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Objective. To evaluate the ability of arti�cial neural network- (ANN-) based ultrasound radiomics to predict large-volume lymph
node metastasis (LNM) preoperatively in clinical N0 disease (cN0) papillary thyroid carcinoma (PTC) patients. Methods. From
January 2020 to April 2021, 306 cN0 PTC patients admitted to our hospital were retrospectively reviewed and divided into a
training (n� 183) cohort and a validation cohort (n� 123) in a 6 : 4 ratio. Radiomic features quantitatively extracted from
ultrasound images were pruned to train one ANN-based radiomic model and three conventional machine learning-based
classi�ers in the training cohort. Furthermore, an integrated model using ANN was constructed for better prediction. Meanwhile,
the prediction of the two models was evaluated in the papillary thyroid microcarcinoma (PTMC) and conventional papillary
thyroid cancer (CPTC) subgroups. Results. �e radiomic model showed better discrimination than other classi�ers for large-
volume LNM in the validation cohort, with an area under the receiver operating characteristic curve (AUROC) of 0.856 and an
area under the precision-recall curve (AUPR) of 0.381. �e performance of the integrated model was better, with an AUROC of
0.910 and an AUPR of 0.463. According to the calibration curve and decision curve analysis, the radiomic and integrated models
had good calibration and clinical usefulness. Moreover, the models had good predictive performance in the PTMC and CPTC
subgroups. Conclusion. ANN-based ultrasound radiomics could be a potential tool to predict large-volume LNMpreoperatively in
cN0 PTC patients.

1. Introduction

Papillary thyroid carcinoma (PTC) is the most common
pathological type of thyroid cancer. According to the World
Health Organization (WHO), PTC with a maximum di-
ameter of 10mm is de�ned as papillary thyroid micro-
carcinoma (PTMC), and those with a maximum diameter of
more than 10mm are called conventional papillary thyroid
cancer (CPTC) [1, 2]. Even though PTC is considered an
indolent tumor, approximately 30%–80% of PTC patients
would present with central lymph node metastasis (LNM).
Clinically LN-positive (clinical N1 disease, cN1) cases are
becoming more frequent due to increased ultrasound ex-
amination and more meticulous examination of surgical

specimens by pathologists [3]. Nonetheless, 30%–65% of
clinically N-negative (clinical N0 disease, cN0) PTC patients
are detected with LNM postoperatively [4].

However, not all PTCs with LNM have a poor prognosis.
�e recurrence rate of patients with small-volume LNM (≤5
involved LNs) (median 4%, range 3%–8%) is signi�cantly
lower than that of patients with large-volume LNM (>5
involved LNs) (median 19%, range 7%–21%) [5, 6]. In ad-
dition, upstaging risk of the PTC based on the detection of
microscopic locoregional metastases may result in more
aggressive treatment [7, 8]. Even a single-microscopic LN
metastasis can upstage a patient with low-risk PTC to in-
termediate risk of recurrence in the American �yroid
Association (ATA) system and an increased risk of death in
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the American Joint Committee on Cancer (AJCC) staging
system [7, 8]. /erefore, an accurate preoperative predictive
tool for large-volume LNM can more precisely guide
treatment.

Previous studies reported that age (<40 years old) and
male sex were significantly associated with large-volume
LNM in PTC patients [9–11]. Nevertheless, these studies
focused on identifying risk factors for large-volume LNM
rather than constructing a predictive model. Ultrasound is
the first-line noninvasive imaging method for cervical LNM,
with a specificity of 85.0%–97.4% but a sensitivity of 20%–
31% [12, 13]. Radiomics can identify high-throughput
quantitative imaging features and discover information
reflecting the underlying pathophysiology that cannot be
assessed by visual interpretation [14]. In recent years,
radiomics based on ultrasound has been deemed to have a
good predictive ability for cervical LNM in PTC patients
[15].

An artificial neural network (ANN) is a complex net-
work with many simple components connected, which can
perform complex logical operations and identify nonlinear
relationships; thus, it has been applied in machine learning-
based radiomics model construction [16]. /is study de-
veloped and validated two predictive models that could
adequately combine the ANN and ultrasound radiomics to
predict large-volume LNM in cN0 PTC patients.

