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Purpose. Cervical cancer (CC) is one of the most common gynecologic neoplasms. Hypoxia is an essential trigger for activating
immunosuppressive activity and initiating malignant tumors. However, the determination of the role of immunity and hypoxia
on the clinical outcome of CC patients remains unclear. Methods. The CC independent cohort were collected from TCGA
database. Consensus cluster analysis was employed to determine a molecular subtype based on immune and hypoxia gene sets.
Cox relevant analyses were utilized to set up a risk classifier for prognosis assessment. The underlying pathways of classifier
genes were detected by GSEA. Moreover, we conducted CIBERSORT algorithm to mirror the immune status of CC samples.
Results. We observed two cluster related to immune and hypoxia status and found the significant difference in outcome of
patients between the two clusters. A total of 251 candidate genes were extracted from the two clusters and enrolled into Cox
relevant analyses. Then, seven hub genes (CCL20, CXCL2, ITGA5, PLOD2, PTGS2, TGFBI, and VEGFA) were selected to
create an immune and hypoxia-based risk classifier (IHBRC). The IHBRC can precisely distinguish patient risk and estimate
clinical outcomes. In addition, IHBRC was closely bound up with tumor associated pathways such as hypoxia, P53 signaling
and TGF β signaling. IHBRC was also tightly associated with numerous types of immunocytes. Conclusion. This academic
research revealed that IHBRC can be served as predictor for prognosis assessment and cancer treatment estimation in CC.

1. Introduction

Cervical cancer (CC) is the fourth most frequently diagnosed
cancer and the second mortal cancer in female population,
which poses a serious health threat to women globally [1].
According to the GLOBOCAN 2020 database, there were
604127 new cases and 341831 new deaths from CC, and the
death rate is 12.4 versus 5.2 per 100,000 people in transitioning
and in transited countries, respectively [2]. Etiologically, accu-
mulating evidence has implied that infection with high-risk
human papillomavirus (HPV) is the primary factor for CC
[3]. Up to 90% of cases are driven by high-risk HPV strains
including 16, 18, 31, 33, and 35, with other low-risk HPV types
generally produce benign cervical lesions [4, 5]. Despite the

promotion of HPV vaccine immunoprevention, many
patients are diagnosed with advanced stage at their first diag-
nosis, making the exploration of early diagnosis biomarkers
and effective prognostic model urgently needed [6, 7].

Recently, tumor microenvironment (TME) is causing gen-
eral interest in various cancer settings. TME is composed of
multiple cells residing in cancers, including immune cells,
fibroblasts, endothelial cells, and mesenchymal cells [8]. These
cells closely interact with each other and organize into distinct
cellular communities [9]. Distinct immune cell response cate-
gories tumors into 3 types named “hot”, “altered”, and “cold”
tumors [10]. Accumulating evidence has identified the immu-
notherapy as a promising intervention for cancer patients
[11]. By reprograming the immunosuppressive state in the
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“cold tumor” into an activated one, the usage of immune
checkpoint inhibitors as well as some cell-specific compounds
has achieved exciting clinic outcome in multiple cancers [12,
13]. However, immunotherapy in CC remains largely
unexplored.

Hypoxia is one of common characteristics of tumors and
is closely related to tumor progression and poor prognosis
[14, 15]. Cells respond to hypoxia environment by regulating
various metabolism pathways, which subsequently causes
deficient hypervascularization, enhanced tumor cell prolifer-
ation, and distant metastasis tendency [16–18]. Emerging
evidence has validated the crosstalk between hypoxia and
immunophenotype in tumors. For instance, HIF2α has been
reported to exert its protective role in pancreatic ductal ade-
nocarcinoma by improving immune responses [19]. More-
over, Zhang et al. once reported that hypoxia condition

elevated the tumor cell resistance to cytotoxic T lymphocytes
mediated lysis, which is dependent on the upregulation of
HIF1α and PD-1 expression [20]. Taken together, it is rea-
sonable to speculate that novel approaches targeting alleviat-
ing hypoxia condition could augment the current outcome
for CC patients.

