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Background. Melanoma is a lethal skin malignant tumor, and its formation or development is regulated by various genetic and
epigenetic molecules. Although there are traditional methods provided for the doctors to evaluate the patients’ prognosis or
make the diagnosis, the novel method based on epigenetic markers is still needed to make the early diagnosis. Results. We
identi�ed 256 melanoma-independent prognosis-related methylation sites (P< 0.0001) and divided patients into seven
methylation subgroups. Methylation levels and survival time in the C2 subgroup were lower than that of other clusters
(P< 0.05). We established the predicted model of prognosis risk for melanoma using the signi�cantly changed methylation
sites in C2. �e model e�ciently divided patients into high- and low-risk groups (area under the receiver operating char-
acteristic curve, 0.833). Risk scores and patient survival time were negatively correlated (rs �−0.325, P< 0.0001). Genes
corresponding to the independent prognosis-associated methylation sites were enriched in cancer- and immunology-related
pathways. We identi�ed 35 hub genes. DOK2, GBP4, PSMB9, and NLRC5 were signi�cantly changed according to methylation
subgroups, survival, tumor stages, and T categories and were positively correlated, which was validated in the testing group
(P< 0.05).�e levels ofDOK2,GBP4, PSMB9, andNLRC5 had an opposite trend to their methylation sites in patients with poor
prognosis. Conclusions. We identi�ed seven DNA methylation subtypes and constructed a highly e�ective prognosis risk
assessment model. �e transcript levels of key genes corresponding to the independent prognosis-related methylation sites
were signi�cantly changed in patients according to prognosis and positively correlated with each other, indicating they may
collaboratively promote melanoma formation. �ese �ndings further our understanding of the mechanism of melanoma and
provide new targets for diagnosis and treatment.

1. Background

Melanoma is the most aggressive skin cancer and originates
from malignant melanocytes [1]. Once melanoma has me-
tastasized, it is generally associated with a poor prognosis
[2]. �e classi�cation of melanoma has traditionally been
based on histological features, and this approach divides

cases into super�cial spreading melanoma, lentigo maligna
melanoma, nodular melanoma, and other variants [3–5].
Recently, new classi�cation systems, such as TNM (primary
tumor, lymph node involvement, distant metastases), have
been developed [5–7]. Although these systems provide
general information for clinicians to predict the prognosis of
patients with melanoma and generate a reference for doctors
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to give appropriate treatment advice, early diagnosis of
melanoma is still difficult. Furthermore, an accurate or
consistent model to predict patient prognosis and identify
personalized treatment strategies remains lacking [2, 4, 6–8].

DNA methylation is a common epigenetic change in-
volved in multiple cellular processes. *ree DNA methyl-
transferases (DNMTs) have been identified in advanced
eukaryotes, and several studies have linked aberrant protein
structures of DNMTs with abnormal embryonic develop-
ment and cancer development [9, 10]. Previous research has
shown that cancer-related DNA methylation events occur
on CpG (5′-cytosine-phosphate-guanine-3′) islands and in
70% of mammalian promoter regions [9]. Methylation of
CpG islands plays an important role in the regulation of gene
transcription and is a critical factor of cellular malignant
transformation [10, 11]. CpG hypermethylation in the
promoter region can influence the transcription of genes.
Many actively transcribed genes show high DNA methyl-
ation levels, indicating the background or spatial distribu-
tion of DNAmethylation was important for the regulation of
gene transcription and the formation of malignant
disease [11].

Cancer genomics studies identified a recurrent mutation
in DNMT3a in 25% of patients with acute myeloid leukemia
[12] that affects the prognosis of patients [13]. *ese mu-
tations were heterozygous and interfere with the catalytic
activity of the enzyme. At present, the hypomethylating
agent 5-azacytidine (azacytidine) shows good curative effect
in myelodysplastic syndrome [9, 14]. In addition, one study
showed that a prediction model for colon adenocarcinoma
patient prognosis built by the DNA methylation sites
identified patients with poor prognosis [15]. Few studies
have examined DNA methylation in melanoma.

In this study, the methylation levels were examined in
samples from 475 melanoma patients and the patients were
divided into different methylation subtypes. A prognostic
model was built based on the prognosis-related DNA
methylation sites. *ese results may help provide a new
method to assess the prognosis of patients and lay a theo-
retical foundation for researchers to understand this disease
from a uniquely epigenetic perspective.