2. Materials and Methods

/e review board of the First Affiliated Hospital of Nan-
chang University approved this retrospective study. A ret-
rospective review with deidentified data was used, and no
protected health information was acquired. /us, the need
for informed consent from all patients was waived.

2.1. Patients. From January 2020 to April 2021, patients
with PTC admitted to the Department of Otolaryngology
in our hospital were enrolled. /e inclusion criteria were
as follows: (1) patients treated through total thyroidec-
tomy with bilateral central lymph node dissection (CND),
with pathological results being available; (2) ultrasound
examination performed within two weeks before surgery;
(3) availability of ultrasound images of the target nodule
in the most extended axis cross section; (4) more than 18
years old. /e exclusion criteria were as follows: (1) no
more than five lymph nodes (LNs) resected; (2) met cN1
diagnostic criteria preoperatively; (3) target nodule
treated through radiofrequency ablation, radiotherapy, or
chemotherapy before ultrasound examination; (4) target
nodule unclear on ultrasound images due to artifacts; (5)
accompanied by other diseases that can lead to patho-
logical N-positive. In this study, cN1 was defined by at
least one of the following features obtained during pre-
operative ultrasound examination: the ratio of transverse/
long diameter >0.5, blurred corticomedullary boundary,
vanished medulla structure, microcalcification, cystic
changes, and chaotic or peripheral vascular pattern
microcalcification [17–19].

A total of 559 patients met the inclusion criteria, and 306
patients (median age 45 years, range 24–81 years; 65 men
and 241 women) were enrolled after exclusion (Figure 1(a)).
Among these patients, 156 patients were reported in our
previous studies, which developed and validated an ultra-
sound radiomic model for predicting malignant thyroid
nodules [20]. All patients were randomly divided into the
training cohort (n� 183) and validation cohort (n� 123) in a
6 : 4 ratio.

2.2. Clinical and Ultrasound Information. Baseline clinico-
pathological data, including age, sex, and pathology of the
nodule and LN, were obtained from medical records. Pa-
tients were divided into two groups by age (age <40 years
and ≥40 years old) [10, 11]. Ultrasound Digital Imaging and
Communications in Medicine (DICOM) images were ac-
quired with a Philips iU Elite and EPIQ7 (ultrasound system,
Philips Medical System, Bothell, WA, USA) using a
5–12MHz linear transducer. Two radiologists with over 5
years and 8 years of experience were blinded to the path-
ological results and reviewed the images using Picture Ar-
chiving and Communication Systems (PACS). /ey
evaluated the 2017 American College Radiology (ACR)
/yroid Imaging Reporting and Data System (TI-RADS)
[21], tumor size, and capsule invasion in consensus. /e
nodule with the highest ACR score was selected as the target
nodule in the case of multifocality; when the scores of
nodules were the same, the larger diameter nodule was
selected.

2.3. Nodule Segmentation and Feature Extraction. Two ra-
diologists with over 3 years and 10 years of experience,
blinded to the pathological results and corresponding LN
images, manually segmented the region of interest (ROI) of
the target nodule using 3D Slicer version 4.10.2 open-source
software (3D Slicer, version 4.10.2; National Institutes of
Health-funded; https://www.slicer.org) (Supplementary
Materials 1) [22]. A single representative section with the
largest nodule area was chosen for the nodular ROI. /e
intraobserver and interobserver agreements were evaluated
using 30 randomly chosen nodules delineated by a radiol-
ogist twice within two weeks and by another radiologist. /e
mean intraclass correlation coefficient (ICC)> 0.75 repre-
sented satisfactory agreement. A radiologist delineated the
remaining nodules if a strong agreement (mean ICC >0.90)
was achieved. Open-source software (PyRadiomics 3.0.1;
http://pyradiomics.readthedocs.io/en/latest/index.html)
[23] extracted 849 radiomic texture, shape, and intensity
features from the original and wavelet-filtered images of
each nodule (Supplementary Materials 2). Resampling and z
score normalization were performed as preprocessing steps.

