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Background. There is limited knowledge about the role of cancer-associated fibroblasts (CAF) in the tumor microenvironment of
triple-negative breast cancer (TNBC). Methods. Three hundred and thirty-five TNBC samples from four datasets were retrieved
and analyzed. In order to determine the CAF subtype by combining gene expression profiles, an unsupervised clustering
analysis was adopted. The prognosis, enriched pathways, immune cells, immune scores, and tumor purity were compared
between CAF subtypes. The genes with the highest importance were selected by bioinformatics analysis. The machine learning
model was built to predict the TNBC CAF subtype by these selected genes. Results. TNBC samples were classified into two
CAF subtypes (CAF+ and CAF-). The CAF- subtype of TNBC was linked to the longer overall survival and more immune
cells than the CAF+ subtype. CAF- and CAF+ were enriched in immune-related pathways and extracellular matrix pathways,
respectively. Bioinformatics analysis identified 9 CAF subtype-related markers (ADAMTS12, AEBP1, COL10A1, COL11A1,
CXCL11, CXCR6, EDNRA, EPPK1, and WNT7B). We constructed a robust random forest model using these 9 genes, and the
area under the curve (AUC) value of the model was 0.921. Conclusion. The current study identified CAF subtypes based on
gene expression profiles and found that CAF subtypes have significantly different overall survival, immune cells, and
immunotherapy response rates.

1. Introduction

Breast cancer (BC) has been the most frequent carcinoma
and the second cause of cancer death in women. There were
more than 2.2 million patients diagnosed with BC and
approximately 0.7 million deaths caused by BC in 2020
[1]. BC is a heterogeneous disease that includes triple-
negative BC (TNBC) and nontriple-negative BC (NTNBC).
The absence of estrogen receptors (ER), progesterone recep-

tors (PR), and human epidermal growth factor receptor 2
(HER2) is the characteristic of TNBC (15% to 20% of BC
samples) [2]. TNBC patients have a worse 5-year survival
rate than those with other types of BC. For example, 30%
of them could not survive 5 years after diagnosis [3].
Patients with TNBC are treated mainly with chemotherapy,
and there are no targeted therapies available for them [4].
There is an urgent need for developing new therapies for
TNBC patients.
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Recent studies suggest that the tumor microenvironment
(TME) exerts critical functions in tumor growth and pro-
gression control. TME is composed of cancer cells, as well
as supporting cells such as stromal cells and infiltrating
immune cells [5]. In multiple solid tumor types, cancer-
associated fibroblasts (CAFs) are found as one of the most
prevalent stromal cells [6]. CAFs consist of quiescent CAFs
(qCAFs), tumor-restraining CAFs (rCAFs), and tumor-
promoting CAFs (pCAFs) [7]. Among these three types of
CAFs, qCAFs and rCAFs are typically found in low-stage
cancers, and pCAFs are detected in advanced-stage cancers.
A body of research indicates that CAFs play a crucial role in
a variety of protumorigenic biological processes, such as
invasion of tumor cells, resistance to chemotherapy, and
evasion of immune cells [8, 9]. For example, CAFs could
contribute to tumor development by providing oxygen and
suppressing the immune cells in the TME [10]. However,
other studies suggest that CAFs can exert a tumor-
suppressive impact on the TME [11]. For example, a previ-
ous study discovered that CAFs have a vital suppressive
impact on fibrosarcoma [12]. The collection of these
research endeavors embodies the importance that the effect
of CAFs on TNBC prognosis should be clarified.

Immune checkpoint blockade (ICB) such as PDL1/PD1
antibodies has been linked to improved clinical outcomes in
TNBC, making ICB an appealing treatment option for TNBC
patients [13]. Progress-free survival (PFS) was considerably
greater in the PD-1 antibody group (9.7 months) than in
the control group (5.6 months) in a randomized, double-
blind, phase III TNBC trial (NCT02819518) (p value =
0.0012) [14]. However, only 18.5 percent of TNBC samples
from the KEYNOTE012 trial reacted to PD1/PDL1 anti-
bodies, which is far from satisfactory [15]. According to the
new research, TNBC is not a unique illness, and the identifi-
cation of subgroups/subtypes within TNBC samples might
contribute to finding the right patients for PD1/PDL1 anti-
bodies [16].