2. Methods

2.1. Download and Preprocessing of Data. *e study flow
chart is shown in Figure 1. We downloaded transcriptome
files of 471 patients with melanoma from *e Cancer Ge-
nome Atlas (TCGA) database (https://portal.gdc.cancer.gov/
) on May 7, 2021. *e platform of transcriptome file was
Illumina. Detailed information of patients is shown in Ta-
ble 1. *e detection platform for the 475 methylation data
files was the Illumina Human Methylation 450; we acquired
data from the University of California Santa Cruz (UCSC)
cancer browser (https://xena.ucsc.edu/) on May 8, 2021. *e
testing data were from GSE98394. *e exclusion criteria for
the DNA methylation sites were as follows: there were more
than 70% missing data in the whole sample; the sites located
on sex chromosome; single nucleotide polymorphisms; the
sites were not on the gene promoter region (2 kb upstream to

0.5 kb downstream of the transcription start site); and they
were cross-reactive genome sites [16]. Clinical samples were
excluded based on the following exclusion criteria: less than
30 days of follow-up data or no recorded follow-up data; no
survival status; and critical clinical information such as
tumor stage was missing or unknown. We used the R
package impute and sva to perform the batch correction
[17–19].

2.2. Division of DNA Methylation Subtypes of Melanoma.
*e univariate Cox proportional risk regression model was
built by DNA methylation sites, patients’ age, stage, gender,
TNM classifications, grade, and the follow-up data; after
calculating, we got the prognosis-related sites (Table S1).
*ose sites were used in the multivariate Cox regression
models to get the independent prognosis-related methyla-
tion sites (Table S2), and they were analyzed by the Con-
sensusClusterPlus package [20] in R software to determine
the melanoma subtypes. Based on the k-means, we divided
each sample into k groups, and the repeated times was used
to check the classifications’ stability. Pairwise consensus
values were calculated and recorded for each k value. We
used the Euclidean squared distance metric to calculate the
k-means, and the results matrix included over 100 iterations.
*e k value was determined if there were high consistency
and low variation in the cluster matrix. Pheatmap package
[21] was used to draw the heatmap. If the squares were
diagonally distributed, the matrix consensus was perfect.

2.3. Construction of the Prognosis Prediction Model and
Evaluation. We selected the subcluster with dramatically
high or low survival probability and significantly changed
methylation levels compared with other subclusters; if there
were more sites in the targeted subcluster, those sites would

Download methylation files of melanoma
from UCSC cancer browser

Data pre-processing

Define 256 independent prognosis
associated methylation sites

Divide melanoma into seven subtypes

Analyze features of the different clusters and
build the Cox proportional risk regression model

risk assessment and the
efficiency examinationFind site-genes

Gene functional enrichment

Figure 1: Flow chart of the study. UCSC, University of California
Santa Cruz.
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be chosen to build the Cox proportional hazard model by
coxph function in R software [22, 23].

2.4. Analysis of Gene Pathway Enrichment and Hub Genes.
We used CytoHubba to predict or discover important genes.
We drew the interaction map of genes using the String tool
(https://string-db.org) and imported it into CytoHubba to
calculate the scores of the total genes. *e main parameters
in this research were maximal clique centrality (MCC),
depth, edge percolated component (EPC), and maximum
neighborhood component (MNC). We selected the top 50
genes in each method and constructed a Venn diagram. *e
overlapping genes were identified as key genes and used for
subsequent analysis.

2.5. Statistical Analyses. Comparison of the continuous data
in three or more groups was performed by the Krus-
kal–Wallis test or analysis of variance according to whether
it met normal distribution and homogeneity of variance.*e
comparison of numerical data in different groups was an-
alyzed by the Chi-test. Pearson’s or Spearman’s correlation
analysis was used to calculate the coefficients of two mea-
surement data. Comparison of the levels of the methylation
sites in different melanoma subtypes was performed by the
Wilcoxon test. *e survival analysis was performed by
Survival package [24, 25] in R software. All statistical ana-
lyses were performed using IBM SPSS statistics 21.0 or the R
software, and P< 0.05 was defined as statistically significant.

Other methods in this research were performed as the
same as our published article [26].