Most of the indicators proposed in previous studies to
predict clinical outcomes of CC patients are limited to single
genes, such as HPV, PTEN, and FHIT [21]. However, using
only a single biomarker to assess prognosis is greatly partial,
as the mechanisms affecting the development of CC are
extremely complex. Currently, prognostic signature consist-
ing of multiple genes has been proven to present indepen-
dent prognostic ability by several reports, which has also
attracted the attention of scholars in the field of oncology
[22, 23]. Compared to the traditional TNM system, the
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Figure 1: Characterization of immune and hypoxia genes. (a) The Venn plot of overlapped genes; (b) GO function enrichment analysis; (c)
the PPI network of the overlapped genes.
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prognostic model is capable of accurately predicting not only
clinical outcomes but also the patient’s immune status and
treatment benefits.

The alteration of metabolic state and immunophenotype
in tumors largely restrain the therapy response for CC
patients, while the relevant study is still in very early stages.
In our current research, we combined the immune-related
genes (IRGs) and hypoxia-related genes (HRGs) to establish
a prognostic signature with high accuracy for CC. In addi-
tion, immune cell infiltration analysis was performed in
two risk groups of CC samples. Altogether, our exploration
will help clarify the specific immune environment in differ-
ent populations and provide new ideas and insights for the
prevention and treatment of CC.

2. Methods

2.1. Data Acquisition. The TCGA-CSCC dataset containing
gene expression and simple nucleotide variation was col-
lected from TCGA website (https://cancergenome.nih.gov/
). And the clinical data of TCGA-CSCC dataset was obtained
from cBioPortal website (http://www.cbioportal.org/). Next,
we combined the clinical traits of the two databases by
patient ID. The exclusion criteria were set as follows: (1) his-
tologic diagnosis is not CC; (2) samples without completed
data for analysis; and (3) survival time of less than 30 days.
Moreover, we extracted IRGs from ImmPort database
(https://www.immport.org/shared/genelists/) and collected
HRGs from MSigDB website (https://www.gsea-msigdb
.org/gsea/msigdb/, Supplementary Table 1).

2.2. Gene Cluster Analysis. The consensus cluster algorithm
was performed using the “ConsensusClusterPlus” package
[24]. To determine the optimal cluster score, we assessed the

Delta area and cumulative distribution function (CDF). Next,
we compared clinical outcome discrepancies between different
subtypes by survival analysis. We also utilized differential
analysis to screen differentially expressed genes (DEGs)
between different subtypes for subsequent analysis [25].

2.3. Development of a Risk Classifier. All CC samples were
randomly divided into training set and validation set. The
DEGs from cluster analysis were first subject to univariate
analysis. Then, we enrolled the potential genes with prog-
nostic value in multivariate analysis. Finally, we created
immune- and hypoxia-based risk classifier (IHBRC) accord-
ing to regression coefficients of each model factors. The risk
equation is as follows: risk factor =∑n

i=1ðCoef i × ExpiÞ; Coefi
is the coefficient of the classifier generated by Cox analyses,
and Expi is the expression level of each model genes. The
patients were divided into high- and low-risk groups accord-
ing to the median risk score.

2.4. Survival Analysis. The differences in clinical outcome
were detected between two risk groups by Kaplan-Meier
analysis. ROC curves were plotted to test the reliability of
IRBRC in assessing patients’ outcomes. Univariate and mul-
tivariate analyses were applied to confirm the independent
value of IHBRC in CC.

2.5. Gene Set Enrichment Analysis (GSEA). The tran-
scriptome data and risk groups information were enrolled
into GSEA [26]. Next, we selected the hallmark, all v7. 5.
symbols. Gmt in the MSigDB database as the reference gene
set. The default weighted enrichment method was applied
for 1000 enrichment analysis. The gene sets with p < 0:05
and FDR < 0:25 were considered as significantly enriched
gene sets.
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Figure 2: Consensus clustering determined a molecular subtype related to immune and hypoxia. (a) The CDF score of consensus index; (b)
relative change of CDF curve; (c) consensus matrix for k = 2; (d) the Kaplan–Meier survival analysis; (e) principal component analysis of the
two clusters.
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2.6. Immune Infiltration Analysis. CIBERSORT is a powerful
algorithm proposed by Newman et al. to mirror the infiltra-
tion status of immunocytes [27]. Performing an immuno-
cytes gene set including 547 genes, CIBERSORT was
applied to determine 22 immunocyte types containing B
cells (naive B cells and memory B cells), T cells (CD8 T cells,
naïve CD4 T cells, resting memory CD4 T cells, activated
memory CD4 T cells, follicular helper T cells), immunosup-
pressive cells (T cells regulatory (Tregs), M2 macrophages
and eosinophils) as well as other cells (resting NK cells, acti-
vated NK cells, monocytes, macrophages, dendritic cells,
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Figure 3: Construction of a risk classifier. (a) Univariate Cox regression analysis; (b–c) LASSO coefficients for risk classifier; (d) the survival
analysis of classifier genes.

