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Background. The specific role and prognostic value of DNA repair and replication-associated miRNAs in gastric cancer (GC) have
not been clearly elucidated. Therefore, comprehensive analysis of miRNAs in GC is crucial for proposing therapeutic strategies
and survival prediction. Methods. Firstly, clinical information and transcriptome data of TCGA-GC were downloaded from the
database. In the entire cohort, we performed differential analysis in all miRNAs and support vector machine (SVM) was used
to eliminate redundant miRNAs. Subsequently, we combined survival data and cox regression analysis to construct a miRNA
signature in the training cohort. In addition, we used PCA, Kaplan-Meier, and ROC analysis to explore the prognosis value of
risk score in the training and testing cohort. It is worth noting that multiple algorithms were used to evaluate difference of
immune microenvironment (TME), microsatellite instability (MSI), tumor mutational burden (TMB), and immunotherapy in
different risk groups. Finally, we investigated the potential mechanism about miRNA signature. Results. We constructed miRNA
signature based on the following 4 miRNAs: hsa-miR-139-5p, hsa-miR-139-3p, hsa-miR-146b-5p, and hsa-miR-181a-3p.
Univariate and multivariate Cox regression analyses suggested that risk score is a risk factor and an independent prognostic factor
in GC patients. The AUC value of ROC analysis showed a robust prediction accuracy in each cohort. Moreover, significant
differences in immune functions, immune cell content, immune checkpoint, MSI status, and TMB score were excavated in
different groups distinguished by risk score. Finally, based on the above four miRNA target genes, we revealed that the signature
was enriched in DNA repair and replication. Conclusion. We have developed a robust risk-formula based on 4 miRNAs that
provides accurate risk stratification and prognostic prediction for GC patients. In addition, different risk subgroups may potentially
guide the choice of targeted therapy.

1. Introduction

Gastric cancer (GC) is one of the most common causes of
death across the world [1]. Its overall 5-year survival rate is
less than 20%, and although considerable progress has been
made in the treatment of GC, only slight improvements have
been seen in the past 20 years [2]. Microsatellite instability
(MSI) increases the rate of replication mistakes and hyper-

mutation state, increasing the risk of oncogene or tumor
suppressor gene alterations. Importantly, MSI status in
patients with GC has been proved to be useful for treatment
outcome prediction [3]. However, research combining
several miRNAs to predict MSI status and prognosis is
relatively uncommon.

Meanwhile, miRNAs are endogenous noncoding RNAs
ranging in length from 17 to 25 nucleotides that influence
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gene expression posttranscriptionally [4]. Increasing data
indicates that miRNA expression is varied in GC and is
linked with survival prognosis [5]. Numerous research pub-
lished in the last few years have identified miRNAs as possi-
ble diagnostic or prognostic indications for GC; however, the
findings have been conflicting, although recent studies sug-
gest that miRNAs play a complex role in tumorigenesis, drug
resistance, and cancer therapy. Studies of miRNAs in GC
still require more evidence at this time, as most studies have
only looked at a small number of miRNAs in cell lines. In

addition, support vector machine (SVM) is a robust machine
learning method and is widely used in classification [6].

Although there are a large number of studies based on
Cox and LASSO regression analysis to identify risk signa-
tures, there are fewer studies on signature in GC patients
with the SVM method. In order to obtain robust and stable
results, we used SVM and Cox regression analysis to con-
struct a miRNA signature. In conclusion, the construction
of a novel miRNA signature is critical for the prognosis pre-
diction of GC patients with the goal of exploring potential
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Figure 1: Screening of miRNAs: (a) the heat map of different expression miRNAs (DEmiRNAs); (b) volcano plot of DEmiRNAs; (c) the
results of SVM.

2 Journal of Oncology



Hazard ratio

hsa-miR-139-5p (N = 196) 1.87
(1.31–2.69) < 0.001⁎⁎⁎
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Figure 2: Continued.
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effects of miRNAs on immunotherapy, TME, biological pro-
cesses, and MSI status.