3. Results

3.1. Clinical Characteristics of Patients with Melanoma and
Filtering of Independent Prognostic Methylation Sites. *is
study included 290 male patients and 180 female patients
(Table 1). *e mean patient age was 58.2 years (with 250
cases ≤60 years old and 212 cases >60 years old, Table 1).*e
survival time was less than 1 year for 63 cases, 1 to 5 years for
246 cases, and more than 5 years in 151 cases (Table 1).
Regarding TNM staging system, there were 23 cases in T0
stage, 42 cases in T1 stage, 78 cases in T2, 90 cases in T3 stage,
and 153 cases in T4 stage (Table 1). Regarding distant
metastasis, there were 418 patients in M0 stage and 24
patients in M1 stage; in terms of lymph node involvement,
235 patients were in N0 stage, 74 patients were in N1 stage,
49 patients were in N2 stage, and 55 patients were in N3
stage (Table 1). Among the 470 total patients, 77 cases were
in stage I, 140 cases were in stage II, 171 cases were in stage
III, and 23 cases were in stage IV (Table 1).

Combined with the clinical data, we performed Cox
univariate regression analysis on selected 206,635 methyl-
ation sites in the melanoma samples and extracted
783 prognostic-related methylation sites (P< 0.0001,
Table S1), and those sites were not independently associated
with patients’ prognosis. We then performed multivariate
Cox regression analysis on the above 783 sites to identify the
independent prognostic methylation sites and obtained 256

Table 1: Patient information.

Features Classification No.
Comparison

Statis. P value

Gender Female 180 7.935∗∗ 0.243Male 290

Age (years) ≤60 250 5.526∗ 0.478>60 212

State Dead 211 25.031∗∗ <0.0001Alive 259

Survival (years)
<1 63

27.929∗ <0.00011–5 246
>5 151

TNM

T

T0 23

36.324∗∗ 0.051
T1 42
T2 78
T3 90
T4 153

M M0 418 6.640∗∗ 0.355M1 24

N

N0 235

17.659∗∗ 0.478N1 74
N2 49
N3 55

Stage

0 7

25.909∗∗ 0.102
I 77
II 140
III 171
IV 23

∗Kruskal–Wallis test; ∗∗Chi-test; No., patient number; Statis., statistics; T, primary tumor; N, lymph node involvement; M, distant metastases.
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independent prognostic methylation sites (P< 0.0001,
Table S2). Levels of the 256 sites and the follow-up were
merged in Table S3. *ese sites were used for the con-
struction of the subsequent risk assessment model and
further analysis.

3.2. DNA Methylation Subtypes of Patients with Melanoma
and the Clinical Features. *e study flow chart is shown in
Figure 1. Considering the CDF (consensus cumulative
distribution function)-consensus index graph and the delta
area curve, we observed that when k� 7, there was a low
variation coefficient and high consistency in the cluster
graph, and the changes of the area under CDF curve were
relatively small (Figures 2(a)–2(b)). *erefore, we divided
the melanoma patients into seven subtypes. *e seven
subtypes were almost on a diagonal (Figure 2(c)), indicating
there was good consistency. From the heatmap of the
methylation levels for the seven subtypes, we found that the
C2 subcluster had lower methylation levels than the other
subclusters (Figure 3(a)). As shown in the survival curve in
Figure 3(b), there was a statistical difference between the
seven subclusters in terms of survival (P � 2.51× 10−11) and
the C2 subcluster had a lower survival rate than the others.
*ese results indicated that these could distinguish patients
with different prognostic status.

We further compared the clinical parameters of the
different subclusters and found no significant differences in
patient age and gender among the subclusters (Figure S1).

3.3. Comparison of the Methylation Levels of the Seven
MethylationSubtypes. Comparison of the methylation levels
of the 256 independent prognostic DNAmethylation sites in
the seven subclusters revealed that the methylation levels of
DNA methylation sites in the C2 subcluster were lower than
those of the other subclusters (Table S4, Figures 3(c)–3(d)).
We identified 99 sites that had changed in at least one
subtype compared with others, and most of these sites were
present in the C2 subcluster (95 sites; Table S4, Figure 3(c)).

