below 0.05 in the multivariable logistic regression
analysis were taken as candidate variables for the estab-
lishment of ML models.

2.4. Model Establishment. For this study, Python software
was used to establish the ML models. All patients were
divided into a training set (n� 3909) and a test set (n� 978)
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at a ratio of 8 : 2 by random sampling, until no signifcant
diferences were observed in baseline clinical characteristics
(Supplementary Table S1). Te training set was used to
establish the model, and then the model was validated on the
test set. A total of six diferent ML algorithms were used to
model the data in the training set, including logistic re-
gression (LR), k-nearest neighbor (KNN), support vector
machine (SVM), extreme gradient boosting (XGBoost),
random forest (RF), and light gradient boosting machine
(LightGBM). Furthermore, 10-fold cross validation was
performed to gauge the stability of the model and determine
whether the model was overftted. Accuracy, precision, recall
rate, F1-score, area under the ROC curve (AUC), specifcity,
and calibration plots were used to evaluate ML models. Te
Brier score, which ranges from 0 to 1, was used to quantify
the calibration plots [15]. Te AUCs were compared by the
DeLong test, and a p value less than 0.05 was considered to
indicate that there was a signifcant diference between the
two models.

Te Shapley additive explanation (SHAP) framework,
a game theory approach, has been used to interpret the
output of any ML model [16]. Tis approach interprets each
feature variable by assigning a specifc prediction weight and
calculating its importance value. In this study, we used the
SHAP value to improve the interpretation of the best
model [17].

3. Results

3.1. Demographic and Pathological Characteristics. A total of
4887 cases were available in this study, including 3409 cases
without LNM (69.76%) and 1478 cases with LNM (30.24%)
(Table 1). In the comparison of the two groups, all variables
except histology were considered to be signifcantly diferent
(p< 0.05), including age at diagnosis, race, sex, primary site,
number of tumours, T-stage, grade, and tumour size. Details
for the groups are summarized in Table 1. In addition, all
variables were entered into a Pearson correlation analysis, of

Laryngeal carcinoma in 2005-2015
n=31124 

Excluded unknown surgery of primary site
(n=19464)

Excluded M stage was not “MO” (n=627)

Excluded unknown regional lymph nodes
(n=539)

Excluded unknown T stage (n=54)

Excluded unknown grade (n=1805)

Excluded unknown tumour size (n=3732)

Excluded unknown race (n=16)

Eligible patients
n=4887

Figure 1: Flowchart of the detailed screening of the study population.
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which the result shows that variables were weakly correlated
with each other and had good independence (Figure 2).

3.2. Analysis of Risk Factors for Lymph Node Metastases.
Based on the univariate logistic regression analysis, age at
diagnosis, race, sex, primary site, number of tumours, T-
stage, grade, and tumour size were signifcantly correlated
with LNM in LC patients (p< 0.05) (Table 2). Further
multivariate logistic regression analysis showed that age at
diagnosis, race, primary site, number of tumours, T-stage,
grade, and tumour size were identifed as independent risk
factors for the LNM of LC (Table 3).

3.3. Model Performance. In this study, we constructed 6
prediction models by using the 7 aforementioned in-
dependent risk factors. As shown in Figure 3, all six models
had good stability, and there was no obvious overftting or

underftting in each model (the performance in 10-fold cross
validation was shown in Supplementary Table S2, and the
model parameters were shown in Supplementary Table S3).
Te AUC, F1-score, accuracy, precision, recall rate, speci-
fcity, and Brier score were the main evaluation metrics used
to evaluate and compare the model performances. However,
the higher the value of AUC, F1-score, accuracy, precision,
specifcity, and recall rate, the better the model perfor-
mances, but the Brier score was just the opposite [18]. In
both the training and test sets, the XGBoost model showed
the highest values regarding AUC, F1-score, accuracy, and
recall rate, and the lowest values regarding Brier score
(AUC� 0.791 (95% CI: 0.776–0.806) and 0.829 (95% CI:
0.818–0.843), F1-score� 0.663 and 0.706, accuracy� 0.739
and 0.770, recall rate� 0.638 and 0.677, Brier score� 0.165
and 0.153) (Figures 4(a), 4(b), 5(a), and 5(b) Table 4). Te
DeLong test showed a signifcant diference in the AUC
value of the XGBoost model compared with others in the

Table 1: Clinical and pathological characteristics features of patients.

