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Glioblastoma is themost common primary tumor in the central nervous system, and thrombosis-associated genes are related to its
occurrence and progression. Univariate Cox and LASSO regression analysis were utilized to develop a new prognostic signature
based on thrombosis-associated genes. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
HALLMARK were used for functional annotation of risk signature. ESTIMATE, MCP-counter, xCell, and TIMER algorithms
were used to quantify immune in�ltration in the tumor microenvironment. Genomics of Drug Sensitivity in Cancer (GDSC) was
used for selecting potential drug compounds. Risk signature based on thrombosis-associated genes shows moderate performance
in prognosis prediction. �e functional annotation of the risk signature indicates that the signaling pathways related to the cell
cycle, apoptosis, tumorigenesis, and immune suppression are rich in the high-risk group. Somatic mutation analysis shows that
tumor-suppressive gene TP53 and oncogene PTEN have higher expression in low-risk and high-risk groups, respectively.
Potential drug compounds are explored in risk score groups and show higher AUC values in the low-risk score group. A
nomogram with valuable prognostic factors exhibits high sensitivity in predicting the survival outcome of GBM patients. Our
research screens out multiple thromboses-associated genes with remarkable clinical signi�cance in GBM and further develops a
meaningful prognostic risk signature predicting drug sensitivity and survival outcome.

1. Introduction

Glioma is the most common primary malignancy in the
central nervous system, accounting for approximately 80%
of primary malignant brain tumors in adults [1]. According
to the 2016 World Health Organization (WHO) category of
the Central Nervous System Tumors, glioma can be classi�ed
into astrocytoma, oligodendroglioma, oligodendrocyte, and

glioblastoma (GBM), including WHO grades I-IV based on
its malignancy degree [2]. �e overall survival of GBM
patients ranges from 1 to 15 years, with great individual
di£erences [3]. At present, the treatment of GBM is mainly
based on maximum resection, adjuvant radiotherapy, and
TMZ chemotherapy [4, 5]. Due to the highly invasive nature
of GBM, it is di§cult to completely remove the tumor by
neurosurgery [5].�e residual lesions are prone to resistance
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to radiotherapy and chemotherapy, thus leading to recur-
rence and malignant progression of GBM. With the de-
velopment and application of sequencing technology and
molecular diagnostic technology, a more objective and ac-
curate tumor classification system has been established
clinically at present [6, 7]. However, currently, known
molecular markers can only partially explain the prognosis
of GBM patients.

Venous thromboembolism (VTE), which comprises
deep vein thrombosis (DVT) and pulmonary embolism
(PE), occurs extensively in various cancers, including GBM.
)e incidence of VTE in GBM is high, and complications are
easy to occur. VTE has been found in 17% of patients with
GBM, and the cumulative probability of VTE was 14.3% at 6
months and 16.8% after 12 months [8]. In addition to VTE,
the intratumoral thrombosis in GBMs, which may cause
ischemia or necrosis due to vascular obstruction, is also an
essential factor affecting the prognosis of GBM patients. Risk
factors for GBM-associated thrombosis include general
clinical characteristics, such as advanced age, grade, tumor
size, reduced activity, and thrombosis-associated biomarkers
or genes. Recent studies have shown that the expressions of
many thrombosis-associated proteins in GBMs, such as
tissue factor (TF), human epidermal growth factor (VEGF),
and D-dimer, are correlated with pathological tumor grade
and poor prognosis [8, 9]. TF is a transmembrane glyco-
protein that plays a vital role in thrombosis, and its ex-
pression is significantly upregulated in GBM [10, 11]. In
addition, PTEN loss and hypoxia can further upregulate TF
expression, thereby inducing angiogenesis and local necrosis
of glioblastomas [12]. Previous studies indicated that
thrombosis-associated genes mediated GBM metastasis,
thrombosis, and other biological processes, suggesting that
thrombosis-associated genes changes may play an essential
role in diagnosis and prognostic prediction of glioblastomas
[13].