3.4. Construction of the Cox Prognostic Risk RegressionModel
and Detection Efficiency. As the C2 subtype had the lowest
survival rate and methylation levels compared with other
subclusters, and as this subcluster had the most significantly
changed sites, we selected the significantly changed sites in
the C2 subtype to draw the boxplot and construct the
prognosis prediction model.

We used the coxph function in the R software to process
the significantly changed methylation sites in the C2 sub-
cluster and built the prediction model of clinical prognosis
risk for patients withmelanoma using the formula: risk score
� Id1×Co.1 + Id2×Co.2 + Id3×Co.3. . .. . .+Idn×Co.n; the
Id value and Co. are shown in Table 2. Using this prediction
model, we calculated the risk scores for every patient and
ranked them by the risk score (Table S5). *e median risk
score was −2.305 (Table S5).

We then divided patients according to the median risk
score: patients with a risk score higher than the median were

high-risk cases, and those with lower risk scores than the
median were low-risk cases. *e survival rate of high-risk
patients was significantly lower than that of patients with
a low-risk score (P �1.11× 10−15, Figure 4(a)). With the
increasing of the risk score, the number of patients with
melanoma increased and the methylation levels of the sites
in the risk prediction model decreased (Figure 4(b)). *ere
was a negative correlation between patient survival time and
risk scores, and patients in the high-risk group had poor
prognosis (rs � −0.325, 95% confidence interval, −0.420 to
0.224, P< 0.0001, Figure 4(c)).*ese results indicate that the
risk score obtained from this risk prediction model could
predict the prognosis of patients with melanoma.

We further used ROC (receiver operating characteristic)
curve analysis to evaluate the efficiency of this method and
found that the method had high efficiency. Area under the
curve (AUC) was 0.833 (P< 0.05), demonstrating that this
model could distinguish patients in the high-risk group from
patients in the low-risk group (Figure 4(d)). *en, we
randomly selected 60% of the samples to test the prediction
model, we did this for 100 times, the mean AUC was 0.82,
and the P value for the comparison of survival probabilities
(high-risk group vs. low-risk group) was less than 0.05 in
almost all the 100 trials (96%, Table S6), which confirmed the
test efficiency of the prognosis prediction model we built in
this research.

3.5. Pathway Enrichment of Genes Corresponding to the
PrognosticMethylationSites. Our pathway enrichment results
of genes corresponding to the prognostic-related methylation
sites are shown in Table S7 and Figures 5(a)–5(b). *e results
identified pathways such as choline metabolism in cancer,
colorectal cancer, and melanoma. *e correlation between the
pathways is shown in Figure 5(a); the pathways were focused
on two groups, i.e., autoimmunity and immune-related
pathways and cancer and its related pathways.

We next scored genes in the significant pathways using
the CytoHubba plug-in of Cytoscape software. We used four
methods to score the genes and selected the top 50 genes in
every method to draw a Venn diagram. We identified 35
genes among the top 50 genes in all of the four methods
(Figure 5(c)) and selected these 35 genes as the hub genes.

*e expression levels of the hub genes in the seven
subgroups are shown in Figure 5(d). We integrated the
expression of the 35 hub genes with patient information
and found that the gene expressions of docking protein 2
(DOK2), G protein-coupled bile acid receptor 1
(GPBAR1), guanylate-binding protein 4 (GBP4), pro-
teasome 20S subunit beta 9 (PSMB9), and NLR family
CARD domain containing 5 (NLRC5) were significantly
altered in different DNA methylation subgroups, patients
with different survival status, different stages, and T
categories (Figure 5(e), Table 3, P< 0.05). To explore the
correlation of the 35 hub genes, we conducted Pearson
correlation analysis and found that there was positive
correlation between DOK2, GPBAR1, GBP4, PSMB9, and
NLRC5; further, we validated their correlation in the
testing group (GSE98394) and confirmed the positive
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correlation between DOK2, GBP4, PSMB9, and NLRC5
(P< 0.05, Tables S8-S9, Figure 5(f )). *en, we searched the
independent prognosis-associated methylation sites on
their promoters’ regions and found cg00533183 and
cg07156249 were on the promoters’ of PSMB9,
cg07839457 was on NLRC5, cg21163717 was on DOK2,
and cg27285720 was on GBP4, the methylation levels of
those sites were higher in dead than the survival patients,
patients in stages II ∼ IV than stage I, patients in T2∼4
than T0∼1, and the gene expression of their corresponding

genes had an opposite trend to them just as we expected
(Figure 5(g)).