Table 1: Multivariate analysis of the seven model genes in CC.

Gene Coefficient P value

CCL20 0.0131 0.007

CXCL2 0.0638 0.001

ITGA5 0.2812 0.001

PLOD2 0.0340 0.001

PTGS2 0.0697 0.008

TGFBI 0.0374 0.001

VEGFA 0.1113 0.001
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mast cells, eosinophils, and plasma cells). To detect the TME
of CC cases, we conducted correlation analysis to analyze the
relationship between risk score and 22 immunocytes types.

2.7. Tumor Mutation Burden Analysis. We employed the
mutation data of CC cases to compare the tumor mutation

burden (TMB) in two subgroups. The TMB value was gener-
ated using following equation: TMB = ðtotalmutation/total
coverbasedÞ × 106.

2.8. Chemotherapy Drug Sensitivity Analysis. To estimate the
predictive power of the IHBRC for chemotherapeutic drug

(a) (d) (g)

(b) (e) (h)

(f) (i)(c)

Figure 4: Predictive value of the classifier. (a) Survival curves of prognostic difference between two risk groups in the training set; (b) ROC
curve of the assessment reliability of the classifier in the training set; (c) the distribution of risk score and survival status in the training set.
(d–f) and (g–i) the testing set and the entire set were used to confirm the predictive value of the classifier.
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efficacy, the half-maximal inhibitory concentration (IC50)
was taken as an index to measure the drug sensitivity. The
difference in the IC50 between two risk groups was com-
pared by pRRophetic of R.

2.9. Identification of the Target miRNAs. To explore the tar-
get miRNAs of model genes, a prediction approach with
starBase (http://starbase.sysu.edu.cn/) was conducted. The
criteria for determination was set by five prediction
programs.

3. Results

3.1. Characterization of Immune and Hypoxia Genes. To dis-
cover the hub genes which could regulate both immunity
and hypoxia process, we screened 31 overlapped genes by
intersection of IRGs and HRGs lists (Figure 1(a)). Then,
we performed function analysis on these 31 genes and found
that they were enriched in response to hypoxia, leukocyte
migration, and regulation of angiogenesis (Figure 1(b)).
Meanwhile, we created a PPI network to better clarify the
interaction of 31 genes at protein level (Figure 1(c)).

3.2. Consensus Cluster Analysis. A total of 31 hub genes were
incorporated into cluster analysis. The results indicated that
CDF value growth was flat when k = 2 and Delta area
increased insignificantly at k > 3 (Figures 2(a) and 2(b)).
The fractal matrix showed the favorable intergroup differ-
ence and intragroup association, suggesting these pivot
genes could categorize all CC samples into two subtypes
(Cluster 1 (n = 130) and Cluster 2 (n = 174)). Therefore,
the clustering stability was best for k = 2 (Figure 2(c)). Sur-

vival analysis illustrated the significant difference in patient
outcome between two clusters (Figure 2(d)). PCA analysis
uncovered the favorable distinction between the two clusters
(Figure 2(e)). Furthermore, 251 DEGs were collected from
differential analysis between two clusters.

3.3. Development of a Risk Classifier. In the training set, we
first determined 24 survival-associated indicators based on
above 251 DEGs via univariate analysis (Figure 3(a)). Then,
the candidate genes were enrolled into LASSO regression to
remove the over fitting genes (Figures 3(b) and 3(c)). Finally,
multivariate analysis was employed, and seven hub genes
were selected to develop an IHBRC (Table 1): risk score = ð
0:0131 × CCL20Þ + ð0:0638 × CXCL2Þ + ð0:2812 × ITGA5Þ
+ ð0:0340 × PLOD2Þ + ð0:0697 × PTGS2Þ + ð0:0374 ×
TGFBIÞ + ð0:1113 × VEGFAÞ. In addition, Figure 3(d) dem-
onstrated the prognostic power of seven hub predictors.

