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Objective..e activity of NEK6 is enhanced in several cancer cells, including colon adenocarcinoma (COAD) cells. However, there
are few reports on the microRNA (miRNA/miR) regulation of NEK6. In this study, we aimed to investigate the effects of miRNAs
targeting NEK6 in COAD cells.Methods. Public data and online analysis sites were used to analyze the expression levels of NEK6
and miR-323a-3p in COAD tissues as well as the relationship between NEK6 or miR-323a-3p levels and survival in patients with
COAD and to predict miRNAs targeting NEK6. Real-time polymerase chain reaction and western blotting were performed to
determine the levels of NEK6 and miR-323a-3p in COAD cells. .e targeting of NEK6 by miR-323a-3p was verified using a dual-
luciferase reporter assay. .e 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, 5-ethynyl-2′-deoxyuridine
assay, propidium iodide (PI) staining, annexin V-fluorescein isothiocyanate/PI staining, and transwell assay were employed to test
the proliferation, apoptosis, migration ability, and invasiveness of COAD cells. Results. In COAD cells, NEK6 was highly
expressed, whereas miR-323a-3p was expressed at low levels and negatively regulated NEK6. Upregulating the level of miR-323a-
3p impaired the proliferation, migration, and invasion of COAD cells and promoted apoptosis, whereas supplementing NEK6
alleviated the damage of the proliferation, migration, and invasion of COAD cells caused by miR-323a-3p and inhibited miR-
323a-3p-induced apoptosis. .ese findings indicate that miR-323a-3p regulates the proliferation, migration, invasion, and
apoptosis of COAD cells by targeting NEK6. Conclusion. miR-323a-3p downregulates NEK6 in COAD cells; this provides a novel
basis for further understanding the occurrence and development of COAD.

1. Introduction

Colorectal cancer (CRC) is the third most commonly di-
agnosed cancer and the second leading cause of cancer death
worldwide in 2020 [1]. However, the incidence of CRC
continues to increase every year in many developing
countries. .e causes of CRC include genetic, environ-
mental, and lifestyle factors. .ese factors may cause mu-
tations or abnormal expression of certain oncogenes and
tumor suppressor genes, leading to the occurrence or de-
velopment of CRC [2]. However, the underlying mechanism
remains to be elucidated. .erefore, it is necessary to further
explore the molecular mechanism of CRC occurrence and

development, which can also lay the foundation for finding
new therapeutic targets and developing novel drugs for CRC.

NEK6 belongs to the never in mitosis A (NIMA)-related
kinases family and is a mitogen/threonine kinase with 313
amino acids. .e activity of NEK6 plays important roles in
mitotic spindle kinetochore fiber formation, metaphase-
anaphase transition, cytokinesis, and checkpoint regulation
[3, 4]. Inhibition of NEK6 can lead to the termination of
mitosis, chromatin spindle defects, and abnormal chro-
mosomal differentiation [5–7]. In recent years, the expres-
sion and kinase activity of NEK6 have been reported to be
enhanced in several malignant human cancer cells, including
liver cancer [8], prostate cancer [9], gastric cancer [10],
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breast cancer [11], ovarian cancer [12], and retinoblastoma
cancer [13]. In addition, NEK6 has also been associated with
inflammation-based diseases, such as esophagitis [14] and
ulcerative colitis [15]. .e expression level of NEK6 in
esophagitis tissue is similar to that in esophageal adeno-
carcinoma, and overexpression of the NEK6 gene increases
in proportion to the severity of esophagitis [14]. Some re-
searchers believe that NEK6 is an attractive target for the
development of new anticancer drugs [16]. However, the
role and regulatory mechanism of NEK6 on the develop-
ment of colon adenocarcinoma (COAD) are not fully
understood.