)is study aims to identify prognostic thrombosis-as-
sociated gene signatures by integrating the transcriptional
data of GBM in)e Cancer Genome Atlas (TCGA) and the
Chinese GBM Genome Atlas (CGGA) databases. We
constructed an independent prognostic risk score model
based on the mRNA expression of 13 thrombosis-associ-
ated genes that were phenotypically significantly associated
with immune invasion and somatic mutation in GBM using
univariate Cox and LASSO regression analysis. We believe
that the findings may provide a theoretical basis for the
molecular diagnosis and individualized treatment for
GBMs.

2. Methods

2.1. Datasets Source. Gene expression profiles and corre-
sponding clinical information were downloaded from the
TCGA database (https://xena.ucsc.edu) and the CGGA
database (https://www.cgga.org.cn). )rombosis-associated
genes were obtained from the literature, and the gene list is
shown in Table S1. GBM samples with overall survival (OS)
of less than 30 days in TCGA and CGGA databases were
excluded. )e TCGA GBM dataset is randomly divided into

the training set (train) and the validation set (test). )e total
TCGA GBM dataset (sum) and CGGA GBM cohort are the
two validation sets in this study.

2.2. Constitution and Validation of the Prognostic Risk Score
Model. First, a univariate Cox proportional hazard regression
analysis was performed using the “survival” package in R to
identify the thrombosis-associated genes involved in prog-
nosis. Genes with P value <0.05 were considered to have
significant prognostic potential. )e least absolute shrinkage
and selection operator (LASSO) regression was performed to
further screen the genes with independent prognostic value
[14]. Based on the highest λ value selected through 1,000
cross-validations in the LASSO method, a set of prognosis
genes and their LASSO coefficients (β) were obtained [15].
)en, a gene-based survival risk assessment model was
established with LASSO coefficients:
risk score � 

N
i�1 (Expi × Coei), where N� 13, Expi is the

expression value of every 13 thrombosis associated genes, and
Coei is the corresponding LASSO regression coefficient.
Patients in the TCGA and CGGA datasets were divided into
high- and low-risk groups according to the median risk score.

2.3. Functional Enrichment Analysis. To evaluate the bio-
logical pathway associated with the 13 thrombosis-associated
genes, the “GSVA” package was used for gene set variation
analysis (GSVA), including Gene Ontology (GO), Kyoto En-
cyclopedia of Genes andGenomes (KEGG), andHALLMARK.

2.4. Immunological Function Analysis. According to the
expression characteristics of thrombosis genes, cell com-
ponents or cellular immune responses in the high-risk and
low-risk groups were evaluated by the ESTIMATE [16],
MCP-counter [17], xCell [18], and TIMER [19] algorithms.
Heatmaps displayed the immune responses generated under
different algorithms.

2.5. Somatic Mutation Analysis. Somatic mutations, in-
cluding the SNVs, SNPs, and INDELs, were detected using
the TCGA mutation data of both the high-risk group
(n� 146) and low-risk group (n� 147) with the R package
“maftools” [20]. Fisher’s exact test was used to determine the
pattern of differential mutation. Genes with a P value <0.05
were defined as differentially mutated genes. )e cooccur-
rence and mutually exclusive mutations were identified
using the CoMEt algorithm [21]. Somatic mutation visu-
alizations were generated using the R package “maftools.”

2.6. Prediction of Chemotherapy Response. According to the
public pharmacogenomic databases, PRISM Repurposing
dataset (PRISM, https://depmap.org/portal/prism/) and
Cancer )erapeutics Response Portal (CTRP, https://
portals.broadinstitute.org/ctrp), and according to a previ-
ous study, drug sensitivity (IC50) values were predicted by
the R package “pRRophetic” [22].
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2.7. Prognostic Model Based on Clinical Features and Risk
Score. Univariate Cox and Multivariate Cox proportional
hazard regression analysis was performed to identify in-
dependent prognostic risk factors, including the risk score
and clinical characteristics (age, gender, subtype, IDH
mutation, chemotherapy, and radiotherapy) using the
“survival” package.)e independent prognostic factors were
then used to construct a nomogram chart and a calibration
curve to evaluate and compare the predicted and actual OS
probabilities for GBM patients at 1, 2, and 3 years. )e
nomogram chart and the calibration curves were con-
structed using the R package “RMS.”