Toward this purpose, we analyzed and compared CAF
subtypes from the discovery datasets of TNBC samples, as
well as disclosed their molecular and biological properties.
In the training dataset, the CAF+ subtype was linked to poor
prognosis. We then built a prediction model to predict CAF
subtypes using a machine learning method based on 9 genes.
The predicted CAF subtypes of samples from an indepen-
dent breast cancer dataset showed that the CAF+ subtype
had a poor clinical outcome. Results from ICB datasets also
demonstrated that the CAF subtypes have a crucial effect on
TNBC resistance to ICB.

2. Materials and Methods

2.1. Patients and Specimens. Four TNBC datasets and 335
samples were utilized as discovery datasets for CAF subtype
classification. These four datasets came from The Cancer
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) and
the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm
.nih.gov/geo/). The discovery datasets included GSE19615
(28 TNBC samples) [17], GSE21653 (84 TNBC samples)
[18], GSE58812 (107 TNBC samples) [19], and TCGA (116

TNBC samples). Based on the R GEOquery package [20],
the normalized expression profiles of GSE19615, GSE21653,
and GSE58812 were retrieved from the GEO website by the
accession numbers. The TCGA-TNBC dataset’s level 3 raw
count expression profiles were retrieved using the ‘TCGAbio-
links’ R package [21]. The dates for downloading expression
profiles from the TCGA and GEO datasets were September
20, 2021 and September 27, 2021. The created fibroblast sub-
type was verified using an independent breast cancer dataset
(the METABRIC dataset) [22]. 313 ER-negative and HER2-
negative breast cancers with obtainable overall survival (OS)
information and gene expression matrix were retrieved from
METABRIC [16].

The link between CAF subtypes and ICB response was
assessed using three different datasets (GSE78220 [23],
GSE35640 [24], and IMvigor210 [25]) comprising patients
treated with ICB. GSE78220 contains pretreatment mRNA
expression data from anti-PD-1 therapy in 28 melanoma
samples. GSE35640 contains pretreatment mRNA expres-
sion data from MAGE-A3 immunotherapeutic therapy in
65 melanoma and lung cancer samples. IMvigor210 contains
pretreatment mRNA expression data from anti-PD-L1 ther-
apy in 348 cancer samples.

2.2. Batch Effect Correction and Consensus Clustering (CC)
Analysis. Using the gene set variation analysis (GSVA) R
program, the expression profiles of GSE19615, GSE21653,
GSE58812, and TCGA-TNBC were converted into the
matrix of CAF gene sets. CAF related biomarkers and gene
sets were summarized from studies and listed in Supplemen-
tary Table 1 [26–28]. The batch effect was shown using
principal component analysis (PCA) before and after the
conversion. The consensus clustering algorithm from the R
‘ConsensusClusterPlus’ package was used to determine the
probable CAF subtypes by the expression matrix of CAF
gene sets [29]. The optimal cluster number for the
consensus clustering algorithm was chosen based on the
tracking plot, delta area, the average silhouette width value,
and CDF results [30].

2.3. Single-Sample Gene Set Enrichment Analysis (ssGSEA)
and ESTIMATE. In the supplementary data from Bindea’s
study, the gene sets corresponding to immune cells were
obtained [31]. By applying the ssGSEA method from the
GSVA package, the enrichment scores of 28 immune cells
for the TNBC sample were measured by the gene expres-
sion matrix. By the ESTIMATE algorithm, stromal,
immune scores, and tumor purity were computed by the
gene expression matrix. The values of stromal, immune
scores, and tumor purity were then normalized of ‘min-
max normalization.’ Min-max normalization is one of the
most frequently used methods for data normalization. The
minimum value of stromal, immune scores, and tumor
purity was converted into 0, the highest value was con-
verted into 1, and other values were then transformed into
a value range from 0 to 1. Our next step was to compare the
differences between the different CAF subtypes by Student’s
t-test.
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Figure 1: Continued.
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2.4. Differentially Expressed Gene (DEG) Screening and
Enrichment Analysis. In order to select the key genes among
the two CAF subtypes, we used the DEG analysis. Packages,
including ‘limma,’ ‘edgeR,’ and ‘DESeq2,’ are the most
popular and accurate methods for DEG analysis. The prin-
ciples and the preferred data for these three DEG methods
are different. The linear model is adopted in the ‘limma’
package, but ‘edgeR’ and ‘DESeq2’ packages calculated
the DEGs by the negative binomial distribution [32]. The
differential expression test for ‘edgeR’ and ‘DESeq2’ are
exact test, and the differential expression test for ‘limma’
is empirical Bayes method. Besides, the input data for
‘edgeR’ and ‘limma’ must be the expression profiles after
the normalization. For the datasets with a small number
of replicates, ‘limma’ is the safest choice [33]. We do not
use DESeq2 to obtain the DEGs among the two CAF sub-
types because more computer resources and time are needed
in the process of calculation [33]. Since the samples from
GEO datasets are smaller in GSE19615, GSE21653, and
GSE58812, the DEGs were analyzed using the R package
“limma” [34]. In the TCGA-TNBC dataset, which contains
more samples, “edgeR” package was used to determine the
DEGs between two subtypes [35]. The DEGs with p value <
0.05 and ∣log 2ðfoldchangeÞ ∣ >0:5 for each dataset were then
filtered.