Currently, an increasing number of studies have indicated
that miRNAs and small noncoding RNA molecules have great
potential for the cancer treatment.miRNAs expressed in awide
variety of human cancers can regulate posttranscriptional gene
expression by binding to the 3′ untranslated region of the target
mRNAs and act as oncogenes or tumor suppressors to regulate
cell signaling pathways, affecting tumorigenesis and tumor
progression [17]. For example, the overexpression of miR-
323a-3p in HCT-116 cells inhibits the K-Ras/Erk1/2 and PI3K/
Akt signaling pathways, leading to cell cycle arrest and sup-
pression of cell migration [18]. miR-191 promotes cellular
viability of estrogen-dependent breast cancer cells by directly
suppressing the expression of DAB2 and might play a critical
role in estrogen signaling pathway in the development and
progression of ER+breast cancer [19]. Although another study
has shown that miR-219-5p inhibits the progression of he-
patocellular carcinoma by targeting NEK6 [20], there are few
reports on the miRNA regulation of NEK6 in COAD.
.erefore, this study aimed to explore the effects of miRNAs
targeting NEK6 in COAD cells and to provide a basis for
developing RNA therapy strategies for COAD.

2. Materials and Methods

2.1. Bioinformatics Analysis. Data from the Genotype-Tissue
Expression (GTEx) and .e Cancer Genome Atlas (TCGA)
databases were analyzed using Gene Expression Profiling
Interactive Analysis 2 and StarBase, respectively. Patients with
COADwere divided into two groups for Kaplan–Meier (KM)
curve analysis according to the median level of NEK6 or miR-
323a-3p. .e predicted miRNAs targeting NEK6 in MicroT-
CDS, StarBase, miRDB, TargetScan, and TarBase were used to
draw a Venn diagram in the R software (.e R Foundation,
Vienna, Austria). .e patients’ data were collected from the
public database, and due to its retrospective nature, the study
was exempted by the database administrators. .us, the
acceptance from the ethical board was not needed.

2.2. Cell Culture. SW480, SW620, HCT-8, and HCT-116
colorectal cancer cells and NCM460 normal human colon
mucosal epithelial cell lines were obtained from Xiamen
Immocell Biotechnology Co., Ltd (Xiamen, Fujian, China.
URL: http://immocell.com/html/cn/pc/cn_about.html). .e
Roswell Park Memorial Institute (RPMI) 1640 medium
(catalog number: R8758; Sigma-Aldrich, Shanghai, China)
and McCoy’s 5a medium (catalog number: M9309; Sigma-

Aldrich) with 10% fetal bovine serum (FBS; catalog number:
F8318; Sigma-Aldrich) were used to culture HCT-8 and
HCT-116 cells (catalog numbers: IM-H099 and IM-H098,
respectively; Xiamen Immocell Biotechnology Co., Ltd.
(Immocell), Xiamen, China), respectively. Dulbecco’s
modified Eagle’s medium (DMEM; catalog number: D6429;
Sigma-Aldrich, Shanghai, China) containing 10% FBS was
used for culturing SW480, SW620, and NCM460 cells
(catalog numbers: IM-H111, IM-H112, and IM-H445, re-
spectively; Immocell). .e cells were cultured in a humid-
ified incubator containing 5% carbon dioxide at 37°C.

2.3. Real-Time Polymerase Chain Reaction (RT-PCR).
Cells were lysed with TRIzol reagent (catalog number: T9424;
Sigma-Aldrich) to extract total RNA. One microgram of total
RNA was reverse-transcribed into complementary DNA
(cDNA) using PrimeScript RT Master Mix (catalog number:
RR036A; Takara, Beijing, China), and RT-PCR was per-
formed using the cDNA and TB Green Premix Ex Taq II
(catalog number: RR820A; Takara). 18S rRNA was used as an
internal control. .e primers used for RT-PCR are listed in
Table 1. .e thermocycling conditions were as follows: initial
denaturation at 95°C for 30 s, followed by 40 cycles at 95°C for
10 s, 60°C for 30 s, and 72°C for 30 s. .e relative gene ex-
pression was measured using the 2−ΔΔCt method.

