
Research Article
Identifying Potential Tumor Antigens and Antigens-Related
Subtypes in Hepatocellular Carcinoma for mRNA Vaccine
Development

Weiran Liao, Zhitian Shi, Haoren Tang, Tiangen Wu, Cheng Zhang , Yutao He,
Renchao Zou , and Lin Wang

Department of Hepatobiliary Surgery, �e Second A�liated Hospital of Kunming Medical University, Kunming 650101,
Yunnan, China

Correspondence should be addressed to Renchao Zou; 1275523786@qq.com and Lin Wang; wanglinfey@126.com

Received 31 May 2022; Revised 30 July 2022; Accepted 5 August 2022; Published 29 August 2022

Academic Editor: Zhiqian Zhang

Copyright © 2022 Weiran Liao et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. �e mRNA vaccine has become a promising platform for cancer therapy. Lots of studies have been focusing on
discovering novel potent cancer-associated antigens to develop mRNA vaccines against cancers. Besides, immunotyping shows
the immune status, and immune microenvironment of immunotyping is related with therapeutic reaction. However, potential
antigens for mRNA vaccines and immunotyping of liver hepatocellular carcinoma (LIHC) remain far from being understood.
Methods. In this study, we collected gene expression data and clinical information data from ICGC and TCGA databases. Using
GEPIA2, we calculated di�erential expression genes and prognostic indices. We applied TIMER to calculate the correlation
coe�cient between immune in�ltrating cells and each gene. Consensus cluster was used for immunotyping of LIHC. Results. We
uncovered four most potential candidates including PES1, MCM3, PPM1G, and KPNA2, which were all related with antigen-
presenting cell (APC) in�ltration and poor survival in LIHC in two independent datasets. Furthermore, three immune-related
subtypes (IS1-IS3) of LIHC were identi�ed. All these results were validated in two independent datasets. Furthermore, we
validated our results in vitro. Conclusions. �e above candidates will be expected to be potential antigen genes for developing anti-
LIHC mRNA vaccine, and furthermore, patients with IS2 and IS3 tumors are supposed to be appropriate for mRNA vaccine
in LIHC.

1. Introduction

Globally, liver cancer is the fourth leading cause of cancer-
related death, ranking sixth in incidence rate. According to
the World Health Organization, more than one million
patients will die of liver cancer in 2030, from 2000 to 2016,
the mortality rate of liver cancer in the United States in-
creased by 43% (the number of deaths per 100000 people
increased from 7.2 to 10.3) [1]. In recent years, the treatment
of advanced liver cancer has made rapid progress. New
chemotherapy, targeted therapy, and immunotherapy were
organically combined with traditional surgery, radiotherapy,
and interventional therapy which have improved the ther-
apeutic e�ect of liver cancer patients [2, 3]. However, the �ve

years survival rate of liver cancer is only 18%. Liver cancer is
the second leading cause of death in various cancer types,
after pancreatic cancer [4].

Compared with other therapies, the cancer mRNA
vaccine introduces the mRNA encoding the cancer-speci�c
antigen, and uses the protein synthesis mechanism of host
cells to produce antigen, thus triggering the immune-related
response. Cancer mRNA vaccine has the advantages of high
speci�city, nontoxicity, lasting nontoxicity, and immuno-
logical memory [5, 6]. In fact, researchers are trying to dig
out potential tumor antigens from various cancer types
including pancreatic cancer and cholangiocarcinoma as the
target of mRNA vaccine. At the same time, in order to
explore the suitable population of mRNA vaccine, immune
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profiles and immune-related subtypes of the above-
mentioned cancers were performed [5–7]. -ough the im-
provement of the treatment in liver cancer is urgent, there is
a lack of specific tumor antigens and immune-related
subtypes analysis in HCC.

To identify the HCC-specific tumor antigens and
immune-related subtypes in HCC, we collected gene ex-
pression profiles and clinical information of LIHC samples
from ICGC and TCGA databases. -en, we identified four
most potential candidates associated with poor survival as
well as antigen-presenting cell infiltration in LIHC, in-
cluding PES1, MCM3, PPM1G, and KPNA2. -en,
according to the clustering analysis of immune-related
genes, we divided the patients into three subtypes. Each
subtype has diverse clinical, molecular, and cellular char-
acteristics, respectively. We performed the immune profiles
of LIHC by analyzing the distribution of the relevant gene
signatures for LIHC patients. Our findings will provide new
knowledge to develop mRNA vaccines as well as select
appropriate therapeutic schedules for patients of LIHC.