As suggested by Figure 4(a), high-risk group presented a
dismal prognosis benefit in the training set. The AUC values
of 1-, 3-, and 5-year survival were 0.845, 0.699, and 0.654,
respectively (Figure 4(b)). We measured the survival out-
come of patients in both groups and found that patients’
outcomes were dismal as the risk score elevated
(Figure 4(c)). Meanwhile, we confirmed the performance
of IHBRC in the validation and the entire cohorts using
the same analysis described above and obtained the same
results for the trend (Figures 4(d)–4(i)).

3.4. Independent Prognostic Analysis. To examine the inde-
pendent value of IHBRC in terms of survival of CC cases,
univariate and multivariate analyses were employed. In the
training set, univariate analysis demonstrated that low risk

Training set Validation set Entire set

(a) (c) (e)

(b) (d) (f)

Figure 5: Independent prognosis analysis of the classifier. (a–c) Univariate Cox regression analysis; (d–f) multivariate Cox regression
analysis.
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score was remarkably correlated with favorable prognosis
(Figure 5(a)). Furthermore, multivariate analysis still
revealed that low risk score was independently associated
with favorable outcome of CC patients (Figure 5(b)), which
could serve as an independent prognostic factor for glioma.
These were confirmed by the test and the entire sets
(Figures 5(c)–5(f)).

3.5. GSEA Enrichment Analysis. To explore the distinction in
molecular pathways between the two groups, we applied
GSEA based on hallmarks gene sets. The results disclosed
that hallmarks including angiogenesis, hypoxia, IL6/JAK/
STAT3 signaling, MTORC1 signaling, P53 signaling, and
TGF β signaling were markedly enriched in high-risk group
(Figure 6).

3.6. Immune Infiltration Analysis. In order to mirror the
immune status of two groups, we estimated enrichment
value of different immunocytes. Figure 7(a) illustrated the
relationship between seven model biomarkers and immuno-
cytes. As shown in Figure 7(b), risk score was negatively cor-
related with the infiltration level of memory B cells, naïve B
cells, resting dendritic cells, and macrophages M1 and CD8
T cells, while neutrophils were activated in IHBRC-high
cohort.

3.7. Immune Checkpoints Analysis for Risk Classifier. Subse-
quently, we detected the relationship between signature and
the expression of immune checkpoints. Figure 8(a) revealed
six immune checkpoints that were greatly differentially
expressed in the two risk groups. As suggested by

Figure 8(b), BTLA was significantly downregulated in the
high-risk group, while PDL2, ICAM1, CCL2, IL10, and
TGFB1 were markedly enriched in the high-risk group, indi-
cating that patients with high risk are likely to be immuno-
suppressive status.

3.8. Analysis of Immunotherapy and Chemotherapy
Response. Waterfall diagrams indicated the mutational dif-
ferences in the 20 genes between the two groups. We
observed that the IHBRC-high cohort had a higher PIK3CA
mutation rate than the IHBRC-low group (31 vs. 20%),
(Figures 9(a) and 9(b)). Given the importance of TMB in
evaluating immunotherapy response for patients with CC,
we observed IHBRC-high group had lower TMB value
(Figure 9(c)). In addition, high risk score was correlated with
a lower IC50 of docetaxel, doxorubicin, and gemcitabine
(p < 0:05), suggesting that the IHBRC served as a favorable
indicator for chemosensitivity (Figures 9(d)–9(f)).