2.4. Western Blotting Assay. Proteins in cells were extracted
with precooled radioimmunoprecipitation assay buffer
(catalog number: P0013C; Beyotime, Shanghai, China), and
protein quantification was performed using a BCA protein
concentration determination kit (catalog number: P0012S;
Beyotime). Electrophoresis was performed on a 10% sodium
dodecyl sulfate-polyacrylamide gel, and the proteins were
then transferred to polyvinylidene fluoride (PVDF) mem-
branes (catalog number: IPFL00010; Millipore, Shanghai,
China). After incubation with 5% skim milk at 25°C for 2 h,
the PVDF membranes containing the proteins were incu-
bated with diluted NEK6 antibody (catalog number: 10378-
1-AP; dilution rate: 1 :1000; Proteintech, Wuhan, China) or
GAPDH antibody (catalog number: 10494-1-AP; dilution
rate: 1 : 5000; Proteintech) at 25°C for 2 h. After washing, the
PVDF membranes were incubated with diluted goat anti-
rabbit IgG modified with horseradish peroxidase (catalog
number: SA00001-2; dilution rate: 1 : 2000; Proteintech) at
25°C for 1 h. After washing, the PVDF membranes were
covered with BeyoECL Moon (catalog number: P0018FM;
Beyotime) for exposure. Quantification by densitometry was
performed using ImageJ 1.52v (NIH, Bethesda, MD, USA).
GAPDH was used as an internal control.

2.5.Constructionof Plasmids. .e pmirGLO vector was used
to prepare the plasmids expressing the wild-type (WT) or
mutant (MUT) NEK6 3′ UTRs, which were named 3′UTR
WT and 3′UTR MUT, respectively. .e pCDH vector was
used to prepare the NEK6 expression plasmid, which was
named pCDH-NEK6. DNAMAN 10.0 was used to design
the primers for constructing plasmids (Table 2).
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2.6. Dual-Luciferase Reporter Assay. Plasmid 3′UTRWTor
3′ UTR MUT was cotransfected into HCT-8 or SW620
cells with the negative control of miR-323a-3p (mimic
NC) or miR-323a-3p mimic using the Lipofectamine™
3000 transfection reagent (catalog number: L3000075;
Invitrogen, Shanghai, China) for 48 h according to the
manufacturer’s instructions. Subsequently, the firefly lu-
ciferase and Renilla luciferase activity in cells were de-
tected using a dual-luciferase reporter assay system, which
was obtained from Promega (catalog number: E1910;
Beijing, China).

2.7. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
Bromide (MTT)Assay. .emiR-323a-3p or mimic NC was
cotransfected into HCT-8 or SW620 cells with the
pCDH-NEK6 plasmid or pCDH vector for 24 h, and then
the cells were seeded into a 96-well plate at a density of
10,000 cells/well. At different time points (0 h, 24 h, 48 h,
and 72 h), the cells’ viabilities were tested using the MTT
assay as previously described [14]. .e absorbance was
determined using a spectrophotometer at 490 nm
wavelength.

2.8. 5-Ethynyl-2′-deoxyuridine (EdU) Assay. HCT-8 and
SW620 cells, treated as described above, were cultured in 96-
well plates at a density of 10,000 cells/well. After 24 h, the
cells were incubated in the RPMI 1640 medium or DMEM
containing 50 μM EdU (Guangzhou RiboBio Co., Ltd.,
Guangzhou, China) for 4 h to allow EdU incorporation.
Subsequently, the cells were fixed with 4% paraformaldehyde
for 15min and stained for 15min with a ClickiT EdU Assay
kit (Invitrogen/.ermo Fisher Scientific, Inc.) [15]. A
fluorescencemicroscope (MOTIC, Xiamen, China) was used
to observe and capture the images. .e number of EdU+or
DAPI + dots was counted using Image J 1.52v, and then the
percentage of EdU+ cells was calculated.

2.9. Cell Cycle Assay. After transfection with plasmids or
mimics, the cells were cultured in 6-well plates for 48 h and
then stained with propidium iodide (PI) (catalog number:
A211-01; Vazyme, Nanjing, China) as previously described
[14]. A flow cytometer NovoCyte 1300 (ACEA, San Diego,
CA, USA) was used to analyze the stained cells.

2.10. Apoptosis Assay. After transfection, the cells were
cultured in 6-well plates for 48 h. Subsequently, an apoptosis
detection kit (catalog number: A211-01; Vazyme, Nanjing,
China) was used to stain the cells according to the manu-
facturer’s instructions. Apoptosis was detected using flow
cytometer NovoCyte 1300 (ACEA, San Diego, CA, USA).