2.4. Radiomic Feature Dimension Reduction and Selection.
To resolve the data imbalance, we used SMOTE to balance
the training cohort [24]. Dimensionality reduction and
radiomic feature selection were performed in the following
steps: (1) radiomic features with intraobserver or
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interobserver ICC no more than 0.75 were removed; (2)
radiomic features were excluded due to insigni�cant dif-
ferences based on univariate analysis (Mann–Whitney U
test); (3) Spearman’s correlation coe§cient (r) was used to
assess the correlations among all radiomic features, and
highly correlated features (>0.80) and those with a lower
area under the receiver operator characteristic curve
(AUROC) were removed; (4) we applied the least absolute
shrinkage and selection operator (LASSO) method [25, 26]
to select the most signi�cant features.

2.5. Radiomic Model and Integrated Model Construction.
Based on signi�cant radiomic features, we built a single-
layer, feed-forward ANN with a backpropagation algorithm
to build a radiomic model for large-volume LNM using the
data of the training cohort. �ese radiomic features were
used to train linear discriminant analysis, support vector
machine, and random forest classi�ers.

To provide a more practical tool for prediction, we
assessed the incremental value of clinical data as an additional
predictor. Clinical factors with p< 0.05 according to uni-
variate and multivariate logistic regression analyses were
considered independent risk factors. We established a clinical
model using multivariate logistic regression for comparison.
�en, an ANN integrated model incorporating radiomic
features and independent clinical risk factors was constructed.
SupplementaryMaterials 3 shows detailed ANN training.�e
probabilities predicted by the radiomic model and integrated
model were called Rad-prob and Inte-prob, respectively. ROC
may portray an overly optimistic performance on account of
our data imbalance; thus, we applied the precision-recall (PR)
curve simultaneously, which can focus on the minority class
[27]. According to the PR curve, the optimal cut-o© value was
de�ned as the probability that yields the max sum of precision
and recall in the training cohort.

2.6. Radiomic Model and Integrated Model Validation.
AUROC and area under the PR curve (AUPR) evaluated
the ANN-based and three conventional machine learning-
based classi�ers on the validation cohort. Predictive
performance was assessed for radiomic and integrated
models, including discrimination, calibration, and clinical
usefulness. �e Hosmer–Lemeshow test and calibration
curve were evaluated for calibration [28]. �e discrimi-
nation metrics included accuracy, sensitivity, speci�city,
positive predictive value (PPV), negative predictive value
(NPV), AUROC, and AUPR. Decision curve analysis
(DCA) was conducted to determine the clinical usefulness
by quantifying the net bene�ts at di©erent threshold
probabilities.

2.7.ModelValidation inPTMCandCPTC. �e entire cohort
was divided into the PTMC subgroup (≤10mm; n� 114) and
CPTC subgroup (>10mm; n� 192) by the maximum di-
ameter. �rough subgroup analysis, we investigated whether
patients with large-volume LNM could be predicted in the
subgroups using the radiomic model and integrated model.
�e performance metrics included accuracy, sensitivity,
speci�city, PPV, NPV, AUROC, and AUPR.

2.8. Statistical Analysis. Statistical analyses were performed
using Python (Version 3.8.8; https://www.python.org/) and
R (Version 4.0.1, https://www.r-project.org/). Continuous
variables were expressed as medians with interquartile
ranges (IQRs) and compared using the Mann–Whitney U
test, and categorical data were expressed as numbers with
percentages and compared using the chi-square test or
Fisher’s exact test. �e Delong test was used to compare the
AUROCs. All statistical tests were two-sided, and p< 0.05
was considered statistically signi�cant.