4. Discussion

Melanoma is a malignant cancer with an increasing in-
cidence worldwide [2]. A patient diagnosed at stage IV
(based on American Cancer Federation Staging) has very
few treatment options and a predicted survival of less than
2 years [2, 27, 28]. *erefore, identifying methods for early
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Figure 3: Comparison of clinical characteristics and methylation levels of different subtypes. (a) Clinical features of the seven melanoma
subclusters and their methylation levels. (b) Survival curves of seven melanoma subtypes. (c) Overall heatmap of methylation sites that
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Table 2: Coefficients in the model for prognosis prediction.

Id Co. Id Co. Id Co.
cg00089550 5.075 cg09468328 −3.736 cg04638014 −0.948
cg00622799 −1.955 cg11274940 −7.434 cg04803153 −2.456
cg00637477 −1.156 cg13206063 −2.145 cg07343703 −1.330
cg01328833 −4.145 cg13646917 −2.341 cg23075364 3.615
cg02717339 2.294 cg13857119 1.973 cg23288103 4.650
cg02736280 −2.709 cg14091103 3.246 cg24408057 5.825
cg04020309 −0.930 cg14809332 4.071 cg26418434 −6.482
Id, methylation site identification; Co., coefficient.
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diagnosis and developing more effective treatment strategies
for patients are critical.

*e pathogenesis of melanoma is mediated by a series of
genetic and epigenetic changes [2]. Epigenetic modifications
silence the expression of melanin-related genes [27, 29].
Aberrant DNA methylation is an epigenetic hallmark of
melanoma and plays critical roles in the formation and
progression of melanoma [30]. Changes in DNA methyla-
tion sites in tumor suppressor genes are found in patients
with metastatic melanoma [31]. *erefore, in this study, we
performed an in-depth analysis of DNA methylation in
melanoma to better understand the molecular mechanism of
melanoma and potentially identify key sites that may be new
diagnostic markers or therapeutic treatment targets.

In this study, we successfully built a prognostic risk
assessment model based on the independent prognosis-
associated DNA methylation sites, and this model could
efficiently distinguish low-risk patient from high-risk pa-
tients (Figure 4, Table S6). Patients with a high-risk score
showed a low survival probability, and there was significant

negative correlation between the risk score and patient
survival time (Figures 4(a)–4(c)). *is indicated that this
model could be used to predict the prognosis of patients with
melanoma and thus provides a new method for doctors to
evaluate patient prognosis and provide appropriate per-
sonalized treatments. Research has shown that abnormal
DNA methylation changes occur before the disordered
translation of the protein [32–34]. *erefore, the predicted
model built with these prognosis-related DNA methylation
sites may be useful for early diagnosis.

*e enriched pathways of genes corresponding to the
prognostic methylation sites were mainly in autoimmune or
immune-related disease and tumor-related pathways. *ere
was a correlation between the melanoma pathway and
pathways such as glioma and colorectal cancer. *e tumor
pathways may be connected to each other through signaling
pathways such as the central carbon metabolism, phos-
pholipase D signaling, or sphingolipid signaling pathways.
Alternatively, they may affect the immune homeostasis of
melanoma patients and further contribute to the
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Figure 4: Cox risk regressionmodel for melanoma prognosis assessment and detection efficiency. (a) Survival curve. (b)*e patient survival
status and methylation levels changed with the risk scores. (c) *e correlation of patient risk scores and survival time. (d)*e ROC curve of
the constructed prognostic evaluation model. ROC, receiver operating characteristic; AUC, area under the curve; rs, coefficient of Spearman
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Figure 5: Pathway enrichment of genes associated with independent prognostic methylation sites and the detailed analysis of key genes. (a)
Network of enriched pathways.*e width of the line represents the Kappa score between two connected nodes. If the Kappa score increased,
the width of the line is wider. (b) *e number of genes in different KEGG pathways and −log (P value). (c) *e Venn diagram of the top 50
genes in the four scoring methods. Among the 50 genes, 35 genes were included in all four scoring methods. (d) Heatmap of the expression
levels of 35 hub genes in each subgroup. (e)*e comparison of the levels of 35 key genes in different clinical groups (P value). Red indicates P

<0.05; and gray indicates not significant. (f ) Correlation of the expression of hub genes or the patient survival time in the training group and
verification in the testing group. (g)*e heatmap of the expression levels of the critical corresponding genes selected from (f) and their DNA
methylation sites in different clinical groups. MCC, maximal clique centrality; MNC, maximum neighborhood component; EPC, edge
percolated component; C, cluster; T, primary tumor; N, lymph node involvement; M, distant metastases; Sig, significant difference, P< 0.05;
No Sig., no significant difference, P> 0.05.