2.8. Statistical Analysis. All statistical analyses were per-
formed using SPSS 22.0 or R software. )e normality of
variables was tested using the Shapiro-Wilk normality test.
For normally distributed variables, significant quantitative
differences between and among groups were determined by
a two-tailed t-test or one-way ANOVA, respectively. For
nonnormally distributed variables, significant quantitative
differences between and among groups were determined by
a Wilcoxon test or a Kruskal-Wallis test, respectively. )e
chi-square test was used to analyze the correlation of the
classified data. Kaplan-Meier survival curve and log-rank
tests were used to detect the prognostic difference in dif-
ferent groups.)e R package “survivalROC” was used to plot
time-dependent receiver operating characteristic (ROC)
curves and calculate the area under the curve (AUC) [23]. P

values <0.05 were considered statistically significant.

3. Results

3.1. Identification and Verification of Prognostic Risk Score
Model Based on %rombosis-Associated Gene Signature in
GBM. )e overall study design is shown in Figure 1. In total,
140 thrombosis-associated genes were identified from the
literature, of which 124 genes expressed in both TCGA and
CGGA datasets were chosen for subsequent analyses. To
identify prognostic thrombosis-associate genes in GBM,
LASSO regression analysis was performed using TCGA
training, and 13 genes were screened out of 124 genes
(Figures 2(a) and 2(b)).)e LASSO regression coefficients of
13 thrombosis-associated genes are shown in Table S2.)en,
a risk score model was established based on thrombosis-
associated gene expression with LASSO coefficients: risk
score� (0.1235∗ANXA2 mRNA expression + 0.1175∗C5
mRNA expression +0.0195∗CD59 mRNA expression
+ 0.0309∗CFH mRNA expression + 0.2343∗CR1 mRNA
expression – 0.3472∗F13BmRNA expression + 0.0079∗FAP
mRNA expression + 0.2369∗KLKB1 mRNA expression +
0.0247∗LBH mRNA expression + 0.0602∗PDGFA mRNA
expression + 0.0104∗PLAT mRNA expression +
0.0419∗SERPING1 mRNA expression – 0.1703∗MASP1
mRNA expression). According to the median risk score,
GBM patients in the TCGA training set were divided into
high-risk and low-risk groups. )e risk score distribution
and survival status of patients are shown in Figure 2(c).
Kaplan-Meier survival curves indicated that high-risk

patients’ OS was significantly worse than that of low-risk
patients (Figure 2(d)). A time-dependent ROC curve
analysis evaluated the risk score model’s predictive accuracy.
)e result showed that the AUC was 0.752, which proved
that the risk score model had good accuracy and predictive
ability within the TCGA training cohort (Figure 2(e)).
Subsequently, the TCGA test set and TCGA sum set were
used to verify the predictive prognosis ability of the risk
score model. )e risk score distribution and survival status
of patients in the TCGA test set and TCGA sum set are
shown in Figures 2(f) and 2(i). We also found that the OS of
GBM patients in the high-risk group was significantly
shorter than that in the low-risk group in the TCGA test set
and TCGA sum set (Figures 2(g) and 2(j)). )e AUC of the
ROC curve in the TCGA test set and sum set were 0.658 and
0.704, respectively (Figures 2(h) and 2(k)).

Further verification in the CGGA dataset showed similar
tendencies that the GBM patients in the high-risk group
have a poorer prognosis compared to those in the low-risk
group (Figure 2(m)). )e AUC of the ROC curve was 0.714
(Figure 2(n)). )e risk score distribution and survival status
of patients in the CGGA dataset are shown in Figure 2(l).
)ese findings revealed that the risk score model based on
thrombosis-associated signature has an excellent survival
predicting power of patients’ OS.