2. Materials and Methods

2.1. Datasets. The Cancer Genome Atlas (TCGA) database
was searched for transcriptome data and included 45 normal
samples and 389 GC samples. The UCSC Xena Browser con-
tains clinical data on TCGA-GC. Their survival information,
clinicopathology, and genetics were retrieved and analyzed
further. TCGA-GC cohort was randomly divided into 1 : 1
and represented as training set and testing set. The RNA-seq
transcriptome data in CPM format and corresponding clinical
data of GC patients were extracted from the database, and only
genes with CPM greater than 1 were considered.

2.2. Calculation of Risk Score. Clinical data from GC cases in
TCGA cohort were used to screen prognostic miRNAs
linked with OS using univariate Cox regression analysis,
and support vector machine (SVM) was used to eliminate
redundant miRNAs. We selected miRNAs with p value less
than 0.05 to undertake multivariate Cox regression analysis.
The expression levels of the miRNAs and coefficients were
then used to construct risk signature. The following formula
was used to calculate the risk score for each patient:

〠
n

i=1
Coef i ∗miRNAi: ð1Þ

We calculated the median score in TCGA-GC cohort to
divide patients into two groups and identify the most signif-
icant differences in prognosis between the risk subgroups.
To analyze the prediction performance of prognostic fea-
tures on overall survival, Kaplan-Meier survival curves and
ROC curves were used.

2.3. Biological Function Analysis. Differential expression
analysis (mRNAs and miRNAs) was performed using the
limma package. TargetScan, miRTarBase, and miRDB tools
were used to screen out target mRNAs. We overlapped tar-
get mRNAs and differential expression mRNAs. Finally,
the above genes were analyzed for gene enrichment.

2.4. Comprehensive Analysis. We used ssGSEA, XCELL,
TIMER, QUANTISEQ, MCPCOUNT, EPIC, CIBERSORT,
CIBERSORT-ABS, ESTIMETA, and TIDE algorithms for
estimating the abundance of immune cells, immune-related
pathway, immunotherapeutic response, and microsatellite
instability (MSI) status. p values and Pearson correlation
coefficients were obtained based on the study. Immune
checkpoint-related gene and human leukocyte antigen
(HLA) gene expression levels may be linked to immune
checkpoint inhibitor therapy response. We explored the dif-
ference in gene expression levels between the two groups.

3. Results

3.1. Calculation of Risk Score in GC Patients. Using 45 normal
samples as a control, we revealed that 138 were upregulated
miRNAs and 60were downregulatedmiRNAs. The volcano plot
and heat map showed the 198 miRNA expression landscape
(Figures 1(a) and 1(b)). In addition, SVM was used to screen
robust 18 miRNAs in the above miRNAs (Figure 1(c)). Subse-
quently, multivariate Cox regression analysis was applied to 18
miRNA expression data in the training cohort for avoiding over-
fitting (Figure 2(a)). In detail, the risk score was determined
according to the coefficients of eachmiRNA in the result ofmul-
tivariate Cox regression analysis, and the formula is as follows:
risk score = hsa −miR − 139 − 5p expression × 0:6271 + hsa −
miR − 139 − 3p expression × −0:4345 + hsa −miR − 146b − 5
p expression × −0:2398 + hsa −miR − 181a − 3p expression ×
0:2347. According to the above formula, the risk score
of each patient in TCGA-GC cohort was calculated.
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Figure 2: Construction of risk model. (a) A forest plot for results of multivariate Cox regression. PCA analysis of the entire cohort (b),
training cohort (c), and testing cohort (d).
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Subsequently, based on the median of risk score in the
training cohort, we divided patients into two risk subgroups.
PCA analysis showed that all samples from the different

risks could be well distinguished in the entire cohort
(Figure 2(b)), training cohort (Figure 2(c)), and testing
cohort (Figure 2(d)).