The robust rank aggregation (RRA) approach, which
can decrease dataset bias, was utilized to combine the fil-
tered DEGs from the above four expression datasets. The
RRA approach is based on the assumption that a gene will
be considered a robust DEG if it ranks first in all of the
DEG gene lists. RRA computed significance scores for all
genes, and only the statistically important genes were kept.
To get robust DEGs among diverse datasets, RRA was
used using the “RobustRankAggreg” package in R lan-
guage [36]. The DEGs were selected by the cutoff of ∣log

2ðfoldchangeÞ ∣ >0:5 and p value < 0.05. Then, functional
Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and Reactome enrichment analyses were
conducted. Using the OS information, the differences of
DEGs survival curves were calculated. And the prognostic-
related genes were selected by the cutoff of p value < 0.05,
and the Kaplan–Meier model was conducted to illustrate
the difference between survival curves.

2.5. CAF Subtype Prediction Model. Using random forest
(RF), decision tree (DT), and k-nearest neighbors (KNN)
approaches from the R package “caret,” we constructed
CAF subtype predictors. The package ‘caret’ is a prevalent
application for building prediction models and contains
many prevalent machine learning approaches [16]. During
the model training process, prognostic-related genes expres-
sion data were utilized. In the first step, the expression data
was randomly divided into the training dataset (50 percent)
and the testing dataset (50 percent). Afterward, the parame-
ter search accompanied by the fivefold cross-validation pro-
cedure was applied. We compared the prediction accuracy of
machine learning models, and the machine learning model
with the highest value of area under the curve (AUC) was
selected. Then, the genes with the highest importance were
kept in model construction. The testing dataset was then
used to assess the developed model’s ability to predict.
Finally, the CAF subtypes of samples from the METABRIC
dataset were predicted by the constructed model, and the
METABRIC dataset was used as an independent validation
dataset to confirm the CAF subtypes and prognosis
association.

2.6. Protein Expression Profiles of Selected Genes in the
Human Protein Atlas (HPA). The protein values of hub
genes were calculated based on the data from HPA data.

1
2

(g)

Figure 1: Fixing batch effects and selecting the optimum number of cancer-associated fibroblast (CAF) subtypes. (a) The differences among
samples obtained from different datasets are illustrated via principal component analysis (PCA) before the removal of batch effects. (b) The
differences among samples obtained from different datasets are reduced after the removal of batch effects. (c) Tracking plot for k = 2 to 6.
The tracking plot shows the consensus cluster of TNBC samples (in columns) at each k (in rows). Promiscuous samples are identified and
plotted with this plot to identify weak class membership and to visualize the distribution of cluster sizes across k. (d) The empirical
cumulative distribution function (CDF) plot displays the consensus distributions of k. (e) Relative change under area CDF plots for each
k. These two plots are used to find the k at which the distribution reaches an approximate maximum stability. An optimal k is
determined by the k value at which CDF reaches its maximum or the k value before the ‘elbow.’ (f) The average silhouette value for
different cluster numbers. It is a numeric number between 0 and 1, and a high silhouette value implies that the sample is well-suited to
its own cluster but weakly related to other clusters. (g) Consensus clustering of the dataset (k = 2).
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Immunohistochemistry (IHC) staining was represented by a
number: not detected/negative (0), low (1), medium (2), and
high (3). The IHC intensity was represented by a number:
none/negative (0), weak (1), moderate (2), and strong (3).
The IHC quantity was represented by a number: none/neg-
ative (0), <25% (1), 25–75% (2), and >75% (3). The IHC
score was determined by the sum of staining intensity and
the staining quantity.