Additionally, we detected the expression of 13 throm-
bosis-associated genes in the TCGA and CGGA datasets.
Heatmaps of 13 thrombosis-associated genes are shown in
Figure S1, in which F13B and MASP1 were regarded as
protective genes for expression level decreases with risk
score gradually increases, and others were risky genes for
growing together. To assess the association between 13
thrombosis-associated genes’ expression and patients’ OS,
patients were divided into high-expression and low-ex-
pression groups based on the median of gene expression,
and Kaplan-Meier curves were performed. As shown in
Figure S2, the increased expression of MASP1 and F13B
indicated an excellent survival in GBM patients in the TCGA
dataset. In contrast, the high expressions of ANXA2, C5,
CD59, CFH, CR1, FAP, KLKB1, LBH, and PDGFA predicted
a poor prognosis in GBM patients. )e association between
IDHmutation status and the 13 thrombosis-associated genes
was explored in the TCGA and CGGA datasets. ANXA2, C5,
CFH, FAP, PDGFA, PLAT, and SERPING1 had higher ex-
pressions in the IDH WT tumors in the TCGA and CGGA
datasets, which predicted worse survival (Figures S3A and
S3B).

3.2. Functional Enrichment Analyses for %rombosis-Associ-
ated Gene Signature. To explore the potential biological
function of a prognostic thrombosis-associated gene sig-
nature in GBM, GSVA was performed. As shown in
Figure 3(a), GO analysis results showed that the thrombosis-
associated gene signature was mainly enriched in the pos-
itive regulation of Kappa B kinase NF-κB signaling, the
regulation of extrinsic apoptotic signaling pathway, the
regulation of low-density lipoprotein particle receptor
binding, the regulation of response to cytokine stimulus, and
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so forth. KEGG analysis results indicated that the throm-
bosis-associated gene signature was primarily concentrated
in the lysosome, the apoptosis, the glycosaminoglycan
degradation, the focal adhesion, the Toll-like receptor sig-
naling pathway, and so forth (Figure 3(a)). In addition, the
HALLMARK analysis results displayed that the thrombosis-
associated gene signature was also principally enriched in
the apoptosis pathway, the P53 pathway, the TNFα signaling
via NF-κB, the epithelial-mesenchymal transition pathway,
and so forth (Figure 3(a)).

In addition, to investigate the correlation between the
expression of thrombosis-associated gene signature and the
known signature, GBM patients in the TCGA dataset were
divided into high-risk and low-risk groups based on the
median risk score. We found significant differences in APM
expression, cell cycle regulation, EMT2, FGFR3 related
signature, histones, immune checkpoint, nucleotide excision
repair, and Pan_F_TBRs signature between the low-risk
group and the high-risk group (Figure 3(b)). Differential
expression analysis of m6A-related genes between the low-
risk group and the high-risk group showed that the ex-
pressions of CBLL1, ELAVL1, LRPPRC, RBM15B, WTAP,
YTHDC2, YTHDF1, YTHDF2, YTHDF3, and ZC3H13 in the
high-risk group were significantly higher than those in the
low-risk group in the TCGA GBM dataset (Figure 3(c)).
Notably, the expression ofWTAP in the high-risk group was

also significantly higher than that in the low-risk group in
the CGGA dataset (Figure S4).

3.3. Immunological Function Analysis for Prognostic
%rombosis-Associated Gene Signature. To verify the rela-
tionship between prognostic thrombosis-associate gene
signature and immune responses, we analyzed the corre-
lation between risk score and immune factors in the TCGA
GBM dataset based on ESTIMATE, MCP-counter, TIMER,
and xCell. As shown in Figure 4, the risk score showed a
negative correlation with Tumor Purity and a positive
correlation with Stromal Score, Immune Score, and ESTI-
MATE Score. Moreover, correlation analysis between risk
score and immune cell subpopulations based on the MCP-
counter revealed that risk score was negatively correlated
with cytotoxic lymphocytes and NK cells but positively
associated with monocytic lineage, myeloid dendritic
cells, neutrophils, endothelial cells, and fibroblasts (Fig-
ure 4). Additionally, correlation analysis between risk
score and immune cell subpopulations based on TIMER
(Figure 4) and xCell (Figure 4) also indicated that risk
score has a correlation with B cells, CD8+ cells, CD4+
cells, neutrophil, macrophage, and dendritic cells (DC).
Similar results were obtained in the CGGA dataset
(Figure S5).
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Figure 2: Continued.
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3.4. Somatic Mutation Analysis for Prognostic %rombosis-
AssociatedGeneSignature. To identify differences in somatic
mutation between the high-risk and low-risk groups, we
analyzed the somatic mutation in the TCGA GBM dataset.
In the low-risk group, 16 genes were mutated in more than
10% of the samples, while only 12 genes met the criteria in
the high-risk group, of which 9 genes overlapped
(Figure 5(a)). )e top 50 with the highest mutation fre-
quency in the low-risk and high-risk groups are shown in