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
1 − specificity

Se
ns

iti
vi

ty

AUC at 1 years: 0.691
AUC at 3 years: 0.655
AUC at 5 years: 0.680

(a)

0.00

0.25

0.50

0.75

1.00

0

Low risk
High risk

0

1 2 3 4 5 6 7 8 9 10
Time (years)

1 2 3 4 5 6 7 8 9 10
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Ri
sk

p < 0.001

198
191

116
144

40
70

17
32

11
14

5
11

3
5

2
1

2
1

2
1

0
1

Risk
High risk
Low risk

(b)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
1 − specificity

Se
ns

iti
vi

ty

AUC at 1 years: 0.719
AUC at 3 years: 0.689
AUC at 5 years: 0.740

(c)

0.00

0.25

0.50

0.75

1.00

0

Low risk
High risk

0

1 2 3 4 5 6 7 8 9 10
Time (years)

1 2 3 4 5 6 7 8 9 10
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Ri
sk

p < 0.001

98
98

56
78

19
43

9
17

4
6

2
5

2
1

2
0

2
0

2
0

0
0

Risk
High risk
Low risk

(d)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
1 − specificity

Se
ns

iti
vi

ty

AUC at 1 years: 0.663
AUC at 3 years: 0.623
AUC at 5 years: 0.609

(e)

0.00

0.25

0.50

0.75

1.00

0

Low risk
High risk

0

1 2 3 4 5 6 7 8 9 10
Time (years)

1 2 3 4 5 6 7 8 9 10
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Ri
sk

p = 0.021

100
93

60
66

21
27

8
15

7
8

3
6

1
4

0
1

0
1

0
1

0
1

Risk
High risk
Low risk

(f)

Figure 3: Prognostic value of risk score. ROC analysis of the entire cohort (a), training cohort (c), and testing cohort (e). Kaplan-Meier
survival analysis of the entire cohort (b), training cohort (d), and testing cohort (f).
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Figure 4: Continued.
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3.2. Exploring Prognostic Value of Risk Score. To better eval-
uate the prognostic value of risk score, we performed ROC
analysis, and the AUC value showed a robust prediction
accuracy (AUC > 0:7) in each cohort, as shown in
Figures 3(a), 3(c), and 3(e). Meanwhile, the Kaplan-Meier
analysis and log-rank test were used to estimate the predic-
tive ability of the model for the clinical outcomes of GC
patients (p < 0:05). The results showed that the OS of
patients with low risk was better than those of high-risk
patients in the entire cohort (Figure 3(b)), training cohort
(Figure 3(d)), and testing cohort (Figure 3(f)). To determine
whether risk score is an independent prognostic factor in GC

patients, we included risk score and other clinical parame-
ters in Cox regression analyses. Excitingly, univariate and
multivariate Cox regression analyses suggested that risk
score is a risk factor (Figure 4(a)) and an independent prog-
nostic factor (Figure 4(b)). Specifically, in univariate and
multivariate regression, HR value of risk score is 1.726 and
1.971, respectively (p < 0:001).

3.3. Somatic Mutation and Cell Stemness Analysis. We fur-
ther analyzed the relationship between risk score and
somatic mutation. The waterfall plot showed that patients
in the low-risk group exhibited a wider range of mutations
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Figure 4: Somatic mutation analysis: (a) forest plot of univariate Cox regression analysis; (b) forest plot of multivariate Cox regression
analysis; (c) somatic mutation analysis in the high-risk group; (d) somatic mutation analysis in the low-risk group; (e) analysis of
differences in TMB in different risk groups; (f) correlation analysis between RNAs and risk score.