2.11. Transwell Assay. After the miR-323a-3p mimic and
pCDH-NEK6 plasmid were cotransfected into HCT-8 and
SW620 cells for 24 h, transwell assays were performed for
invasion and migration using transwell plates (catalog
number: 3422; Corning, Corning, NY, USA) with and
without Matrigel (catalog number: 356234; BD Biosciences,
Sparks, MD, USA), respectively, as previously described [14].
Afterwards, each transwell chamber was removed, washed
twice with phosphate-buffered saline (PBS), fixed in the cell
fixation solution for 20min, and stained with crystal violet
(0.5%) for 10min, the upper surface was wiped with a cotton
ball, and the cells were observed under a microscope (Motic,
Xiamen, China). .e number of penetrating cells was
counted and used to evaluate the cell invasion ability. .e
invasion assay was performed in the same manner as the
migration test, with an additional precoating with Matrigel
in the upper chamber.

2.12. Statistical Analysis. .e data from the in vitro ex-
periments were analyzed using the SPSS statistics software
(version 22.0; IBM SPSS, Armonk, NY, USA). .e Man-
n–Whitney test was performed for the nonparametric data

Table 1: .e primers for RT-PCR.

Name Sequence (5′-3′)
NEK6-QF TGAAGCTCGGTGACCTTGGTCT
NEK6-QR GTCGGACTTGAAGTTGTAGCCG
miR-323a-5p-RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGCGAAC
miR-323a-5p-QF AGGTGGTCCGTGGCGC
miR-323a-5p-QR AGTGCAGGGTCCGAGGTATT
QF: forward primer for RT-PCR; QR: reverse primer for RT-PCR; RT: reverse transcription.

Table 2: .e primers for construction of plasmids.

Name of plasmids Name of primers Sequence (5′-3′)

Wild-type NEK6 3′ UTR 3′UTR WT-F GAGCTCGCTAGCCTCGAGCCGTGCCTTATCAAAGCCAG
3′UTR WT-R GCATGCCTGCAGGTCGACGCAGCAGGTGTCAGGAATC

Mutant NEK6 3′ UTR 3′UTR MUT-F TGGATTGATTACAGAATCTTTAGGGTAATTC
3′UTR MUT-R AAGATTCTGTAATCAATCCAGATACAGGGGGC

pCDH-NEK6
pCDH-Nflag-F CTAGAGCTAGCGAATTCGCCACCATGGACTACAAAGACGATGACGAC
Flag-NEK6-F ACAAAGACGATGACGACAAGATGCCCAGGAGAGAAGTTTG

pCDH-NEK6-R CTCAGCGGCCGCGGATCCGGTGCTGGACATCCAGATG
F: forward primer; R: reverse primer.
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between two groups. Analysis of variance and Tukey’s post
hoc tests were used to identify the differences among
multiple groups. Student’s t-test (unpaired) was used to
compare the differences between two groups for the para-
metric data. Differences were considered significant when
p< 0.05.

3. Results

3.1. Transcription of NEK6 in COAD Tissues Is Upregulated.
To investigate the expression of NEK6 in COAD, we an-
alyzed the data from COAD patients in the TCGA and
GTEx databases and found that the NEK6 transcription
level in COAD tissues was significantly upregulated
(p< 0.05; Figure 1(a)). Moreover, by detecting NEK6 levels
in different COAD cell lines, we found that the NEK6
transcription and protein levels in COAD cell lines were
higher than those in normal colon epithelial cell lines, and
the expression level of NEK6 in SW620 and HCT-8 cells
was the highest (p< 0.05; Figures 1(b)–1(d)). .erefore,
subsequent in vitro experiments were performed using
SW620 and HCT-8 cells. However, the KM curve analysis
showed that the expression of NEK6 did not influence the
overall survival of COAD patients (p � 0.04; Figure 1(e)).
.ese results imply that NEK6 is abnormally expressed in
COAD tissues.