Included criteria
1. Performed total thyroidectomy with CND, and pathological
results of nodules and LNs was available
2. Ultrasound examination performed within 2 weeks before surgery
3. availability of images of the target nodule in the longest axis
cross-section
4. >18 years old

Exclusion criteria
1. cN1 (n=110)
2. ≤5 cases of the resected central LNs (n=83)
3. Interventional procedure prior ultrasound
(n=16)
4. US artifacts (n=38)
5. Concomitant other malignancies (n=6)

Assessed for eligibility
(n=559)

Patients (n=306)

Training cohort (n=183) Validation cohort (n=123)
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Figure 1: Flowcharts of the patient selection (a), schematic representation of the ANN-based radiomic model (b), and ANN-based
integrated model (c). ANN, arti�cial neural network; CND, central lymph node dissection; LN, lymph node.
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3. Results

3.1. Patient Clinicopathological Characteristics. /e baseline
clinicopathological characteristics are presented in Table 1./e
analysis showed no significant differences in clinicopatho-
logical characteristics between the training and validation
cohorts. PTCs with large-volume LNM accounted for 10.4%
(19/183) and 8.9% (11/123) of the training and validation
cohorts, respectively (p � 0.827). /e characteristics of the
patients according to their large-volume LNM status are listed
in Table 2. Younger age (<40 years) and male sex were sig-
nificantly associated with a higher prevalence of large-volume
LNM (all p< 0.05).

3.2. Radiomic Feature Dimension Reduction and Selection.
/e rates of intraobserver and interobserver agreement for
the radiomics features reached 95.1% (807/849; mean
ICC� 0.950) and 95.6% (812/849; mean ICC� 0.941), re-
spectively (Supplementary Materials 4). Forty-four radiomic
features were excluded due to unsatisfactory agreement, and
145 were excluded due to insignificant differences based on
univariate analysis. After the correlation analysis, 58 features
remained. /en, 25 radiomic features were selected as the
most significant features for predicting large-volume LNM
by LASSO regression (Supplementary Materials 5). /e
names of the features and heatmap of the pairwise Spearman
correlations are shown in Figure 2.

3.3. Radiomic Model and Integrated Model Construction.
Our ANN-based radiomic model consisted of 25 input
radiomic feature variables, 15 neurons in the 1st hidden
layer, and 1 output unit that can obtain each probability of
large-volume LNM (Figure 1(b). Rad-prob had an accuracy
of 86%, an AUROC of 0.890, and an AUPR of 0.348 in the
training cohort.

In multivariate logistic regression, age (<40 years) (odds
ratio (OR) 3.59, 95% confidence interval (CI) 1.31–9.87;
p � 0.013) and male sex (OR 3.72, 95% CI 1.36–10.18;
p � 0.011) were independent risk factors for large-volume
LNM.With additional 2 input clinical factors, the integrated
model was constructed (Figure 1(c); Supplementary Mate-
rials 6 for the training and testing loss and accuracy curves).
/e accuracy, AUROC, and AUPR of Inte-prob significantly
increased to 91%, 0.910, and 0.463 (Table 3).

3.4. RadiomicModel and IntegratedModelValidation. In the
validation cohort, the AUROC andAUPR of the ANN-based
radiomic model were higher than those of three conven-
tional machine learning-based classifiers (detailed ROC and
PR analyses were described in Supplementary Materials 7).
/e radiomic and integrated model showed good calibration
in the validation cohort (Figure 3(e)). /e accuracy,
AUROC, and AUPR of Rad-prob were 83%, 0.856, and
0.381. Inte-prob achieved improved performance with an
accuracy of 93%, an AUROC of 0.883, and an AUPR of 0.494
(Table 3 and Figures 3(f ) and 3(g)). /e discrimination of
radiomic and integrated models was significantly better than

that of the clinical model (p � 0.036 and 0.013). DCA
showed that Inte-prob had the highest clinical value, fol-
lowed by Rad-prob. Both Rad-prob and Inte-prob were
significantly positively correlated with the number of in-
volved LNs in the entire cohort (r� 0.442 and 0.464, both
p< 0.001) (Supplementary Materials 8).

3.5. Model Validation in PTMC and CPTC. /rough further
subgroup analysis, the Rad-prob (OR 2.72, 95% CI
1.37–5.40; 2.72, 95% CI 1.88–3.92) and Inte-prob (OR 2.72,
95% CI 1.43–5.18; 2.72, 95% CI 1.93–3.84) were independent
predictors in large-volume LNM in the PTMC and CPTC
subgroups (all p< 0.001). In PTMC subgroup, the predictive
performance of Rad-prob (accuracy 87%; AUROC 0.875;
AUPR 0.145) and Inte-prob (accuracy 96%; AUROC 0.901;
AUPR 0.298) outperformed that of the clinical model
(p � 0.335 and 0.075). In CPTC subgroup, the prediction of
Rad-prob (accuracy 83%; AUROC 0.877; AUPR 0.463) and
Inte-prob (accuracy 92%; AUROC 0.897; AUPR 0.539) was
significantly better than that of the clinical model (p< 0.001
and 0.003) (Table 4 and Figure 4).