Variables NLNM LNM
p value3409 (69.76%) 1478 (30.24%)

Age at diagnosis p< 0.001
≥65 1653 (48.49%) 548 (37.08%)
50–65 1643 (48.20%) 874 (59.13%)
<50 113 (3.31%) 56 (3.79%)

Race p � 0.002
White 2764 (81.08%) 1132 (76.59%)
Black 502 (14.73%) 267 (18.06%)
Other 143 (4.19%) 79 (5.35%)

Sex p � 0.046
Male 2817 (82.63%) 1186 (80.24%)
Female 592 (17.37%) 292 (19.76%)

Primary site p< 0.001
Supraglottis 1027 (30.13%) 824 (55.75%)
Glottis 1829 (53.65%) 346 (23.41%)
Subglottis 128 (3.75%) 36 (2.44%)
Larynx 238 (6.98%) 152 (10.28%)
Other 187 (5.49%) 120 (8.12%)

Histology p � 0.522
Squamous cell carcinoma 3264 (95.75%) 1421 (96.14%)
Nonsquamous cell carcinoma 145 (4.25%) 57 (3.86%)

Number of tumours p � 0.001
1 2081 (61.04%) 1021 (69.08%)
>1 1328 (38.96%) 457 (30.92)

Tumour size p � 0.001
≤3 cm 2429 (71.25%) 601 (40.66%)
>3 cm 980 (28.75%) 877 (59.34%)

Grade p< 0.001
Grade I 575 (16.87%) 63 (4.26%)
Grade II 2055 (60.28%) 783 (52.98%)
Grade III and IV 779 (22.85%) 632 (42.76%)

T-stage p< 0.001
T1 1185 (34.76%) 100 (6.77%)
T2 589 (17.28%) 229 (15.49%)
T3 648 (19%) 393 (26.59%)
T4 987 (28.95%) 756 (51.15%)

Notes: chi-square tests were compared between the two groups (p< 0.05 represents a statistically signifcant diference). Abbreviations: LNM, lymph node
metastasis; NLNM, nonlymph node metastasis.
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training set (p< 0.001), but the AUC value of the XGBoost
model had no signifcant diference compared with both RF
and LightGBM models in the test set (XGBoost against RF,
p � 0.151; XGBoost against LightGBM, p � 0.521). Te
result of the DeLong test was given in Supplementary
Tables S4 and S5. In addition, the precision of SVM (0.696),
KNN (0.727), RF (0.713), and LightGBM (0.691) were higher
than XGBoost’s (0.690) in the training set, but the precision
of XGBoost (0.738) was only slightly lower than that of SVM
(0.755) and RF (0.745) in the test set (Table 4). In the training
and test sets, the specifcities of SVM (0.944 and 0.960,
respectively), KNN (0.961 and 0.955, respectively), RF (0.956
and 0.969, respectively), and LightGBM (0.916 and 0.925,
respectively), were higher than XGBoost (0.894 and 0.912,
respectively) (Table 4). Tus, overall, the abovementioned
results show that the overall performance of XGBoost is
better than other models, so we chose the XGBoost model as
the best prediction model.

3.4. Feature Importance Analysis. We further analysed in-
formation provided by the XGBoost model about the im-
portance of features. Te mean value of the absolute SHAP
values of 7 feature variables represents the degree of in-
fuence on the fnal predicted probability (Figure 6(a)); the
higher the SHAP value, the stronger the efect of the feature
variable on the model output [19]. Te SHAP summary plot
shows the positive or negative impact of feature variables on
the predicted probability through diferent colors
(Figure 6(b)). We found that T-stage, primary site, and grade
were the three most important feature variables in the
XGBoost model for predicting LNM, and the higher the
stage of T-stage and grade, the higher the risk of LNM in
patients.

Unlike T-stage and grade, the colour distribution was
irregular for the “primary site,” which indicated that the
values of the feature were not linearly correlated with the
SHAP values (Figure 6(b)). To explore the reason, we further
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plotted the SHAP dependence plot of this (Figure 6(c)). In
the XGBoost model for this study, primary sites 1, 2, 3, 4, and
5 represent “supraglottis,” “glottis,” “subglottis,” “larynx,”
and “other,” respectively. Since “larynx” and “other” cannot
represent the exact location of the primary tumour ana-
tomically, we concluded that “supraglottis” had a higher risk
of LNM than “subglottis” and “glottis.”