Figure 5(a). Interestingly, TP53 [24], TTN [25], PTEN [26],
and EGFR [27] occupied the top four positions in both low-
risk and high-risk groups, and they are interacting with each
other to regulate various biological processes related to
GBM, suggesting that they may be involved in tumor de-
terioration. In addition, currently recognized GBM prog-
nostic genes (IDH1, TP53, ATRX, NUP16, TIAM2, NEK10,
and ABCA1) showed significant differences in mutation
frequency between the high-risk and low-risk groups
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Figure 2: Identification and verification of prognostic risk score model based on thrombosis-associated gene signature in glioblastomas.
(a) 1000 cross-validations were used for tuning parameters selection in the LASSO regression model. (b) LASSO coefficients profiles of 13
prognostic thrombosis-associated genes. (c))e patients’ risk scores and survival status in the TCGA training set. (d) Kaplan-Meier survival
curves for OS of patients between high-risk and low-risk groups in TCGA training cohort. (e) ROC curve analysis for predicting survival in
TCGA training cohort. (f ) )e distribution of patients’ risk scores and survival status in the TCGA test cohort. (g) Kaplan-Meier survival
curves for OS of glioblastoma patients between high-risk and low-risk groups in TCGA test cohort. (h) ROC curve analysis for predicting
survival in TCGA test cohort. (i) )e distribution of patients’ risk scores and survival status in the TCGA sum cohort. (j) Kaplan-Meier
survival curves for OS of glioblastoma patients between high-risk and low-risk groups in TCGA sum cohort. (k) ROC curve analysis for
predicting survival in TCGA sum cohort. (l))e distribution of patients’ risk scores and survival status in CGGA cohort. (m) Kaplan-Meier
survival curves for OS of glioblastoma patients between high-risk and low-risk groups in CGGA cohort. (n) ROC curve analysis of risk score
based on thrombosis-associated genes in CGGA cohort.
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(Figure 5(b)). Next, we studied cooccurrence and exclusive
mutations in the 25 most common mutated genes using the
CoMEt algorithm. Except for the prevailing mutually
exclusive mutation landscape, there were three unique
gene pairs. Two genes exhibited cooccurrence, including
HYDIN and FLG, AHNAK and SYNE1, and NF1 and LRP2
(Figure 5(c)), suggesting their probable complementary
effect in the same pathway. More interestingly, some genes
had differential mutation frequencies between the two
groups.

3.5. Identification of Potential %erapeutic Agents for High-
Risk Score Patients. To determine potential therapeutic
agents for GBM patients with a high-risk score, PRISM and
CTRP-derived drug response data were analyzed. We first
screened candidate drugs that responded differently between
the high-risk and low-risk groups to identify compounds
with higher drug sensitivity in GBMpatients with a high-risk
score. )e candidate drug meets two criteria: (1) Drugs
respond differently between high-risk and low-risk groups to
identify highly drug-sensitive compounds in high-risk GBM
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Figure 3: Functional enrichment analyses of a thrombosis-associated gene signature in glioblastomas. (a) GO, KEGG, and HALLMARK
analyses for thrombosis-associated prognostic genes in TCGA. (b) )e expression of known signatures in high-risk and low-risk groups in
TCGA. (c) )e expression of m6A-related genes in high-risk and low-risk groups in TCGA. GO, Gene Ontology; KEGG, Kyoto En-
cyclopedia of Genes and Genomes; m6A, N6-methyladenosine.
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Figure 4: Immunological function analysis of thrombosis-associated gene signature in glioblastomas. Heatmap shows the differential
cellular immune responses between high-risk and low-risk groups analyzed by ESTIMATE, MCP-counter, TIMER algorithms, and xCell in
TCGA.