2.7. Statistical Analysis. R language was used to implement
the statistical analysis. For the purpose of examining the
differences between two groups, Student’s t-test was imple-
mented. If not stated otherwise, p values less than 0.05 were
considered significant.

3. Results

3.1. CAF Subtypes with Distinct Survival Rates. GSVA was
used to convert the gene-expression matrix of 4 datasets into
the matrix of CAF gene sets. Before the conversion, PCA
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Figure 2: A classification of TNBC patients based on cancer-associated fibroblasts (CAF) subtypes that differ in survival curves and the
expression level of CAF gene sets. (a) C1 samples have a better overall survival (OS) profile than C2 samples according to the Kaplan-
Meier (K-M) plot. (b) C1 samples have a better progression-free survival (PFS) profile than C2 samples according to the Kaplan-Meier
(K-M) plot. In order to determine whether the differences are statistically significant, the log-rank test is performed. (c) In the heatmap,
the distribution of expression of the CAF-related gene sets is shown.

Table 1: Clinical characteristics of CAF subtypes.

Characteristics
C1 (CAF-) C2 (CAF+)

p value
n = 174 (100%) n = 161 (100%)

Datasets 0.167

GSE19615 16 (9.20%) 12 (7.45%)

GSE21653 35 (20.1%) 49 (30.4%)

GSE58812 57 (32.8%) 50 (31.1%)

TCGA-TNBC 66 (37.9%) 50 (31.1%)

Age (years) 0.569

20-50 57 (32.8%) 50 (31.1%)

50-70 94 (54.0%) 83 (51.6%)

70-90 23 (13.2%) 28 (17.4%)

Stage 0.708

Stage I-II 78 (44.8%) 75 (46.6%)

Stage III-IV 21 (12.1%) 23 (14.3%)

Not available 75 (43.1%) 63 (39.1%)
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revealed a clear batch effect among these 4 datasets (Figure 1
(a)). The batch effect was successfully reduced after the con-
version, according to PCA findings (Figure 1(b)). To obtain
the accurate CAF subtypes among TNBC samples, we per-
formed CC on the matrix of CAF gene sets. The parameter
of clustering numbers from 2 to 6 was selected by the track-
ing plot, delta area, and CDF results. The results from track-
ing plot suggested “2” (Figure 1(c)). The CDF plot suggested

“4” (Figure 1(d)), and the relative change area under CDF
plot suggested “3” (Figure 1(e)). The average silhouette
values were used for optimal cluster number selection
(Figure 1(f)). It is a numeric number between 0 and 1, and
a high silhouette value implies that the sample is well-
suited to its own cluster but weakly related to other clusters.
The average silhouette values suggested ‘2’ (Figure 1(f)). The
p values from OS and progression-free survival (PFS)
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Figure 3: The level of immune cells differs between cancer-associated fibroblast (CAF) subtypes. (a) The heatmap depicts the GSVA-
calculated abundance of immune cell populations. (b–d) The box plots show differences in immune score, stromal score, and tumor
purity between CAF subtypes based on the GSVA estimation. To compare scores between two groups, the unpaired Student’s t-test was
used. Note: GSVA: gene set variation analysis.
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analysis if the clustering number was set as “3” (Supplemen-
tary Figure 1A) were 0.091 and 0.02 (Supplementary
Figure 1B-C). The p values from OS and PFS analyses if the