4. Discussion

LNM is one of the vitally important hallmarks of LC distant
metastasis. Tere is an extensively rich lymphatic vascular
network in the neck, which makes it easier for LC patients to
present with LNM [20]. Currently, the presence of LNM is
mainly determined by cervical palpation and preoperative
imaging, which largely depend on the clinical experience of
the doctor and the ability of the human eye to identify

imaging [21, 22]. As reported, the presence of occult me-
tastasis was confrmed by postsurgery histological exami-
nation in 4%–40% of cN0 LC patients [23–25]. Although
prophylactic cervical LND can decrease the risk of LNM
[26], it puts LC patients at a higher risk for operations, such
as major bleeds, lymphatic fstulas, or impairments in the
vagus, brachial plexus, and recurrent laryngeal nerve [27]. In
the traditional methods for detecting LNM, the sensitivity
and specifcity of cervical palpation are low, and both false-
positive and false-negative rates reach approximately 15%–
25% [28]. Although the accuracy of imaging is higher than
that of cervical palpation, the nodal size, shape, and presence
of central necrosis taken as the criteria to assess LNM status
are not reliable [29]. Some enlarged lymph nodes could be
mediated by infammatory hyperplasia, and LNM <10mm
in diameter usually do not exhibit irregular enhancement or
central necrosis [30]. Terefore, identifying risk factors
associated with LNM and developing a good predictive
performance model of LNM for LC is extremely important
for clinicians to select appropriate treatment and improve
the prognosis of patients.

Table 2: A univariate logistic regression analysis of variables re-
lated to LNM.

Variables OR 95% CI p value
Age at diagnosis
≥65 Reference
50–65 1.495 1.070–2.089 0.019
50 1.605 1.414–1.821 <0.001

Race
White Reference
Black 1.299 1.102–1.530 0.002
Other 1.349 1.016–1.791 0.038

Sex
Male Reference
Female 1.172 1.003–1.369 0.046

Primary site
Supraglottis Reference
Glottis 0.236 0.204–0.273 <0.001
Subglottis 0.351 0.239–0.513 <0.001
Larynx 0.796 0.637–0.995 0.045
Other 0.80 0.625–1.024 0.076

Histology
Squamous cell carcinoma Reference
Nonsquamous cell
carcinoma 0.903 0.66–1.234 0.522

Number of tumours
1 Reference
>1 0.701 0.616–0.799 <0.001

Tumour size
≤3 cm Reference
>3 cm 3.617 3.184–4.109 <0.001

Grade
Grade I Reference
Grade II 3.478 2.647–4.568 <0.001
Grade III and IV 7.405 5.594–9.802 <0.001

T-stage
T1 Reference
T2 4.607 3.571–5.945 <0.001
T3 7.187 5.656–9.132 <0.001
T4 9.077 7.248–11.367 <0.001

Notes: p< 0.05 represents a statistically signifcant diference. Abbrevia-
tions: LNM, lymph node metastasis.

Table 3: Multivariate logistic regression analysis of variables re-
lated to LNM.

Variables OR 95% CI p value
Age at diagnosis
≥65 Reference
50–65 1.354 0.931–1.970 0.113
<50 1.248 1.080–1.442 0.003

Race
White Reference
Black 1.064 0.886–1.277 0.510
Other 1.538 1.109–2.133 0.010

Sex
Male Reference
Female 0.939 0.784–1.123 0.489

Primary site
Supraglottis Reference
Glottis 0.289 0.252–0.354 <0.001
Subglottis 0.254 0.169–0.381 <0.001
Larynx 0.522 0.408–0.669 <0.001
Other 0.511 0.390–0.670 <0.001

Number of tumours
1 Reference
>1 0.744 0.642–0.863 <0.001

Tumour size
≤3 cm Reference
>3 cm 1.742 1.498–2.026 <0.001

Grade
Grade I Reference
Grade II 2.438 1.818–3.267 <0.001
Grade III and IV 4.609 3.407–6.235 <0.001

T-stage
T1 Reference
T2 2.923 2.231–3.829 <0.001
T3 3.925 3.030–5.084 <0.001
T4 5.890 4.571–7.590 <0.001

Notes: p< 0.05 represents a statistically signifcant diference. Abbrevia-
tions: LNM, lymph node metastasis.
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In this study, we found that more than 90% of LC pa-
tients were over 50 years old or had squamous cell carcinoma
(Table 1), which was consistent with some previous studies
[31]. Moreover, LNM was more common among males than
females (Table 1), which matches the overall sex-based in-
cidence of LC and may be associated with higher smoking

and drinking rates in males [32]. Mutlu et al. found that the
incidence of cervical metastasis occurring in supraglottic
tumours was signifcantly higher than that in transglottic
tumours (55.2% and 35.1%, respectively) [33], which was
similar to our results that the occurrence proportion of LNM
was highest in the supraglottic region (Table 1). Te
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Abbreviations: AUC, the area under the receiver operating characteristic curves; XGBoost, extreme gradient boosting; SVM, support vector
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abovementioned results indicate that the cases included in
our study are in accordance with the epidemiological
characteristics of LC, with good representation.