8 Journal of Oncology



patients. (2) Spearman correlation analysis between the
estimated AUC values of a candidate drug and risk score was
used to select compounds with negative correlation coeffi-
cient (Spearman’s r<−0.25 for CTRR or Spearman’s
r<−0.35 for PRISM). )ese analyses yielded nine PRISM-
derived compounds (AGM-232, AS-703026, AZD8330,
Cobimetinib, Dabrafenib, GDC-0152, Napabucasin, Nar-
asin, and TAK-733) (Figures 6(e) and 6(f)) and three CTRP-
derived compounds (Birinapant, Dasatinib, and RITA)
(Figures 6(g) and 6(h)). All these compounds had lower
estimated AUC values in a high-risk group and a negative
correlation with risk score (Figures 6(e)–6(h)).

3.6. Clinical and Molecular Features of Low-Risk and High-
Risk GBM Patients. We performed risk stratification anal-
ysis on various clinicopathological features (age, IDH mu-
tation, radiotherapy, and chemotherapy) with different
groups to evaluate the prognostic value of the risk score

model. Older age is a known risk factor for malignant
glioblastomas. As shown in Figure 6(a), both GBM patients
below 65 years of age and GBM patients aged 65 years or
older with a high-risk score had a worse prognosis than
those with a low-risk score in the TCGA GBM cohort. A
similar result was obtained in the CGGA dataset
(Figure S6A). IDH mutation is currently recognized as a
molecular marker for prognostic prediction of GBM patients
[11, 13, 20]. To determine whether the risk score can be used
as a prognostic indicator independent of IDH mutation, we
performed a stratified analysis of patients in the high-risk
and low-risk groups based on IDH mutation status. In the
TCGA GBM and CGGA datasets, IDH wild-type patients
with high-risk scores had a worse prognosis than those with
a low-risk score, and the same trend was also found in IDH
mutation patients (Figures 6(b) and S6B). To investigate the
risk score based on thrombosis-associated signature con-
cerning prognosis among GBM patients with radiotherapy
and chemotherapy, Figures 6(c) and 6(d) show that patients
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Figure 5: Somatic mutation analysis of thrombosis-associated gene signature in glioblastomas. (a) )e waterfall plot displays the mutation
distribution of the top 50 most frequently mutated genes. (b) )e Forest plot illustrates the top 7 most significantly differentially mutated
genes between high-risk and low-risk groups. (c))e heatmap shows the mutually cooccurring and exclusive mutation genes.)e color and
symbol in each cell represent the statistical significance of the exclusivity or cooccurrence for each pair of genes.
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Figure 6: Continued.
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in the high-risk group without radiotherapy or chemo-
therapy indicated the worst prognosis. In contrast, patients
in the low-risk group with radiotherapy or chemotherapy
showed the best forecast. Similar results were obtained in the
CGGA dataset (Figures S6C and S6D). )e above results
proved that the risk score model based on thrombosis-as-
sociated genes could serve as an independent prognostic
factor for GBM patients.

3.7. Construction andEvaluation of theClinical-FeaturedRisk
Model of Glioblastoma. )en, we built a nomogram to
predict the 1-year, 2-year, and 3-year overall survival with
the risk score based on thrombosis-associated signature
and clinical factors (age, gender, IDH mutation status,
radiotherapy, and chemotherapy) (Figure 7(a)). )e cali-
bration chart showed that the nomogram performed well at
predicting the 1-year, 2-year, and 3-year OS for the TCGA
GBM and CGGA cohorts, and the predicted 2-year OS was
approximated to the actual 2-year OS (Figures 7(b) and
7(e)). Kaplan-Meier curves showed a significant difference
in OS between the high-risk and low-risk groups based on
the clinical-featured risk model (Figures 7(c) and 7(f )).
Moreover, ROC curve analysis was performed to estimate
the predictive accuracy of the clinical-featured risk model.
As shown in Figures 7(d) and 7(g), the AUC of ROC curves
were 0.765 and 0.785 in the TCGA and CGGA cohorts,
respectively, suggesting that the clinical-featured risk
model had better accuracy and stability than the risk score
model based on thrombosis-associated gene signature. In
conclusion, the above results showed that the clinical-
featured risk model had strong prognostic capabilities for
GBM patients.