clustering number was set as “4” (Supplementary Figure 1D)
were 0.23 and 0.043 (Supplementary Figure 1E-F). Thus, the
cluster number was finally set as 2 (Figure 1G) because
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Figure 4: CAF subtypes were validated using independent datasets. (a) The heatmap shows robust DEGs computed using the robust rank
aggregation (RRA) algorithm. The yellow color represents the higher log2(FoldChange) values and the blue color represents the lower log2
(FoldChange) values. (b) The AUC value was generated using random forest model on the testing dataset. (c) Compared with CAF+
samples, CAF- samples show a better overall survival (OS) profile in the Kaplan-Meier (K-M) plot from an independent breast cancer
dataset (METABRIC dataset). (d) In the heatmap, the distribution of expression of CAF related gene sets from the independent dataset
(METABRIC dataset) is shown. Note: AUC: area under the curve.
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its p values (OS: 0.025; PFS: <0.001) in the OS and PFS
analyses were significant (Figures 2(a) and 2(b)). Patients
in C1 witnessed a significant increase in the OS and PFS
time than C2. The proportion of CAF subtypes across dif-
ferent clinical and pathological aspects of TNBC patients
was depicted in Table 1. The result indicated that CAF
subtypes had no relationships with clinical and pathological
parameters such as dataset, age, and stage. Among these
two subtypes, C1 had higher levels of PD1 and PDL1 (Sup-
plementary Figure 2).

3.2. CAF Subtypes with Distinct CAF and Immune Cells. The
levels of CAF gene sets were significantly different between
two CAF subtypes (Figure 2(c)). C2 subtypes had signifi-
cantly higher levels of most CAF gene sets; thus, this subtype
was named “CAF+” subtype. The C1 was named “CAF-

subtype” since it lacked most types of CAF gene sets. Inter-
estingly, unlike other CAF genes sets, the chemokine bio-
markers were significantly in CAF- subtype.

We also explored and compared the immune cells between
two CAF subtypes. The CAF- subtype had higher levels of
immune cells infiltration (Figure 3(a)). Similarly, CAF- sam-
ples had higher immune scores, lower stromal scores, and
lower tumor purity, while CAF+ samples had lower immune
scores, higher stromal scores, and greater tumor purity
(p value < 0.001, Student’s t-test, Figures 3(b)–3(d)).

3.3. Analysis of DEGs and Enrichment Analysis. DEGs were
identified between CAF subtypes (p value < 0.05 and log 2
FoldChange > 0:5; Supplementary Figure 3). In CAF+ sam-
ples, there were 895 (GSE19615), 649 (GSE21653), 711
(GSE58812), and 890 (TCGA-TNBC) upregulated expressed
genes. There were 526 (GSE19615), 848 (GSE21653), 1061
(GSE58812), and 960 (TCGA-TNBC) elevated expressed
genes in the CAF- subtype. The RRA approach identified
553 robust DEGs, including 262 upregulated and 291 down-
regulated genes in the CAF+ subtype. The heatmap was used
to visualize the selected robust DEGs (Figure 4(a)).

Enrichment analysis was used to find the enriched path-
ways associated with 553 robust DEGs. In Supplementary
Figure 4, CAF- subtype was largely associated with immune
pathways, including ‘leukocyte-activation’ (GO), ‘regulation-
of-leukocyte-proliferation’ (GO), and ‘regulation-of-anti-

gen-receptor’ (GO), ‘cytokine-and-cytokine-receptor-inter-
action’ (KEGG), ‘chemokine-signaling-pathway’ (KEGG),
‘hematopoietic-cell-lineage’ (KEGG), and ‘immunoregulatory-
interactions’ (REACTOME). On the other hand, the pathways
related to extracellular-matrix-organization were found in
CAF+ subtype such as ‘TGF-beta-signaling-pathway’ (KEGG),
‘focal-adhesion’ (KEGG), and ‘ECM-receptor-interaction’
(KEGG), ‘degradation-of-the-extracellular-matrix’ (REAC-
TOME), and ‘regulation-of-cellular-response-to-growth-fac-
tor-stimulus’ (REACTOME).

3.4. Selection of Genes and Construction of Machine Learning
Models. Based on 553 robust DEGs, 59 prognostic-related
genes were identified using a univariate Cox regression
model. The expression of these genes was used to construct
the RF model to predict the CAF subtype. The available
TNBC samples were divided into the training (50 percent)
and testing datasets (50 percent). Gene expression values
were discretized by the median value into discrete values.
Based on the parameter search and the fivefold cross-
validation procedure in the training dataset, the prediction
abilities of machine learning models such as RF, KNN, and
DT were evaluated. Among these three machine learning
models, RF that showed the highest AUC value was selected.
According to the highest values of areas under the curve for
the RF model, “mtry=24” was selected (Table 2). In Supple-
mentary Table 2, 9 variables/genes were prioritized and
shown according to their importance. The RF model was
trained by these 9 genes on the training dataset. An AUC
value of 0.921 was obtained in the testing dataset by the
constructed RF model (Figure 4(b)).