2. Methods

2.1. Patient Dataset Collection. -e gene expression, clinical
data, and mutation of LIHC were downloaded from ICGC
(https://dcc.icgc.org/) (Table S1). A total of 294 LIHC
samples with the information of gene expression data, copy
number variation (CNV) data, and mutation data, from
ICGC database were used in this study. Concurrently, a total
of 424 LIHC samples with the information of gene ex-
pression data, CNV data, and mutation data, from TCGA
database were used as validation (Table S2). -e cBioPortal
database can provide the interactive exploration of multi-
dimensional cancer genomics data sets [8, 9]. -us, the gene
expression (level 3), clinical data, and mutation data for
validation were downloaded from TCGA (https://tcga-data.
nci.nih.gov/) and cBioPortal Database (https://www.
cbioportal.org/) (Table S3) [10].

2.2. Selection of DEGs and Survival Analysis. -e DEGs
(differently expressed genes) between cancer and normal
tissues were calculated using Gene Expression Profiling
Interactive Analysis version 2 (GEPIA2, http://gepia2.
cancer-pku.cn) using false discovery rate (FDR) cutoff of
0.05 [11]. GEPIA2 is an open-access online tool collecting
tumor and normal samples from TCGA and GTEx data-
bases, which can be applied to perform the differential
expression analysis in LIHC and calculate the prognostic
index of each selected antigen. GEPIA2 web server was also
used to evaluate gene expression from the gene level to
transcript level, and supports analysis of a specific cancer
subtype, and comparison among these subtypes [12]. Be-
sides, overall survival (OS) and relapse-free survival (RFS)
were compared by the log rank test. We considered Q
values< 0.05 as statistically significant.

2.3. Immune-Related Subtypes Analysis. TIMER is an open-
access resource for comprehensively investigating molecular

characterization of tumor-immune interactions [5, 6]. As
described by Xing et al. in previous research [13], we used
Tumor Immune Estimation Resource (TIMER, https://
cistrome.shinyapps.io/timer/) to perform the relationship
between immune infiltrates and expression level of potent
antigens we identified. In this study, P values< 0.05 were
deemed as statistically significant.

We found 76 intersection genes of differently expressed
genes and survival-related genes. Using the Database for
Annotation, Visualization, and Integrated Discovery (DA-
VID) v6.8 (https://david.ncifcrf.gov/) and Metascape
(https://metascape.org/gp/index.html#/main/step1) analy-
sis, we found that these genes were immune-related genes.
-e DAVID and Metascape program were used to func-
tionally annotate these genes by Gene Ontology (GO)
analysis [14].

2.4. Discovery and Validation of the Subtypes. Due to low t-
expressed genes can not to be used to develop potential
mRNA vaccines, TCGA tumor samples lacking clinical
information, and genes with 0 Transcript Per Million (TPM)
in >50% of the samples were excluded. A total of 76 immune
cell-related genes with log-transform data were used for the
subsequent analysis. Using the “Consensus Cluster Plus”
package of R software, consensus clustering analysis of
immune-related genes was conducted to determine the
number of clusters in LIHC from the ICGC database. -e
parameters were: “pItem”� 0.8, “reps”� 100, “pFeature”� 1,
“maxK”� 10, and “distance”� “spearman.” We used
“ward.D2” method as hierarchical clustering and distance
function method as reported [11]. We then validated the
immune-related subtypes in independent cohort (TCGA)
with the same settings [15].

2.5. Immune Score Evaluation of Immune-Related Subtypes.
-e t-test was used to define the association between
immune-related subtypes with immune-related cellular and
immune-related molecular characteristics. We performed
single-sample GSEA (ssGSEA) from ImmPort database,
which provides publicly available clinical trial and immu-
nology research datasets and bioinformatics tools for ana-
lyses to calculate the immune enrichment scores for every
sample, which can calculate separate enrichment scores for
each pairing of a sample and immune-related gene set [16].
Each ssGSEA enrichment score represented the degree to
which the genes are coordinately up- or down-regulated
within the sample.