3.2. miR-323a-3p Negatively Regulates NEK6. To study the
miRNAs targeting NEK6, the predicted miRNAs were
plotted in a Venn diagram. .e Venn diagram shows that
miR-323a-3p has the potential to target NEK6 (Figure 2(a)).
Subsequently, we predicted and mutated the binding sites
with miR-323a-3p in the 3′ UTR of NEK6, which was de-
termined using a dual-luciferase reporter assay (p< 0.001;
Figures 2(b) and 2(c)). Moreover, transfection of the miR-
323a-3p mimic into cells upregulated the expression of miR-
323a-3p and decreased the expression of NEK6, indicating
that miR-323a-3p negatively regulated the expression of
NEK6 (p< 0.001; Figures 2(d)–2(f)). .e results of the
StarBase analysis showed that miR-323a-3p expression was
significantly decreased in COAD tissues (Figure 2(g)). In
addition, in vitro experiments indicated that the expression
of miR-323a-3p in the COAD cell lines was significantly
downregulated and was the lowest in SW620 and HCT-8
cells (p< 0.0001; Figure 2(h)). However, the KM curve
analysis showed that miR-323a-3p did not affect the overall
survival of COAD patients (p � 0.44; Figure 2(i)). .ese
findings indicate that miR-323a-3p is weakly expressed in
COAD tissues and cells and downregulates NEK6 by tar-
geting the 3′ UTR of NEK6.

3.3. miR-323a-3p Inhibits Cell Proliferation by Negatively
Regulating NEK6. To explore whether miR-323a-3p nega-
tively regulates NEK6 and influences the proliferation of
COAD cells, we overexpressed both miR-323a-3p and
NEK6 in COAD cells. Transfection of pCDH-NEK6 into
HCT-8 and SW620 cells significantly increased the ex-
pression level of NEK6 in the cells (p< 0.001; Figure 3(a)

and 3(b)). Transfection of the miR-323a-3p mimic into the
cells improved the level of miR-323a-3p and decreased the
expression of NEK6 compared to that in cells transfected
with the miR-323a-3p mimic alone. .e expression of
miR-323a-3p in cells cotransfected with the miR-323a-3p
mimic and pCDH-NEK6 plasmid did not change signifi-
cantly, indicating that NEK6 did not regulate miR-323a-3p
and that overexpression of miR-323a-3p inhibited the
expression of NEK6, whereas supplementing NEK6 alle-
viated the miR-323a-3p-induced downregulation of NEK6
expression (p< 0.001; Figures 3(c)–3(e)). Furthermore, the
results of the MTT and EdU assays suggested that upre-
gulation of miR-323a-3p suppressed cell proliferation,
whereas supplementing NEK6 alleviated the miR-323a-3p-
induced suppression of cell proliferation (p< 0.05;
Figures 3(f ) and 3(g)). Cell cycle analysis showed that
increasing miR-323a-3p arrested the cell cycle in the G0/G1
phase, whereas replenishing NEK6 retarded miR-323a-3p-
induced cell cycle arrest (p< 0.05; Figure 3(h)). .ese data
reveal that miR-323a-3p downregulates NEK6 expression
to suppress proliferation.

3.4. miR-323a-3p Promotes Apoptosis by Downregulating
NEK6. To investigate whether the miR-323a-3p targeting of
NEK6 affects COAD cell apoptosis, we detected cell apo-
ptosis. Overexpression of miR-323a-3p in HCT-8 and
SW620 cells increased apoptosis, whereas supplementation
with NEK6 alleviated the apoptosis induced by miR-323a-3p
(p< 0.01; Figure 4), indicating that miR-323a-3p induces
apoptosis by regulating the expression of NEK6.

3.5. miR-323a-3p Damages Migration and Invasion by Reg-
ulating NEK6. .emigration and invasion of cancer cells to
surrounding tissues and vasculature are important steps in
cancer metastasis [16]. To explore the role of miR-323a-3p in
downregulating NEK6 in the migration and invasion of
COAD cells, we performed a transwell assay to assess the
migration and invasiveness of cells. .e results indicated
that upregulation of miR-323a-3p inhibited cell migration
and invasion, whereas supplementing NEK6 enhanced the
cell migration and invasion capabilities (p< 0.001; Figure 5).
.ese data suggest that miR-323a-3p suppresses the mi-
gration and invasion of COAD cells by downregulating
NEK6.