In addition, we also found that age at diagnosis, race,
primary site, number of tumours, tumour size, grade, and T-
stage were closely associated with the occurrence of LNM of
LC by univariate and multivariate logistic regression ana-
lyses (Tables 2 and 3). Among them, T-stage, grade, and
tumour size have been previously reported as independent
risk factors for LNM in LC patients, which is consistent with
our study fndings, indicating that these variables play an

important role in promoting LNM in LC patients [34]. Our
multivariate logistic regression analysis further demon-
strated that the primary site was a risk factor for LNM
(Table 3). Tis suggested that the primary tumour site was
strongly associated with LNM, which may be related to the
supraglottic special anatomy that contains an abundant and
extensive submucosal lymphatic plexus [35]. Furthermore,
similar to previous studies evaluating the risk factors for
LNM in head and neck tumours [8], LC patients with
a younger age at diagnosis presented a higher risk of LNM in
this study. Interestingly, a single tumour presents

Table 4: Comparison and prediction performances of diferent models for LNM.

Models AUC
(95% CI) Accuracy Precision F1-score Recall-rate Specifcity

Training set
XGBoost 0.791 (0.776–0.806) 0.739 0.690 0.663 0.638 0.894
SVM 0.733 (0.707–0.750) 0.732 0.696 0.640 0.593 0.944
KNN 0.719 (0.702–0.737) 0.738 0.727 0.653 0.592 0.961
LR 0.747 (0.733–0.763) 0.728 0.671 0.646 0.623 0.888
RF 0.772 (0.757–0.787) 0.734 0.713 0.645 0.589 0.956
LightGBM 0.772 (0.757–0.787) 0.736 0.691 0.653 0.619 0.916

Test set
XGBoost 0.829 (0.818–0.843) 0.770 0.738 0.706 0.677 0.912
SVM 0.791 (0.778–0.805) 0.755 0.755 0.681 0.620 0.960
KNN 0.634 (0.618–0.653) 0.715 0.666 0.607 0.558 0.955
LR 0.795 (0.780–0.808) 0.748 0.706 0.675 0.647 0.905
RF 0.821 (0.808–0.833) 0.740 0.745 0.659 0.591 0.969
LightGBM 0.826 (0.813–0.839) 0.759 0.729 0.687 0.650 0.925

Abbreviations: XGBoost, extreme gradient boosting; SVM, support vector machine; KNN, k-nearest neighbor; LR, logistic regression; RF, random forest;
LightGBM, light gradient boosting machine; LNM, lymph node metastasis.
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Figure 5: Calibration curves for predicting LNM with various models. Te 45 straight line on each graph represents the perfect match
between the observed (y-axis) and predicted (x-axis) survival probabilities. A closer distance between two curves indicates greater accuracy.
(a) Training set; (b) test set. Abbreviations: LNM, lymph node metastasis; XGBoost, extreme gradient boosting; SVM, support vector
machine; KNN, k-nearest neighbor; LR, logistic regression; RF, random forest; LightGBM, light gradient boosting machine.
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a signifcantly higher risk of LNM than multiple tumours in
our study. Multifocal tumours have been considered a fea-
ture with more aggressiveness and were more likely to
develop LNM than single tumours, which is contrary to the
results of our fndings [36]. However, the reason for the
diference remains unclear and will require further study.

In recent years, various risk factors for LNM of LC have
been reported, and prediction models have been established
[8, 34]. However, due to the complexity and large size of the
various factors in the data and the diferences among the
calculation methods of the models, the prediction perfor-
mance was also signifcantly diferent. Heng et al. [37] de-
veloped a nomogram to predict the occult lymph node
metastases of glottic squamous cells with an AUC value of
0.716. Chen et al. [34] used a nomogram to predict cervical
LNM in laryngeal squamous cell carcinoma with an AUC
value of 0.809. Furthermore, Song et al. used a nomogram to
predict the risk of LNM in newly diagnosed supraglottic
laryngeal squamous cell carcinoma, in which the AUC value