3.9. Construction of IHBRC-Related Regulatory Network. The
reciprocal regulation of mRNA and miRNA is closely bound
up with tumor development. Based on the starbase online
tool, we identified the target miRNAs of seven model genes
with high relevance scores (Figure 10). Moreover, miRNA
set enrichment analysis was performed to explore the func-
tion of the target miRNAs by TAM 2.0 tool. The results
showed these miRNAs were mainly involved in cell aging,
apoptosis, immune response, inflammation, and regulation
of Stem Cell (Supplementary Table 2).
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Figure 7: Immune infiltration analysis. (a) The relationship between seven model biomarkers and immunocytes; (b) correlation analysis of
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4. Discussion

Antitumor effects of immune cells could be largely influ-
enced by TME, including intercellular crosstalk between dif-
ferent cell types, chemokines concentrations, and
metabolism environment, thus it is crucial to establish a
comprehensive understanding on the genetic and popula-
tion characteristics of TME. In our study, we categorize CC
patients into two distinct clusters, in which they have totally
differed prognosis, based on the expression level of immune-
and hypoxia-related genes. Our proposed classifier is a
favorable biomarker to assess the prognosis of CC cases.

Meanwhile, the classifier can serve as an indicator for pre-
dicting immune infiltration levels, TMB value and chemo-
therapy response, providing a novel insight for future
research and clinical practice.

A total of hub seven genes (CCL20, CXCL2, ITGA5,
PLOD2, PTGS2, TGFBI, and VEGFA) were identified as
risky indicators in our prognostic model, and the involve-
ment of some genes in CC has been reported before. PTGS2,
also named COX-2, is a crucial target to prevent progression
in various cancer types [28–30]. Early in 2004, Kulkarni et al.
reported that the COX-2 expression was elevated in CC
samples compared to normal cervical tissue. A number of
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Figure 9: Analysis of immunotherapy and chemotherapy response. (a–b) The top 20 mutated genes in the two groups; (c) the TMB in the
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signaling including EGF and nuclear factor κB (NF-κB)
pathway has been validated to mediate COX-2 expression
in CC [31, 32]. Moreover, the usage of COX-2 selective
inhibitors selectively enhances radio responsiveness in CC
cell line under both normoxic and hypoxic conditions [33].
VEGFA is considered to play a crucial role in physiological
and pathological angiogenesis [34]. In stimulation of
VEGFA, endothelial cells proliferate and migrate to form
new vessels [35]. The cross talk between VEGF signaling
and immune response has been recently demonstrated.
Briefly, VEGFA contributes to the polarization of macro-
phages into an M2 immunosuppressive phenotype [36–38].
In turn, these immunosuppressive cells can further produce
proangiogenic factors including VEGFA and MMP9 [39].
The role of CXCL2 in CC has been intensively reported
before. Zhang et al. once revealed that CXCL2 may promote
tumor proliferation and metastasis induced by the overex-
pression of A-kinase-interacting protein 1 (AKIP1) in CC
[40]. In agreement with our result, Yang et al. recently indi-

cated that the expression level CXCL2 is strongly associated
with lymph node metastasis and prognosis in CC patients
[41]. Four other genes including ITGA5, CCL20, TGFBI,
and PLOD2 were previously studied in various malignan-
cies, while their involvement in CC remains largely unex-
plored, and more basic researches are needed to reveal
their biological function in CC [42–44].

As an endogenous noncoding RNA, miRNA could regu-
late 30% of protein-coding genes in human cells. Numerous
studies have reported that miRNA is an upstream regulator
of tumor-associated genes and engages in regulating biolog-
ical processes such as proliferation and migration of cancer
cells [45]. Our results revealed that hsa-miR-26a-5p, has-
miR-26b-5p, hsa-miR-1297, hsa-miR-590-5p, and hsa-
miR-21-5p were shared modulators of model genes. In cervi-
cal cancer, miR-590-5p was proven to facilitate tumor viabil-
ity by inhibiting CHL1 [46]. Also, miR-590-5p could boost
the malignant behaviors of liver cancer by interacting with
FOXO1 [47]. Gu et al. disclosed that DUXAP8 could boost
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cells growth and angiogenesis by targeting miR-1297 in CC
[48]. Moreover, miR-21-5p also serves as an important fac-
tor regulating the effect of HAND2-AS1 on CC [49].