Table 3: Comparison of the expression levels of 35 hub genes among different clinical groups (P values are shown).

Genes Cluster State Stage T M N
SPSB1 0.63 0.285 0.024 0.044 0.908 0.009
RNF123 0.507 0.54 0.27 0.041 0.224 0.012
TP53 0.764 0.315 0.054 0.734 0.718 0.062
TSC2 0.191 0.715 0.019 0.009 0.043 0.068
EIF4G1 0.012 0.039 0.026 0.923 0.007 0.103
TAP1 0.034 0.06 0.875 0.352 0.854 0.13
RAC3 0.834 0.288 0.283 0.713 0.075 0.15
LIPE 0.325 0.406 0.035 0.24 0.016 0.199
TNNT1 0.022 0.938 0.094 0.197 0.16 0.217
RLN1 0.635 0.332 0.743 0.836 0.826 0.24
SREBF1 0.18 0.257 0.209 0.026 0.701 0.253
KRAS 0.024 0.529 0.035 0.186 0.098 0.276
ABCA1 0 0.053 0.49 0.359 0.773 0.298
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development of this disease by pathways such as the B cell
receptor signaling pathway (Figures 5(a)– and 5(b)). *e
immune-related pathways were mainly concentrated on the
natural killer cell-mediated cytotoxicity, antigen processing,
and presentation pathways, suggesting that the independent
prognosis-related DNA methylation sites may affect the
expression of genes encoding key factors that influence the
immune function, resulting in abnormal activities of natural
killer or antigen-presenting cells in melanoma patients.
*ese alterations may affect the development of the disease
and impact the prognosis of the patient.

Further, we found that the gene expression levels of
DOK2, GBP4, PSMB9, and NLRC5 were changed according
to different methylation subclusters, patient state, tumor
stage, and clinical Tcategories; the transcript level of PSMB8
was changed in different methylation subgroups and pa-
tients with different survival states (Figures 5(d)––5(e)).
DOK2 is an aptamer protein that regulates the tyrosine
kinase signaling pathway, including tyrosine kinase re-
ceptors such as epidermal growth factor receptors [35]. *e
expression level of DOK2 was decreased in gastric cancer,
indicating that DOK2 may be a potential tumor suppressor
in solid tumors [36]. Based on the abnormal expression of
DOK2 in digestive tract tumors such as gastric and colorectal
cancers, some researchers established a prognostic evalua-
tion model including DOK2 that effectively identified pa-
tients with poor prognosis [36, 37]. In addition, DOK2
deficiency in ovarian cancer induced carboplatin resistance
by inhibiting the apoptosis of tumor cells [38], while the
expression of DOK2/Ras p21 protein activator 1 was asso-
ciated with prognosis and quality of life of breast cancer
patients.*e deficiency of these proteinsmay result in tumor
enlargement or progression and lymph node metastasis [39].
Deletion of DOK2 in a mouse model led to the accelerated

formation of lung tumors [40]. GBP4 is a guanylate-binding
protein that is involved in pathological processes such as
tumor formation and progression. A prognosis predictive
model that was constructed using GBP4 was used to evaluate
the prognosis of melanoma patients [41, 42]. A high ex-
pression of GPB4 was correlated with the favorable overall
survival in skin cutaneous melanoma patients for more than
30 years [42]. Proteasome 20S subunit beta 8/9 (PSMB8/9)
proteins are critical immune proteasome subunits. PSMB8/9
overexpression indicated a good prognosis in patients with
melanoma and a good response to immune-checkpoint
inhibitors [43]. Increased expression of NLRC5 was asso-
ciated with the slower growth of the tumor in a mouse
melanoma model and prolonged survival time in patients
with melanoma [44]. NLRC5 was considered a potential
immune molecule in antitumor treatment that could be used
to improve tumor immunogenicity and restore antitumor
immunity [45]. As the above description, DOK2, GBP4,
PSMB9, and NLRC5 were tumor suppressors, in this re-
search, their expressions were decreased in patients with
poor prognosis and the levels of the methylation sites
on their promoter regions were increased (Figure 5(g)),
the latter might hinder the expression of the former.
*e weak expressions of those tumor suppressors could
promote the complicated formation or the development of
melanoma.