4. Discussion

/is study developed and validated the ANN-based radio-
mic and integrated models to predict large-volume LNM in
cN0 PTC patients. Both models showed good discrimina-
tion, calibration, and clinical application, which out-
performed the clinical model. /e integrated model
combining ultrasound and clinical information could
achieve better outcome predictions than the radiomic
model. Furthermore, the radiomic and integrated models
had good predictive performance in the PTMC and CPTC
subgroups.

Specific characteristics, including the number, size, and
extranodal extension of LNs, can stratify the risk of re-
currence in PTC. Small-volume subclinical microscopic N1
disease conveys amuch smaller risk of recurrence than large-
volume clinically apparent macroscopic LNM [29]. /e
involvement of more than 5 LNs is defined as large-volume
LNM, associated with a 19% risk of recurrence and corre-
lated with lung metastasis [5, 6, 30]. Accurately identifying
PTC patients with a poor prognosis is essential for selecting
appropriate clinical management strategies. However, the
sensitivity for preoperatively detecting cervical LNM is
deemed low [12, 13]. /us, it would be helpful to find
preoperative predictors beyond ultrasound features to
predict the risk of large-volume LNM in cN0 PTC patients.

Age is the most important prognostic factor for thyroid
carcinoma [9]. Large-volume LNM is more likely to appear
in PTMC patients aged <40 years [10, 11]. Male sex has been
identified as a risk factor for thyroid cancer [31]. PTC inmen
exhibits aggressive behavior and a worse prognosis than
PTC in women [32]. Similarly, in our study, young age and
male sex were independent risk factors. However, previous
studies have not constructed a predictive model based on
these clinical factors. In our study, the predictive perfor-
mance of the clinical model was not ideal.
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Radiomics has been recently applied to thyroid nodules,
and it performs well in predicting malignancy and LNM
[33–36]. Park et al. [36] reported that radiomics could
improve the discrimination of thyroid risk classification
systems for malignant thyroid nodules and reduce the
number of thyroid nodules recommended for biopsy. Li
et al. [34] demonstrated that radiomics has a good prediction
ability for pathologic LN stages in PTC patients. Jiang et al.
[33] found that a shear wave elastography radiomic signa-
ture can accurately predict LNM in PTC patients. /erefore,
radiomics is a potential tool to predict large-volume LNM.

Moreover, we used a combination of radiomics and
ANN to improve the performance of predictive models. /e
ANN has several characteristics, including nonlinear sta-
tistics, a highly interconnected set of processing units

(neurons), and weighted connections [37]. As a commonly
usedmachine learningmethod, ANN has become a potential
tool for predicting clinical outcomes. Hanai et al. [38]
demonstrated that ANN is a more helpful tool than con-
ventional statistical methods for predicting the survival of
patients with non-small-cell lung cancer. Tong et al. [39]
found that ANN-based models showed better performance
than logistic regression models in predicting the survival of
unresectable pancreatic cancer patients. Our study devel-
oped an ANN consisting of an input layer, a hidden layer,
and an output layer for large-volume LNM prediction
models by inputting the most valuable radiomic features.
Although the comparison is not statistically significant due
to data imbalance and relatively small study population,
from the ROC and PR curves analyses, the ANN-based

Table 1: Baseline clinical and pathological characteristics of the study cohort.