3.5. Predictive Model Validation by an Independent Breast
Cancer Dataset. These 9 genes selected for model construc-
tion were collagen type X alpha 1 (COL10A1), a disintegrin
and metalloproteinase with thrombospondin motifs-12
(ADAMTS12), collagen type XI alpha 1 (COL11A1),
endothelin receptor type A (EDNRA), C-X-C motif chemo-
kine receptor 6 (CXCR6), Wnt family member 7B (WNT7B),
C-X-C motif chemokine 11 (CXCL11), adipocyte enhancer
binding protein 1 (AEBP1), and Epiplakin 1 (EPPK1). These
genes were selected as CAF subtype-related genes.

Based on the expression matrix of 9 genes from the
METABRIC dataset, the CAF subtype was predicted. A
higher prognosis was observed for CAF- subtype samples
compared to CAF+ subtype samples (p value = 0.0046,
Figure 4(c)). The CAF+ subtype samples in the validation
dataset had higher levels of CAF gene sets than the CAF- sub-
type (Figure 4(d)). It is also worth noting that these results
were also consistent with the training data (Figures 2(a)
and 2(c)).

3.6. Investigation of CAF Subtype-Related Genes with
Prognosis and CAF Subtypes. In the TCGA-TNBC dataset,
ADAMTS12, AEBP1, COL10A1, COL11A1, EDNRA,
EPPK1, and WNT7B were correlated with poor prognosis
when their expression values were high (Figure 5). The pos-
itive outcome was correlated with the high expression values
of CXCL11 and CXCR6 (Figure 5). For ADAMTS12,

Table 2: The parameter selection in machine learning models.

Parameter ROC Sens Spec

mtry:52 0.926 0.839 0.790

mtry:40 0.924 0.839 0.803

mtry:35 0.922 0.817 0.790

Cp:0.0 0.862 0.758 0.827

Cp:0.134 0.774 0.771 0.777

Cp:0.202 0.774 0.771 0.777

K:21 0.897 0.737 0.815

K:19 0.897 0.703 0.827

K:17 0.896 0.692 0.815

ROC: receiver operating characteristic; Sens: sensitivity; Spec: specificity.
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Figure 5: Continued.
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AEBP1, COL10A1, COL11A1, CXCL11, EPPK1, and
WNT7B, their expression values were higher in tumor sam-
ples than in normal samples (Supplementary Figure 5A).
For ADAMTS12, AEBP1, COL10A1, COL11A1, EDNRA,
EPPK1, and WNT7B, their mRNA expression values were
higher in CAF+ samples than CAF- samples (Supplementary
Figure 5B). For CXCL11 and CXCR6, their mRNA expres-
sion values were higher in CAF- samples than CAF+ samples
(Supplementary Figure 5B).

3.7. Evaluation of CAF Subtype’s Influence on Immunotherapy
Response. To test the CAF subtype prediction model, three
independent datasets (GSE78220, GSE35640, and IMvi-
gor210) containing RNA sequencing data of patients before
immunotherapy were chosen to evaluate the CAF subtype’s
influence on immunotherapy response. GSE78220 contains
28 melanoma samples treated with anti-PD-1 therapy,
GSE35640 contains 65 melanoma and lung cancer samples
treated with MAGE-A3 immunotherapeutic therapy, and
IMvigor210 contains 348 cancer samples treated with anti-
PD-L1 therapy. Patients from these cohorts were classified
into CAF+ or CAF- subtypes by the expression levels of 9
genes (COL10A1, ADAMTS12, COL11A1, EDNRA, CXCR6,

WNT7B, CXCL11, AEBP1, and EPPK1). Within GSE78220
(Figure 6(a)), GSE35640 (Figure 6(b)), and IMvigor210
(Figure 6(c)), the response rates were different by 11%, 24%,
and 10%, respectively. There was a greater gain in OS with
CAF- than with CAF+ (Figure 6(d)).