2.6. Immunoblotting. HepG2, Huh7, SK-Hep-1,
MHCC97H, and LX2 cell lines used in this study were
obtained from the Conservation Genetics CAS Kunming
Cell Bank (Kunming, Yunnan, China), which performs
authentication on its cell lines. All human cell lines were
cultured in Dulbecco’s modified Eagles’ medium with 10%
fetal bovine serum. A total of 4 HCC patients, who un-
derwent hepatectomy, were recruited at the Department of
Hepatobiliary Surgery, the Second Affiliated Hospital of
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Kunming Medical University from January 2022. -ose
patients with HCC were diagnosed, according to the AASLD
practices guidelines on the management of HCC (2005
version). Tumor specimens and corresponding adjacent liver
tissues (2 cm from the tumors) from the 4 patients were used
for immunohistochemistry. Written informed consent was
obtained from individual patients. -e experimental pro-
tocol was established, according to the ethical guidelines of
the 1975 Declaration of Helsinki, and was approved by the
Ethics Committee of Kunming Medical University. -e cells
and tissues were collected and lysed with the lysis buffer
containing protease inhibitors and the protein concentration
was determined using BCA method (Beyotime Institute of
Biotechnology, Shanghai, China). 20 μg whole-cell lysates of
cells and tissues were separated using sodium dodecyl
sulfate-polycrylamide gel electrophoresis. -en we tried to
transfer these to polyvinylidene fluoride (PVDF) mem-
branes. -e blots were probed using PPM1G antibody
(Proteintech, 15532-1-AP), a KPNA2 antibody (Proteintech,
10819-1-AP) and a beta Tubulin antibody (Proteintech,
10094-1-AP), as well as horseradish peroxidase-labeled goat
antirabbit secondary antibody (Proteintech, SA00001-2).
Afterward, the blots were illuminated with chemilumines-
cent detection reagents (Tanon).

3. Results

3.1. Identification of Potential Tumor Antigens of LIHC.
Firstly, we screened differentially expressed genes to identify
potential antigens of LIHC. -en, there were 2213 overex-
pressed genes which were identified as tumor-associated
antigens in LIHC (Figure 1(a)). By calculating mutation
counts and altered genome fraction in patients, 10462
mutated genes encoding tumor-specific antigens were
screened (Figures 1(b) and 1(c)). As shown in Figure 1(d),
genes including KLC1, USH2A, LRP1B, MUC16, TTN,
ABCA13, ASNS, APOB, PCLO, and ALB with the highest
alteration frequency are in the fraction genome altered
group. Finally, 763 frequently mutated and high-expressed
tumor-specific genes were determined. We performed
KEGG and GO enrichment analyses and found that these
genes were significantly associated with cancer-related
pathway and GO terms (Supplementary Figure. 1A, 1B).

3.2. Identification of Tumor Antigens Related with Survival
andAntigen-PresentingCells inLIHC. We subsequently used
these frequently mutated and high-expressed genes to in-
tersect with prognosis-related tumor antigen genes. Among
the 763 overexpressed and frequently mutated tumor-
specific genes, we found that a total of 39 genes are asso-
ciated with the OS of LIHC patients, and 4 genes of which are
significantly correlated with the RFS (Figure 2(a)). As shown
in Figures 2(b)–2(h), the four most potential candidate genes
included are:PES1, MCM3, PPM1G, and KPNA2. Besides,
their overexpression levels were significantly related with
increased tumor infiltration of B cells, macrophages, and
DCs (Figure 3). -e abovementioned results illustrated that
these 4 tumor antigens could be directly recognized and

presented to T cells by APCs (antigen-presenting cells), and
activated immune responses upon recognition by B cells.
-erefore, these genes might be candidates for developing
mRNA vaccine against LIHC. We further verified our
conclusion on liver cancer cell lines and liver cancer patient
samples and found KNPA2 and PPM1G are high expressed
in liver cancer cell lines and tissues from liver cancer patients
(Figure 3(e)).