7Journal of Oncology



C1

Risk

Low
(n = 174)

C1
(n = 115, 34%)

C2
(n = 185, 54%)

C3
(n = 34, 10%)

C4
(n = 8, 2%)

64 (37%)

51 (30%)

97 (56%)

88 (52%)

7 (4%) 6 (3%)

0.001

P-value

27 (16%) 2 (1%)High
(n = 168)

C2

Subtype group (n = 342)

C3 C4

Low
High

(a)

Ri
sk

 sc
or

e

MSS MSI-L MSI-H
0

2

4

6

0.043
8.6e-05

0.03

MSI-L
MSS

MSI

MSI-H

(b)

TI
D

E

Low-risk High-risk

–0.5

0.0

0.5

High-risk
Low-risk

Risk

⁎⁎⁎

(c)

D
ys

fu
nc

tio
n

Low-risk High-risk

–0.2

–0.4

0.2

0.0

High-risk
Low-risk

Risk

⁎⁎⁎

(d)

Ex
cl

us
io

n

Low-risk High-risk

–0.5

0.5

0.0

1.5

1.0

2.0

High-risk
Low-risk

Risk

⁎⁎⁎

(e)

Figure 5: MSI status and immune subtype analysis: (a) distribution of immune subtypes and risk subgroups; (b) analysis of differences in
TMB in different risk groups; (c) analysis of differences in MSI status, TIDE, dysfunction, and exclusion in different risk groups.
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(Figures 4(a) and 4(b)). However, in different risk groups,
TTN, TP53, MUC16, and LRP1B were the major mutation
genes. In addition, the boxplot showed that low-risk patients
have a higher TMB score (Figure 4(c)). Considering the
effect of cell stemness on prognosis, we also analyzed cell
stemness of patients with risk score and found that they were
negatively related (Figure 4(d)).

3.4. Comprehensive Evaluation of Immune Function by
Multiple Algorithms. We performed ANOVA for different
risk patients and immune subtypes, and the differences were
statistically significant (Figure 5(a)). We also analyzed
microsatellite instability (MSI) of patients with different
risks and found that the MSI-H grouping has a lower risk
score (Figure 5(b)). The above results provide another
potential explanation for the poor prognosis of patients with
high risk score. Based on tumor pretreatment expression
profiles, this TIDE module can estimate multiple published
transcriptomic biomarkers to predict patient response [7].
In our risk subgroups, the high-risk group had higher TIDE
score (Figure 5(c)), dysfunction score (Figure 5(d)), and
exclusion score (Figure 5(e)) than the low-risk group. More-
over, XCELL, TIMER, QUANTISEQ, MCPCOUNT, EPIC,

CIBERSORT, and, CIBERSORTABS algorithms were used
to evaluate the content and correlation of immune infiltrat-
ing cells in different risk groups. In the person correlation
analysis, we found that most of the immune cells calculated
by 6 algorithms were negatively correlated with the risk
score. In the difference analysis, B cell and T cell showed sig-
nificant differences in most algorithm results, as shown in
Figure 6. Subsequently, we explored the tumor microenvi-
ronment using the ESTIMATE algorithm, and we found that
the high-risk group had higher estimate score, immune
score, and stromal score compared with the low-risk group
(Figure 7(a)). The ssGSEA algorithm also suggested that
there are also significant differences in immune function
between the different risk groups, including APC costimula-
tion, CCR, MHC class I, parainflammation, and IFN
response (Figure 7(b)). We selected 46 immune checkpoints
commonly used in treatment, and the results showed that 24
immune checkpoints were significantly different between
patients in the high- and low- risk groups (Figure 7(c)).
Interestingly, immunofunctional analysis confirmed signifi-
cant differences in HLA-related genes between the low-risk
and high-risk groups in TCGA and GEO cohorts, as shown
in Figure 7(d).
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3.5. miRNAs Participating in Signature May Be Revolved in
DNA Repair and Replication. TargetScan, miRTarBase, and
miRDB tools were used to screen out target mRNAs in 4
miRNAs participating in signature. Subsequently, we over-
lapped target mRNAs and differential expression mRNAs.
Finally, a potential functional regulation network is con-
structed (Figure 8(a)). To better understand the underlying
molecular mechanisms and functions of the above mRNAs,
interestingly, in KEGG analysis, we found that the above
mRNAs were associated with DNA repair, DNA replication,
and homologous recombination (Figure 8(b)).