Furthermore, we found a positive correlation between
the gene expression levels of DOK2, GBP4, PSMB9, and
NLRC5, and their correlation had been confirmed in the
testing group (Figure 5(f )), indicating that they may have
a cooperative relationship.*e expression of one gene might
drive the expression of other genes to form a positively
regulated cluster. In addition, the previously reported critical
functions of these genes and encoded proteins in various

Table 3: Continued.

Genes Cluster State Stage T M N
HERC3 0.004 0.515 0.047 0.348 0.322 0.306
AKT3 0.003 0.021 0.417 0.026 0.356 0.312
PSMD8 0.096 0.237 0.076 0.006 0.431 0.313
BACE1 0.006 0.125 0.468 0.039 0.368 0.341
ARL9 0 0.154 0.589 0.542 0.193 0.38
BTBD6 0.195 0.886 0.065 0.008 0.758 0.393
PSMB8 0 0 0.066 0.242 0.758 0.435
NLRC5 0 0 0.001 0.004 0.435 0.448
PRDM2 0.026 0.188 0.097 0.161 0.083 0.456
CPEB1 0.027 0.474 0.001 0.216 0.044 0.485
PSMB9 0 0 0.003 0.021 0.878 0.487
PTK2 0 0.049 0.462 0.147 0.196 0.497
ELOVL6 0.102 0.043 0.448 0.076 0.804 0.512
CDC25 B 0.54 0.062 0.01 0.001 0.943 0.533
DOK2 0 0.008 0.001 0.003 0.802 0.587
PLEKHG5 0 0.842 0.829 0.66 0.556 0.6
NCK2 0.23 0.344 0.659 0.906 0.329 0.625
GHRL 0 0.013 0.031 0.001 0.095 0.727
GBP4 0 0.002 0 0 0.203 0.736
GPBAR1 0 0.005 0.006 0.041 0.994 0.841
CEL 0.05 0.234 0.449 0.561 0.763 0.849
FABP3 0.014 0.993 0.234 0.291 0.844 0.856
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cancers including melanoma help support and validate our
findings. We speculate that the alterations in the in-
dependent prognosis-related methylation sites affect the
expression of the corresponding genes, especially the genes
in this cluster (Figures 5(f ) and 5(g)), and therefore influence
the development or progression of melanoma. *e positive
relationships between these genes indicate they may be
coordinately involved in melanoma development.

*ere are also some limitations in this research, which
are as follows: we used 475 methylation files to build the
predicted model of patients’ prognosis and found the in-
dependent prognosis sites’ corresponding genes as DOK2,
GBP4, PSMB9, and NLRC5 were critical and positively
correlated with each other, which was validated in the testing
group, but there are few data sets to be found to retest the
efficiency of the predicted model. In the future, we will
reexamine them clinically.

5. Conclusion

Here, we established a prediction model for the prognosis of
patients with melanoma based on prognosis-related DNA
methylation sites in gene promoter regions. *is model
efficiently distinguished high-risk patient from low-risk
patients. Among the 35 hub genes corresponding to the
prognosis-related DNA methylation sites, the gene expres-
sion levels of DOK2, GBP4, PSMB9, and NLRC5 were
significantly changed in different patient subgroups
according to DNA methylation subtypes, patient states,
tumor stages, and T categories. *e genes were positively
correlated with each other, and the altered DNAmethylation
levels on the gene promoter regions of these genes might
affect their expression. Furthermore, these genes might be
involved in the pathological process of melanoma. We plan
to focus future studies on these five identified hub genes and
explore their potential mechanisms in DNA methylation
and their interactions. Our findings may help provide new
targets for clinicians to treat patients with melanoma and
enable early diagnosis based on these critical DNA
methylation sites.
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