3.3. Identifying Potential Immune-Related Subtypes in LIHC.
Immunophenotyping can reflect the immune status of
tumor and its microenvironment, and help to determine
the appropriate vaccination for patients [17]. Here, we
analyzed the gene expression landscape of immune-related
genes in 294 LIHC samples downloaded from ICGC and
424 LIHC samples from the TCGA database to construct
consistent clustering, respectively. We selected k� 3 as the
optimal number of clusters, in which immune-related
genes were stably aggregated according to their function
delta area and cumulative distribution function
(Figures 4(a) and 4(b)), and obtained three immune-related
subtypes designated as IS1-IS3 (Figure 4(c)). To further
demonstrate each subtype has the same expression pattern
in 2 cohorts, samples from TCGA and ICGC datasets were
merged as an integrated set to show the clustering (Sup-
plementary Figure 2). Interestingly, IS1 was associated with
the best prognosis, while IS3 and IS2 had poor survival
probability (Figure 4(d)). We also analyzed the gene ex-
pression landscape of 396 immune-related genes in 424
LIHC samples from the TCGA database to construct
consistent clustering. Consistent with the results obtained
in the ICGC cohort, three immune-related subtypes were
obtained in the TCGA cohort and correlated with prog-
nosis (Figure 4(e)). We also plot receiver operating char-
acteristic (ROC) curve to show the true positive rate
(sensitivity) for these risk models (Figure 4(f )). -e result
revealed that our risk model has very good predictive ef-
ficiency in patients. We investigated the subtype distri-
bution of different metastasis and stage status (Figures 4(g)
and 4(h)), while IS1-IS3 was irregularly aggregated in
metastasis and stage status (Figure 4(g)). As shown in
Figure 4(h), the T1 and T2 subtypes mainly included IS1.
While the T5 subtype mainly included IS2 and IS3 sub-
types. -us, immunophenotyping could be used to predict
the prognosis of LIHC patients and typical subtypes.

3.4.�e Association of Immune-Related Subtypes with Tumor
Mutational Burden and Mutational Status. Higher tumor
mutation burden (TMB) is related to stronger anticancer
immunity [18]. In our research, we used the mutect2-
processed mutation data set of TCGA in IS1-IS3 to calcu-
late the TMB of each patient [19]. No significant difference in
TMB was identified among the four immune-related sub-
types (Figure 5(a)). Seven genes including RYR2, CUBN,
PCLO, MUC16, TP53, TTN, and CTNNB1 were most
frequently mutated in these subtypes (Figure 5(b)). -ese
findings indicated that there was no significant difference in
tumor antigens among our immune-related subtypes.
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Figure 1: Continued.
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Figure 1: Potential tumor antigens of LIHC. (a) -e distribution of overexpressed genes on chromosomes. Samples overlapping in (b)
fraction genome altered and (c) mutation count. (d) Genes with high frequency in fraction genome-altered groups.
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3.5. Association between Immune-Related Subtypes and
LIHC-RelatedTumorMarker. CA125 is the most commonly
used prognostic tumor biomarker of LIHC, and its high
value indicated tumor progression, poor prognosis, or tu-
mor recurrence. In our study, the gene expression level of
CA125 was significantly different among immune-related
subtypes in ICGC (Figures 6(a) and 6(b)), and IS1 showed
lower CA125 expression in the ICGC queue (Figure 6(a)),
and also TCGA queue displayed a similar trend in the CA125
expression level (Figure 6(b)). However, these results

suggested that immune-related subtypes were superior to
CA125 in predicting the prognosis of LIHC patients.

3.6. Cellular and Molecular Characteristics of Immune-
Related Subtypes. Because tumor-immune status would
affect the adequacy of mRNA vaccine [20, 21], we used
ssGSEA to score 28 marker genes in ICGC and TCGA
cohorts, and further described the resistant cell segments in
four immune-related subtypes. -e immune cell
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Figure 4: Immune-related subtypes in LIHC. (a) Cumulative distribution function curve, (b) delta area of cluster for immune-related genes in
ICGC and TCGA. Clustering heatmap using ICGC (left) and TCGA (right), respectively (c). Overall survival of LIHC immune-related subtypes
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evaluating the stability of the prediction model. (g, h) Distribution of IS1-IS3 across LIHC. (g) Metastasis staging and (h) stages in TCGA.
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composition of each subtype in the ICGC cohort was sig-
nificantly different (Figure 7(a)). Most immune cells were
more abundant in IS2 and IS3 subtypes rather than IS2
subtype. As shown in Figures 7(b) and 7(c), the scores of
activated CD4 Tcells, activated CD8Tcells, and monocyte in
IS2 and IS3 were significantly higher than those in IS1.
-erefore, IS2 and IS3 were immune “hot” types, while IS1 is
immune “cold” type. TCGA queue presented a similar trend.
-ese results indicated that the immune-related subtypes
could reflect the immune status of LIHC and screen the
suitable patients for mRNA vaccination. -e mRNA vaccine

with these antigens could induce immune infiltration in
patients with immune “cold” IS2 and IS3 tumors.