Characteristic Training cohort (n� 183) Validation cohort (n� 123) p value
Clinical characteristics
Age (years)
<40 65 (35.5) 43 (35.0) 1.000≥40 118 (64.5) 80 (65.0)

Gender
Male 41 (22.4) 24 (19.5) 0.643Female 142 (77.6) 99 (80.5)

Capsule invasion
Positive 71 (38.8) 39 (31.7) 0.252Negative 112 (61.2) 84 (68.3)
Tumor size (mm) 12 (7–14) 12 (9–14) 0.967
ACR TI-RADS score 9 (7–10) 9 (7–10) 0.705

ACR TI-RADS grade
TR 1–4 30 (16.4) 23 (18.7) 0.713
TR 5 153 (83.6) 100 (81.3)

Pathological characteristics
Pathologic T stage
pT1 157 (85.8) 99 (80.5)

0.197pT2 17 (9.3) 11 (8.9)
pT3 7 (3.8) 12 (9.8)
pT4 2 (1.1) 1 (0.8)

Pathologic N stage
pN0 118 (64.5) 83 (67.5)

0.786pN1a 60 (32.8) 38 (30.9)
pN1b 5 (2.7) 2 (1.6)

Number of LNs removed ∗
Central 9 (6–14) 8 (6–13) 0.972
Lateral† 12 (3–33) 32 (22–34) 0.352

Number of positive LNs
Central 3 (1–6) 3 (2–7) 0.986
Lateral† 4 (2–5) 2 (2–5) 0.571

Large-volume LNM
Positive 19 (10.4) 11 (8.9) 0.827
Negative 164 (89.6) 112 (91.1)

Multifocality
Positive 91 (49.7) 55 (44.7) 0.457
Negative 92 (50.3) 68 (55.3)

Hashimoto’s thyroiditis
Positive 67 (36.6) 41 (33.3) 0.641
Negative 116 (63.4) 82 (66.7)

∗6 and 4 in the training and validation cohorts received additional lateral LN dissection; †bilateral. ACR TI-RADS, American College of Radiology /yroid
Imaging, Reporting and Data System; LNM, lymph node metastasis.
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radiomic model had better discrimination and fewer
overfitting possibilities than linear discriminant analysis,
support vector machine, and random forest classifiers. /e
radiomic model showed favorable calibration and predictive
value in predicting large-volume LNM in cN0 PTC patients.
/e novel model improved the clinical model AUROC,
AUPR, accuracy, sensitivity, specificity, PPV, and NPV.

Furthermore, the integrated model obtained higher pre-
dictive performance by adding clinical independent risk fac-
tors. /e integrated model displayed good calibration and
discrimination with the highest AUROC, AUPR, accuracy,
specialty, and PPV among the 3 models. It is worth noting that
the PPV value of integrated model was much higher than that
of the radiomic model and clinical model. DCA showed that
the integrated model gained the highest overall net benefit,
followed by the radiomic model. /e better performance of
radiomic and integrated models in this study indicates that
ANN-basedmodels could accurately identify high-risk patients
with large-volume LNM, thus providing information to guide
treatment and the prognosis for cN0 PTC.

Rad-prob and Inte-prob, unlike the clinical factors, were
stable and independent predictors in the PTMC and CPTC
subgroups. Young age (OR 3.44, 95% CI 1.40–8.43;

p � 0.007) and male sex (OR 3.26, 95% CI 1.31–8.08;
p � 0.011) were independent risk factors in the CPTC
subgroup; however, tumor size (OR 2.07, 95% CI 1.07–3.99;
p � 0.031) was an independent risk factor in the PTMC
subgroup. /e radiomic and integrated models had stronger
predictive value than the clinical model in both subgroups,
although the difference was not statistically significant in the
PTMC subgroup because of the small subgroup population.
Our studies have demonstrated that the radiomic and in-
tegrated model could predict large-volume LNM in PTC
with different tumor sizes.

Our study has several limitations. First, this study is a
single-center retrospective study; thus, selection bias may be
inevitable. A prospective multicenter study is necessary to
validate the models further. Second, the proportion of large-
volume LNM was low, which led to imbalanced data in our
study. Although SMOTE was used, this data imbalance
inevitably impacts the model construction. /ird, the
prognosis prediction of the models should be further vali-
dated by follow-up of recurrences in the future. Fourth,
images were only acquired with Philips ultrasound instru-
ments. We should investigate the influence of images from
different ultrasound instruments.

Table 2: Baseline clinical and pathological characteristics of patients by large-volume LNM status.