3.8. Expression Validation for CAF Subtype-Related Genes in
Breast Cancer. Among the nine selected genes, protein
expression data of ADAMTS12, AEBP1, CXCL11, EDNRA,
and EPPK1 were available in the HPA dataset. The IHC
score results demonstrated that ADAMTS12, AEBP1,
CXCL11, and EPPK1 protein levels were higher in breast
cancer samples than in normal controls (Supplementary
Figure 6).

4. Discussion

Recent studies have found that CAF participates in angio-
genesis, tumor cell proliferation, treatment resistance,
immunomodulation, and metastases in solid tumors such
as breast cancer [37]. However, current research is very lim-
ited concerning CAF’s role in breast cancer. According to
our study, the degree of CAF in TME is greater in patients
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Figure 5: Overall survival (OS) curves for nine CAF subtype-related genes (ADAMTS12, AEBP1, COL10A1, COL11A1, CXCL11, CXCR6,
EDNRA, EPPK1, and WNT7B) that are used for model construction. ADAMTS12, AEBP1, COL10A1, COL11A1, EDNRA, EPPK1, and
WNT7B were correlated with poor prognosis when their expression values were high. The positive outcome was correlated with the high
expression values of CXCL11 and CXCR6.
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with the worse prognosis, and it is suggested that CAF is one
of the independent prognostic factors. We also estimated the
correlation of CAF subtypes with tumor purity, immune cell
infiltration, and response rate to ICB. The results suggested
that CAF might exert its effect on prognosis by promoting
tumor cells and inhibiting immune cells such as CD8 T cells.

Among two CAF subtypes, immune cells were found
to be higher in the CAF- subtype than in the CAF+
subtype. Similarly, immune related pathways such as ‘cyto-
kine-cytokine-receptor-interaction,’ ‘T-cell-receptor-signal-
ing,’ ‘chemokine-signaling,’ nad ‘natural-killer-cell-mediated-
cytotoxicity’ were higher in the CAF- subtype. As a result of
these findings, we can assume that CAF is associated with a
microenvironment that suppresses immunity. CD8+ T cells
could further differentiate into effector cells to kill tumor cells.
CAF was reported to suppress CD8+ T cells by PDL2 and FASL
[38]. CAF could secrete IL6 that could increase regulatory T
cells and decrease CD8+ T cell [39]. In breast cancer, fibroblast
activation protein- (FAP-) positive CAF could suppress
immune by enhancing the regulatory T cells and inhibiting T
cell effectors [40]. Since the tumor-infiltrating T cell is one of
the crucial biomarkers for indicating the ICB response [41],

the CAF subtypes could also affect the therapeutic efficacy of
ICB. Studies show that CAFs decrease sensitivity to anti-PD-
L1 treatment [40]. The result from independent ICB datasets
also shows that patients in CAF+ subtype have a lower response
rate and worse prognosis to ICB. Thus, CAF- subtype patients
are the ideal candidates for receiving ICB. Besides, targeting
CAF might be a promising therapeutic approach, in comple-
ment to conventional treatments and immunotherapies.

Chemokines including CXCL5, CXCL9, CXCL12, CCL3,
CCL5, and CXCL16 could be derived from CAF [26, 42]. For
example, using western blotting assay and immunofluores-
cence, CXCL5 expression was high in CAFs [42]. However,
the resources of these chemokines are multiple. CXCL5
can be produced by tumor cells, macrophages, and neutro-
phils [43]. Dendritic cells (DCs) could release CXCL5,
CXCL9 and use these chemokines to recruit immune cells
such as CD8+ T cells and natural killer cells into the TME
[44]. Since the immune cells are found to be inhibited in
CAF+ subtype, these results suggest that the CAF is not
the main resource of these chemokines.