of the nomogram model was only 0.731 and 0.707 in their
training set and test set, respectively [8]. All three studies
used the same logic calculation method, but the prediction
performance of the models varied widely. To more accu-
rately predict LNM in LC patients, we established prediction
models using six diferent ML algorithms for the frst time
and selected the prediction model with the best performance
by comparing the performance diferences among various
prediction models. Te accuracy, precision, recall rate, F1-
score, AUC value, specifcity, and calibration plots were
performed to evaluate and compare the ML model per-
formances, and we found that XGBoost was better than the
other models with respect to the AUC value, Brier score, F1-
score, recall rate, and accuracy, whether it was in the training
set or in the test set (Table 4, Figures 4(a), 4(b), 5(a), and
5(b)). In addition, the AUC value of XGBoost was also
higher than that of the model constructed in previous studies
[8, 34, 37]. Terefore, we believe that XGBoost was the best
predictive model to predict the LNM in LC patients.
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Figure 6: Te model’s interpretation. (a) Features of importance derived from the XGBoost model. Te plot shows the relative importance
of the features in the XGBoost model. (b) SHAP summary plot of the 7 risk features of the XGBoost model. Te higher the SHAP value of
a feature, the higher the probability of LNM development. A dot is created for each feature attribution value for the model of each patient,
and thus one patient is allocated one dot on the line for each feature. Dots are colored according to the values of features for the respective
patient and accumulate vertically to depict density. Red represents higher feature values, and blue represents lower feature values. (c) SHAP
dependence plot of the primary site. Te SHAP dependence plot shows how a single feature afects the output of the XGBoost prediction
mode. SHAP values for specifc features exceed zero, representing an increased risk of LNM. Abbreviations: SHAP, Shapley additive
explanation; XGBoost, extreme gradient boosting; LNM, lymph node metastasis.
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XGBoost, as an ensemble ML algorithm based on a de-
cision tree, has the advantages of fast computation, maxi-
mizing predictive performance, minimizing model
complexity, and low overftting [38]. Terefore, XGBoost
has been widely used in prediction model construction and
risk identifcation in the medical feld [39]. However, this
algorithm also has the following shortcomings. First, there
are too many hyperparameters in this algorithm, which
would greatly infuence the training time and performance
of the XGBoost model [40], and secondly, this algorithm is
difcult to visualize and explain models, which results in the
limitation of the ML model in daily applications to some
extent [41]. Based on the abovementioned features, the
SHAP method was introduced to explain the importance
and contribution of variables in the XGBoost model to help
more clinicians understand the mechanism behind ML. We
found that T-stage, primary site, and grade were the three
most important feature variables in the XGBoost model for
predicting LNM, and race was the least important variable
(Figure 6(a)). In addition, given that the values of the pri-
mary site feature were not linearly correlated with the SHAP
values in the SHAP summary plot (Figure 6(b)), the addi-
tional SHAP dependence plot revealed that the supraglottis
was an important feature leading to LNM, whereas the
subglottis and glottis were the opposite (Figure 6(c)). Tis
fnding was consistent with previous studies showing that
the supraglottic type of LC is more likely to have LNM [42].

Although T-stage and primary site are important bases
for preoperative judgement of LNM at present, it remains
controversial to perform cervical LND only on these bases.
Te National Comprehensive Cancer Network (NCCN)
considered that all patients with supraglottic lesions or T3-
T4 stages should have neck LNM [43]. However, a study by
Sessions et al. found that patients with N0 disease may be
safely observed with no loss of survival advantage [44].
Furthermore, Ömer et al. showed that a watchful waiting
strategy can be applied to T1-T2 and selected T3 cases with
well-diferentiated tumours [23]. Tese data further sug-
gested that the LNM of LC is infuenced by several factors,
and that it is not accurate to judge LNM solely by T-stage
and primary site. Based on our XGBoost model, the indi-
vidual risk of LNM can be identifed more accurately, and
the LND strategies for LC patients can also be determined by
doctors directly and accurately, thereby avoiding over-
treatment and reducing the risk of complications related to
neck dissection. Some limitations exist in this study. First,
our study is a retrospective study and sufers from some
possible selection bias. Second, since the patients in the study
were predominantly from the North American population,
there may be defciencies in the applicability of the pop-
ulation, so including a wider population is necessary for
future research. Finally, all patients in this study were from
a single database, and a multicentre study is required for
external validation of our model.

5. Conclusion

In this study, we found that age at diagnosis, race, primary
site, number of tumours, tumour size, grade, and T-stage

were independent risk factors for LNM of LC. In addition,
we developed six ML models to predict LNM in LC patients
based on this information. All models performed well, but
the XGBoost model had better predictive power. Finally,
through the SHAP method, we determined that T-stage,
primary site, and grade were the three most important
feature variables in the XGBoost model for predicting LNM.
In the future, we will validate our fndings through a pro-
spective multicenter study using a completely independent
external dataset.
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