4. Discussion

According to the above results, we systematically explored
the potential vaccines in liver cancer and found four most
potential candidates including PES1, MCM3, PPM1G, and
KPNA2. -ese potential candidates were all associated with
antigen-presenting cell (APC) infiltration and poor survival
in LIHC in two independent datasets. We also identified
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Figure 5: Relationship between immune-related subtypes and TMB status, mutation status. (a) TMB in IS1-IS3 of LIHC. (b) Mutation
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three immune-related subtypes (IS1-IS3) of LIHC for fur-
ther exploring the applicability of mRNA vaccines. Last, we
validated our results in two independent datasets and
in vitro.

Although the vaccine is very promising for the treatment
of liver cancer, there is a lack of basic research on vaccine for
liver cancer [22]. Cytotoxic T lymphocyte (CTL)-mediated
immune response is an effective way to kill cancerous cells.
-eoretically, if we can find the key sequences in the process
of cell malignant transformation, we can perform tumor
CTL vaccine. Compared with traditional vaccines, mRNA
vaccines have lots of advantages. It can not only trigger
a comprehensive immune response, but also induce local
immune response and immune memory [5–7]. Cancer
vaccines, including viral vector-based cancer vaccines, im-
mune cell-based cancer vaccines, peptide-based cancer
vaccines, and nucleic acid-based cancer vaccines are
promising for cancer therapy. Of them, mRNA vaccine has
now been an attractive alternative to others for anticancer
treatments because mRNA vaccine shares some basic fea-
tures with DNA vaccine.

At present, the successful application of mRNA vaccine
in the field of COVID-19 makes the mRNA vaccine of liver
cancer see the dawn [23, 24]. Meanwhile, the identification
of genome-wide potential antigens in pancreatic cancer,
cholangiocarcinoma, and renal clear cell carcinoma for the
development of mRNA vaccine was carried out [5, 6].
However, it is pity that no mRNA vaccine against LIHC
antigens has been developed to date. Following the methods
used to identify potential antigens in pancreatic cancer,
cholangiocarcinoma and renal clear cell carcinoma, our
study explored the possibility of liver cancer mRNA vaccine
for the first time. It is conducive to the development of
mRNA vaccine in liver cancer.

Only a small number of patients with HCC achieved
clinical benefit from ICPI therapy [23, 24]. As reported

previously, high-throughput studies on HCC samples have
identified many patients to harbor transcriptomic hallmarks
of adaptive or exhausted immunity [9, 25, 26]. It is urgent to
translate this transcription-related knowledge into clinically
predictive relationships of response and survival to spare
patients from potentially ineffective mRNA vaccination
therapies. Subpopulation of patients suitable for vaccination
will be identified.

5. Conclusion

In this study, we identified four most potential candidates
including PES1, MCM3, PPM1G, and KPNA2 related with
poor prognosis and APC infiltration in LIHC, which would
be very helpful to develop mRNA vaccines. We defined 3
robust immune-related subtypes based on immune-related
genes, which could be used to select suitable patients for
vaccination in LIHC. Eventually, we performed the im-
mune landscape of all LIHC samples by performing the
relevant gene signatures in LIHC patients. -is study
promotes the research of the mRNA vaccine of LIHC, and
helps people to develop the mRNA vaccine of LIHC in the
future.
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-e datasets used and analyzed in the current study are
available from the ICGC and TCGA databases.
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Figure 7: Molecular and cellular characteristics of immune-related subtypes in LIHC. (a, b) Differential enrichment scores of twenty-eight
immune cell signatures in LIHC immune-related subtypes of TCGA and ICGC database. (c) Enrichment index of survival-related immune
cell signatures in (c) TCGA.
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