COL10A1 and COL11A1, as members of the collagen
family, are upregulated in breast cancer fibroblasts [45, 46].
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Figure 6: The correlation of predicted cancer-associated fibroblast (CAF) subtype with the immunotherapy efficacy in the independent
datasets. (a–c) The association between immunotherapy response rates and CAF subtypes was predicted from independent datasets. (d)
In the IMvigor210 dataset, the predicted CAF subtype is correlated with the survival analysis. Note: CR: complete response; PR: partial
response; SD: stable disease; PD: progressive disease.
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ADAMTS12 is a secreted metalloprotease and plays a protu-
moral role in breast cancer by increasing the capacity for
migration and invasion of breast cancer tumor cells [47,
48]. It has been found that inhibiting EDNRA could inhibit
the invasion of BC tumor cells [49]. WNT7B is one of the
Wnt pathway proteins, and clinical outcome of BC patients
with high expression of WNT7B is poor [50]. AEBP1 is
one of the transcriptional repressors that could improve
BC progression through extracellular matrix thickening
[51]. EPPK1 is part of the epidermal growth factor (EGF)
signal and is found to promote the proliferation of tumor
cells [52]. CXCR6 and CXCL11 are members of chemokines,
and CXCR6 is required for antitumor efficacy of CD8+ T cell
infiltration [53, 54]. However, another study found that
CXCR6 could increase cell migration, invasion, and metasta-
sis of breast cancer [55]. This phenomenon might be caused
by the diverse origins of chemokines, and more studies are
needed to clarify their roles in TNBC.

The study has some limitations. Firstly, we only used
pure bioinformatics techniques to predict CAF in TME. In
order to ensure the robustness of our findings, we selected
multiple independent datasets. Secondly, there are no spe-
cific biomarkers for CAF because of the high heterogeneity
of CAF origin, phenotype, and function [56]. The biomark-
ers of distinct CAF subgroups may be different, even oppo-
site. Lastly, the differences among CAFs were overlooked
in our study.

5. Conclusion

CAF is linked to lower survival rates for TNBC patients and
suppressed immune activity. In summary, CAF could lead to
the decreased ICB response rate. Simultaneously, the ran-
dom forest model composed of COL10A1, ADAMTS12,
COL11A1, EDNRA, CXCR6, WNT7B, CXCL11, AEBP1,
and EPPK1 is a promising tool for the prediction of the
CAF subtype.
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Supplementary Materials

Supplementary 1. Supplementary Figure 1: cluster analysis
and survival curves of clusters. (A) An illustration of the con-
sensus matrix at k = 3 is shown in the heatmap. (B) Survival
analysis (OS) of patients with the three subtypes. (C) Survival
analysis (PFS) of patients with the three subtypes. (D) An illus-
tration of the consensus matrix at k = 4 is shown in the heat-
map. (E) Survival analysis (OS) of patients with the four
subtypes. (F) Survival analysis (PFS) of patients with the four
subtypes. The log-rank test was conducted to determine the
significance of the differences among subtypes. Note: OS:
overall survival; PFS: progression-free survival. Supplementary
Figure 2: the mRNA expression values of PD1 and PDL1
between two CAF subtypes. (A) Programmed cell death
protein 1 (PD1). (B) Programmed death-ligand 1 (PDL1).
Supplementary Figure 3: volcano plots for DEGs. (A–D) Vol-
cano plots for differentially expressed genes in GSE19615,
GSE21653, GSE58812, and TCGA-TNBC. Upregulated genes
and downregulated genes in CAF+ samples are represented by
the red and blue points, respectively. Supplementary Figure 4:
enrichment analysis of robust differentially expressed genes
(DEGs). Note: NES: normalized enrichment score. Supple-
mentary Figure 5: the expression pattern of CAF subtype-
related genes (ADAMTS12, AEBP1, COL10A1, COL11A1,
CXCL11, CXCR6, EDNRA, EPPK1, and WNT7B). (A) The
mRNA expression values of CAF subtype-related genes
between normal and tumor samples. (B) The mRNA expres-
sion values of CAF subtype-related genes between CAF+ and
CAF- samples. Supplementary Figure 6: protein expression
values of ADAMTS12, AEBP1, CXCL11, EDNRA, and
EPPK1. Representative immunohistochemistry (IHC) images
of ADAMTS12 (A), AEBP1 (C), CXCL11 (E), EDNRA (G),
and EPPK1 (I) in normal (left) and breast cancer (right)
tissues in the Human Protein Atlas (HPA) dataset. The differ-
ence of IHC scores of ADAMTS12 (B), AEBP1 (D), CXCL11
(F), EDNRA (H), and EPPK1 (J) in normal and breast cancer
tissues in the Human Protein Atlas (HPA) dataset.

Supplementary 2. Supplementary Table 1: commonly used
CAF markers. Supplementary Table 2: the importance of
variables in random forest model.
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