4. Discussion

Although significant advances have been made in surgical
treatment, radiotherapy, and chemotherapy of GBM, the
prognosis of GBM patients is still poor. Recent studies based
on genetic and epigenetic biomarkers have improved the
accuracy of prognosis prediction of GBM patients and
optimized the treatment strategy of GBM [1, 28–33]. For
example, IDH mutation, 1p/19q deletion, TP53, and ATRX
were widely identified as the prognostic markers for GBM.
Currently, thrombosis-associated genes have also been
found to play vital roles in tumor progression, metastasis,
tumor immunity, and therapeutic resistance. )is study
aimed to develop a prognostic model for GBM based on
thrombosis-associated genes and ultimately help physicians
estimate patient outcomes and design appropriate treatment
strategies.

)is study obtained a novel gene signature composed of
thirteen thrombosis-associated genes by analyzing the
TCGA GBM and the CGGA datasets. Based on the LASSO
regression coefficients of 13 thrombosis-associated genes, we
constructed a risk score model that can be used as a
prognostic indicator for GBM patients in the TCGA and
CGGA datasets.)e signature can stratify patients according
to their risk score. As results showed, high-risk patients have
worsened survival in these datasets. We next comprehen-
sively annotated the risk score’s biological and immune-
related functions. Several potential drug compounds related
to the risk score were screened out. We finally determined
the risk score as an independent prognostic factor in the
nomogram incorporating other elements (age, gender, IDH
mutation, radiotherapy, and chemotherapy). Among the 13
identified genes, CD59 has long been recognized as the
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Figure 6: Survival analysis of high-risk and low-risk groups with different clinicopathological factors and the prediction of chemotherapy
response. (a) Kaplan-Meier survival curves of patients in the high-risk and low-risk groups aged 65 years or older and those below 65 years of
age in the TCGA glioblastoma cohort. (b) Kaplan-Meier survival curves of patients in the high-risk and low-risk group with IDHmutation
or wild-type IDH in TCGA glioblastoma cohort. (c, d) Kaplan-Meier survival of patients in the high-risk and low-risk groups receiving
radiotherapy and chemotherapy in the TCGA glioblastoma cohort. (e) Box plot depicting the AUC differences of 9 PRISM-derived
compounds in risk score groups. (f ) Spearman’s correlation analysis and differential drug response analysis of 9 PRISM-derived com-
pounds. (g) Box plot depicting the AUC differences of 3 CTRP-derived compounds in risk score groups. (h) Spearman’s correlation analysis
and differential drug response analysis of 3 CTRP-derived compounds.
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Figure 7: Continued.
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complement membrane regulator of malignant GBM [34].
CFH, a circular RNA complement factor, has promoted
GBM progression [35].

Similarly, hypoxia-induced LBH, a highly conserved
transcription cofactor, participates in embryonic develop-
ment and promotes tumor progression of GBM [36], and
hypoxia upregulates the expression of PLAT in GBM cells
[37]. Besides, FAP, overexpressed in several kinds of brain
cancers, has been reported to be an excellent target for
immunotherapy [38]. MASP-1, a significant mediator in the
lectin complement signaling pathway of the innate immune
response, has been overexpressed in GBM cell lines [39].
Moreover, a recent study revealed that PDGFA/PDGFRα-
regulated GOLM1 critically enhances the tumor progression
ability through activating AKT signaling in GBM [40].

Among the expression level and clinical correlation of
thirteen candidate genes in patterns, SERPING1and ANAX2
are of particular interest. SERPING1 (also known as C1-
INH) is a plasma protein-encoding C1 inhibitor that plays
a vital role in component regulation, coagulation, and
fibrinolysis. SERPING1 deficiency has been linked to the
development of hereditary angioedema, sepsis, and
pancreatic cancer. In line with previous studies, our study
also found that the SERPING1 gene is highly expressed in
GBM and suggests a poor prognosis in patients with GBM.
However, the exact role of SERPING1 in GBMs requires
further investigation. ANXA2 is a member of the annexin
family encoding a calcium-dependent phospholipid-
binding protein that regulates cellular growth and signals
transduction pathways. ANXA2 overexpression has been
connected with various cancer growths, invasion, me-
tastasis, and drug resistance. Previous evidence indicated
that miR155HG was overexpressed and acts as a tumor
suppressor to upregulate ANXA2 forming a loop that
could promote the GBM’s malignant progression. In this
study, we found that the overexpression of ANXA2 pre-
dicted a worse prognosis in GBM.