Molecular signaling was further analyzed in our research
to unveil the mechanism underlying CC progression. In gen-
eral, defective vasculatures and overweighing demands of
oxygen contribute to the hypoxia environment in solid
tumors [50]. HIFs induced by the hypoxic microenviron-
ment play a central part in several aspects of tumor forma-
tion, especially in the regulation of tumor angiogenesis.
HIF has a bidirectional regulatory effect on tumor angiogen-
esis. In vitro studies revealed that when HIF-1α activity was
inhibited, it had different effects on the expression of proan-
giogenic factors. VEGF, angiogenin, and TGFβ-1 expres-
sions were diminished, while IL-6 and MCP-1 were
significantly increased. In vivo tests showed that RNA inhi-
bition of HIF-1α also showed a decrease in VEGF expression
and an increase in IL-8 expression. Consequently, when
HIF-α is inhibited, one proangiogenic factor may be
increased when another proangiogenic factor is inhibited,
and as a result, there may still be an actual increase in tumor
vascularization [51, 52].

As a result, ATP production shifts from oxidative phos-
phorylation to glycolysis, and the acidic microenvironments
subsequently confer the alterations of gene expression and
activation of multiple molecular pathways, accelerating the
cancer progression [53, 54]. The genetic alternations of mTOR
protein have a significant role in tumorigenesis [55, 56]. A
number ofmolecules are involved in themodulation ofmTOR
signaling, and specific inhibitors show a good performance in
prevention and treatment of various tumors including oral
cancer, ovarian cancer, and lung carcinoma [57–59]. TP53,
which encodes a sequence-specific DNA-binding transcrip-
tion factor, is one of the most frequently mutated genes in can-
cers [60]. Studies show that depletion of TP53 can remarkably
increase the incidence of carcinogen-induced carcinogenesis
and accelerate the tumor growth and invasiveness [61]. TGFB
is a critical regulator of numerous biological processes in both
normal and cancer cells [62]. Timmins and Ringshausen
recently reviewed that in B-cell malignancies, targeting the
TGFB axis, should be considered a promising approach in
the context of immunotherapy [63]. The IL-6/STAT3 pathway
is a classic signaling that can induce enhanced EMT process in
cancers [64]. You et al. revealed the function role of IL-6/
STAT3 pathway in promoting the malignant progression in
oral squamous cell carcinoma patients, and further research
is urgently needed to establish a more applicable therapeutic
strategy targeting STAT3 pathway [65].

Of note, the immune landscape results validated that the
infiltration level of M1-like macrophage and antitumor CD8+
T cells is significantly low in high-risk group, which is associated
with poor clinical outcome. It has been indicated that M1-like
macrophage serve as a protective factor in tumormicroenviron-
ment by promoting antitumor response [66, 67]. For instance, a
recent study pointed out that irradiation in CC can bring a sub-
type shift from M2-like to the M1-like phenotype and eventu-
ally lead to an enhanced antitumor immune status [68]. It is
well established that CD8+ T cells play key roles in the elimina-
tion of HPV in CC [69]. Previous studies have uncovered the

higher ratios of CD8+ to CD4+ T cells being closely related to
improved survival [70]. On the contrary, the infiltration of neu-
trophils is proven to be positively correlated with survival of CC
patients in our model, which is consistent with the common
view that neutrophils are regarded as themost important leuko-
cytes involving in first line defense to tissue damage [71–73].
Compared to the classic discipline to divide tumor immuno-
phenotype into three subtypes (hot, altered, and cold), our find-
ing compared the immune cell infiltration in high- and low-risk
populations, may provide a more accurate model to guide the
cellular based immunotherapy in CC.

Considerable research has suggested that docetaxel,
doxorubicin, and gemcitabine can be the major chemother-
apy drugs to control CC [74–76]. Exploring the relationship
between risk and chemotherapy sensitivity by our model, we
observed that high-risk patients had a higher sensitivity to
the above drugs, which provides a favorable reference for
the chemotherapy strategy of cases with CC.

Although our model was confirmed to possess promising
potential for clinical application in CC, our project has some
shortcomings. The clinical cohort in our study was drawn
from the TCGA database of samples. We still need external
datasets to validate our model. In addition, our research was
mainly based on bioinformatics analyses, the expression pat-
tern and underlying mechanisms of the model be detected
with in vivo and in vitro experiments.

In summary, we developed a favorable risk classifier
according to immune and hypoxia molecular subtypes.
Our proposed risk classifier can be served as predictor for
prognosis assessment and cancer treatment estimation in
CC.
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