4. Discussion

Gastric cancer (GC) is widely regarded as one of the most
common malignant tumors of the digestive system, with
high morbidity and mortality, and has attracted more and
more attention. A series of discoveries of miRNAs have
made significant progress in the field of cancer, especially
in immune [8]. In recent years, a number of critical discov-
eries have highlighted the growing interest in understanding
the mechanisms of miRNAs. And with the development of
artificial intelligence, more new tools have been applied in
the life sciences [9, 10]. However, the specific role and prog-

nostic value of miRNAs in GC have not been clearly eluci-
dated. In this study, using SVM-Cox model, we were able to
construct a risk score formula based on 4 miRNAs. The train-
ing and testing cohorts were used to validate the performance
of the risk score that was made. We also used the KEGG
enrichment analyses to investigate the function of these
miRNAs. XCELL, TIMER, QUANTISEQ, MCPCOUNT,
EPIC, CIBERSORT, and, CIBERSORTABS algorithms were
used to evaluate the content and correlation of immune infil-
trating cells in different risk groups. The findings of the study
imply that risk score has a significant impact on survival risk
in GC patients and could be used as biomarkers for therapeu-
tic targets.

The four miRNAs involved in the modeling have been
studied in gastric cancer. For example, SNHG3 functions
in an oncogenic manner to drive GC proliferation, migra-
tion, and invasion by regulating the miR-139-5p/MYB axis
[11]. In addition, circ-PTPDC1 promotes the proliferation,
migration, and invasion of GC cell lines via sponging miR-
139-3p by regulating ELK1 [12]. In the current study, quan-
titative analyses revealed that the high-risk group had a
higher percentage of immune-related cells and functions.
Previous research has demonstrated that ferroptosis can
emit damage-associated molecular or lipid mediators that
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attract antigen-presenting cells, triggering a cascade of
innate and adaptive immune responses [13]. Consistent with
previous studies, our study also shows that cells and func-
tions associated with the antigen presentation process are
significantly activated in the low-risk group, particularly in
T cells and B cells [14]. It is also noteworthy that both T cells
and B cells have a significant effect on the effect of antitumor
activity of OSCC. Furthermore, ferroptosis combined with
immune checkpoint inhibitors (ICIs) synergistically enhance
antitumor activity, even in ICI-resistant types [12]. We
identified several immune checkpoints that may guide our
future targeted therapy options in OSCC patients, such as
CD27, CD276, CD40, CD44, LAG3, LIGIT, TMIGD2, and
TNFSF15. We found that many types of immune cells are
different in different risk groups. In the current study,
CD8+ T lymphocytes have also been demonstrated to cause
lipid peroxidation in cancer cells and make cells more sus-
ceptible to ferrogenesis by releasing IFN [15]. As a result,
we believe that further research into the involvement of
these immune cells in ferroptosis and immune evasion is
required in the future. Finally, based on the findings of this
study, we can speculate that the poorer prognosis in the
high-risk group may be due to dysregulation of antitumour
immune function, which raises a more in-depth question:
whether the development of GC can be caused by miRNA
imbalance affecting antitumour immune function.

In conclusion, this study utilized comprehensive bioin-
formatics to analyze and establish 4-miRNA risk score
formula, including hsa-miR-139-5p, hsa-miR-139-3p, hsa-
miR-146b-5p, and hsa-miR-181a-3p, ultimately to identify
potential biomarkers for predicting GC progression. And
further analysis and study finally revealed the functions
and mechanisms of these miRNAs. Due to the small sample
size of the control group used for miRNA analysis in this
study, only limited data can be presented in the paper. In
summary, our data need to be further investigated and vali-
dated in a larger patient population and explored in future
research together.
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