4. Discussion

.e NEK6 gene is located on chromosome 9q33.3 and plays
a crucial role in mitotic cell cycle progression. NEK6
phosphorylated by activated NEK9 regulates mitotic spindle
formation through the phosphorylation of kinesin Eg5 [21].
It has been reported that NEK6 is involved in the estab-
lishment of a microtubule-based mitotic spindle and DNA
damage response, which is directly phosphorylated by
CHK1 and CHK2, and may be a novel target for DNA
damage checkpoints [7, 12, 22, 23]. It is worth noting that
NEK6 overexpression is associated with tumorigenesis and
cancer progression in several solid tumors [8–11]. NEK6
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overexpression also exists in colorectal cancer (CRC) and
colorectal adenomatous polyp (CRAP) and was significantly
correlated with the large polyp diameter [15]. In this study,
we found that NEK6 is highly expressed in COAD cells,
promotes proliferation and migration, and inhibits apo-
ptosis, which is consistent with other solid tumor reports.
NEK6 overexpression drives tumorigenesis in COAD by
involving multiple signaling pathways, including regulation
of cyclin B transcription levels mediated by Cdc2 [8],

inhibition of TGF-β pathway by interfering with nuclear
translocation Smad4 [24], and the activation of STAT3
signaling [25, 26].

A large number of studies have shown that miRNAs
regulate more than one-third of all human genes in a
sequence-specific manner [27–30]. Aberrant regulation of
miRNAs functionally promotes the occurrence and de-
velopment of different human cancers by regulating the
degradation or translation of mRNAs [31–34]. Recent
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studies showed that NEK6 might also exhibit expression
modulation through interaction with miRNAs. .ese
miRNAs directly target NEK6 mRNA and downregulate
NEK6 expression, including miR-506-3p, miR-219-5p,
and miR-141-3p, resulting in inhibition of cell prolifer-
ation and induction of apoptosis in retinoblastoma, HCC,
and clear cell renal cell carcinoma [13, 20, 35]. In this
paper, we confirmed that miR-323a-3p could also nega-
tively regulate NEK6 expression in COAD cells through
binding with complementary 3′-UTR sequences in target
NEK6 mRNA by luciferase reporter assay and binding site
mutation analysis and block the proliferation of colon
cancer cells.

miR-323a-3p is located on chromosome 14q32.31 and
acts as a tumor suppressor gene in CRC [36]. Furthermore, it
has been found that the upregulation of miR-323a-3p ex-
pression can induce apoptosis and inhibit the proliferation
and migration of glioma cells by targeting IGF-1R [37] and
damage the progression of epithelial-mesenchymal transi-
tion in bladder cancer cells by regulating the MET/SMAD3/
SNAIL circuit [38] and negatively regulate LDHA expression
to disrupt glycolysis in osteosarcoma cells [39]. In addition,
miR-323a-3p has been associated with depression and lung
fibrosis [40, 41]. However, the target genes of miR-323a-3p
in COAD cells remain unknown. Our results indicate that
miR-323a-3p targets NEK6 mRNA to functionally alter
downstream NEK6 expression and arrest subsequently co-
lon cancer cell proliferation. Moreover, the level of miR-

323a-3p is downregulated in COAD tissues and cells. Al-
though the KM curve showed that miR-323a-3p did not
significantly affect the overall survival of COAD patients, the
miR-323a-3p overexpression in COAD cells inhibited cell
proliferation, blocked the cell cycle, promoted cell apoptosis,
and inhibited migration and invasion, indicating that the
overexpression of miR-323a-3p suppressed the malignant
quality of COAD cells. .e current study revealed that both
miR-323a-3p andNEK6 could regulate the cell phenotype by
targeting the TGF-β signaling pathway in some diseases,
including hepatocellular carcinoma [24], pancreatic ductal
adenocarcinoma [42], lung fibrosis [40], and cardiac fibrosis
[43]. Our results illustrate the crosstalk function of miR-
323a-3p and NEK6. However, the effect of miR-323a-3p
targeting NEK6 on the TGF-β signaling pathway needs to be
further studied.

Due to the lack of animal experiments in this study, it is
impossible to directly investigate the role of miR-323a-3p
targeting NEK6 in COAD, which is a limitation of this study.

5. Conclusions

In brief, this study revealed that miR-323a-3p regulates the
cell life course (proliferation and apoptosis) and biological
processes (migration and invasion) of COAD cells by
negatively regulating NEK6, laying a foundation for further
understanding the mechanism of COAD occurrence and
development.
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