Given the vital roles of the 13 thrombosis-associated
genes in GBM, a tumorigenic functional annotation is likely

to be observed in the corresponding thrombosis-associated
gene signature. As expected, the prognostic signature was
enriched in Kappa B kinase NF-κB signaling, the regulation
of extrinsic apoptotic signaling pathway, the apoptosis, the
focal adhesion, and the Toll-like receptor signaling pathway,
the P53 pathway, and the TNFα signaling via NF-κB, all of
which were important signaling pathways regulating tumor
proliferation and tumor progression. Notably, the prog-
nostic signature was also associated with tumormetastasis. A
close connection between m6A methylation regulators and
the prognostic signature was observed, and the high score
group had higher expression of writer WTAP. )is also
indicated the hazardous role of the prognostic signature in
GBM patients.

Tumor microenvironment (TME) has been proposed to
mediate the progression of GBMs critically [41–43]. )e
various immune infiltrating cells within the TME play an
essential role in the crosstalk between GBM cells and TME
[41–45]. In this study, multiple immune regulatory cells,
including M2 macrophages and fibroblasts, were more
expressed in the high-score group. )e consistent findings
proved that the thrombosis-associated gene signature was
involved in an immunosuppressive microenvironment.
Since GBMs are highly heterogeneous among individuals,
we analyzed the characteristics of somatic mutations in the
high-risk and low-risk groups. Our results proved that the
tumor-suppressive gene, TP53, was mutated more fre-
quently in the low-risk score group, while the oncogenic
gene, PTEN, was mutated more commonly in the high-risk
score group. )is was by the previous finding, which further
proved the prognostic value of the thrombosis-associated
gene signature.

)e current treatment modality for gliomas, especially
GBM, is limited and dismal. To a large extent, novel ther-
apeutic options would help promote the clinical manage-
ment of GBM patients. In the analysis of potential drug
compounds in risk score groups, all identified drugs from
PRISM and CTRP have lower AUC values in the high-risk
score group, suggesting that GBM patients in the high-risk

AUC = 0.785

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

Se
ns

iti
vi

ty

CGGA dataset

(g)

Figure 7: Establishment and assessment of the clinical-risk model. (a) Prognostic nomogram for glioblastomas containing age, gender, IDH
mutation status, chemotherapy, radiotherapy, and risk score. (b) 2-Year calibration curve of nomogram in TCGA glioblastoma cohort.
(c) Kaplan-Meier survival for OS based on the score of the clinical-risk model in the TCGA glioblastoma cohort. (d) ROC curves for the
clinical-risk model in TCGA glioblastoma cohort. (e) Calibration curves for 2-year OS in CGGA cohort. (f ) Kaplan-Meier survival for OS
based on the score of the clinical-risk model in the CGGA cohort. (g) ROC curves for the clinical-risk model in the CGGA cohort.
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group have increased sensitivity to the compounds-based
therapy. PRISM-derived and CTRP-derived compounds
were highly correlated with the thrombosis-associated sig-
nature. )e above findings indicated that these compounds
could be potentially applied in treating GBM patients. )ese
identified compounds could be explored in a clinical trial for
more robust verification of their therapeutic efficacy. Finally,
a nomogram incorporating risk score, age, gender, IDH
mutation, radiotherapy, and chemotherapy was constructed,
which showed high sensitivity in predicting survival out-
comes of GBM patients.

Although the new signature established by this research
provides new biomarkers for thrombosis prevention in
GBM patients and gives the foundation for developing
anticoagulation therapy, there are still many deficiencies. For
example, our risk score model is based on retrospective data
and needs future research. Furthermore, apart from the two
genes in our study, single genes’ potential function and
mechanism need to be further explored.

5. Conclusion

In sum, an independent prognostic risk score model based
on the mRNA expression of 13 thrombosis-associated genes
that were phenotypically significantly associated with im-
mune invasion and somatic mutation in GBM was con-
structed using LASSO regression. We believe that the
findings may provide a theoretical basis for the molecular
diagnosis and individualized treatment for glioblastomas.
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