Training cohort
p value

Validation cohort
p value

Positive (n� 19) Negative (n� 164) Positive (n� 11) Negative (n� 112)
Clinical characteristics
Age (years)
<40 12 (63.2) 53 (32.3) 0.016 7 (63.6) 36 (32.1) 0.049≥40 7 (36.8) 111 (67.7) 4 (36.4) 76 (67.9)

Gender
Male 9 (47.4) 32 (19.5) 0.014 5 (45.5) 19 (17.0) 0.038Female 10 (52.6) 132 (80.5) 6 (54.5) 93 (83.0)

Capsule invasion
Positive 14 (73.7) 98 (59.8) 0.352 6 (54.5) 78 (69.6) 0.492Negative 5 (26.3) 66 (40.2) 5 (45.5) 34 (30.4)
Tumor size (mm) 12 (7–14) 12 (7–14) 0.215 12 (12–15) 12 (9–14) 0.357
ACR TI-RADS score 9 (8–10) 9 (7–10) 0.351 9 (7–9) 9 (7–10) 0.699

ACR TI-RADS grade
TR 1–4 0 (0) 30 (18.3) 0.047 1 (9.1) 22 (19.6) 0.688TR 5 19 (100) 134 (81.7) 10 (90.9) 90 (80.4)

Pathological characteristics
Pathologic T stage
pT1 15 (78.9) 142 (86.6)

0.528

9 (81.8) 90 (80.4)

1.000pT2 3 (15.8) 14 (8.5) 1 (9.1) 10 (8.9)
pT3 1 (5.3) 6 (3.7) 1 (9.1) 11 (9.8)
pT4 0 (0) 2 (1.2) 0 (0) 1 (0.9)

Pathologic N stage
pN0 0 (0) 118 (72.0)

<0.001
0 (0) 83 (74.1)

<0.001pN1a 19 (100) 41 (25.0) 9 (91.8) 29 (25.9)
pN1b 0 (0) 5 (3.0) 2 (18.2) 0 (0)

Multifocality
Positive 10 (52.6) 81 (49.4) 0.980 6 (54.5) 49 (43.8) 0.712Negative 9 (47.4) 83 (50.6) 5 (45.5) 63 (56.2)

Hashimoto’s thyroiditis
Positive 7 (36.8) 60 (36.6) 1.000 6 (54.5) 35 (31.2) 0.219Negative 12 (63.2) 104 (63.4) 5 (45.5) 77 (68.8)

ACR TI-RADS, American College of Radiology /yroid Imaging, Reporting and Data System.
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Table 3: Performance of the radiomic model and integrated model for predicting large-volume LNM in the training and validation cohorts.

AUROC (95% CI) AUPR (95% CI) ACC
(95% CI)

SEN
(95% CI)

SPE
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Integrated model 0.910 (0.853–0.967)∗ 0.463 (0.434–0.492) 93 (88–96) 68 (43–87) 96 (91–98) 65 (41–85) 96 (92–99)
Radiomic model 0.890 (0.837–0.942)∗ 0.348 (0.326–0.370) 86 (80–91) 74 (49–91) 87 (81–92) 40 (24–58) 97 (92–99)
Clinical model 0.714 (0.590–0.838) 0.255 (0.210–0.300) 77 (70–83) 47 (24–71) 80 (74–86) 22 (11–38) 93 (87–97)
Integrated model 0.883 (0.744–1)∗ 0.494 (0.410–0.578) 93 (88–97) 64 (31–89) 96 (91–99) 64 (31–89) 96 (91–99)
Radiomic model 0.856 (0.753–0.958)∗ 0.381 (0.333–0.428) 83 (75–89) 73 (39–94) 84 (76–90) 31 (14–52) 97 (91–99)
Clinical model 0.702 (0.529–0.876) 0.226 (0.171–0.281) 80 (71–86) 45 (17–77) 83 (75–89) 21 (7–42) 94 (87–98)
∗Signi�cantly di©erent (Delong test) p< 0.05 from the clinical model. AUPR, area under the precision-recall curve; AUROC, area under the receiver operator
characteristic curve; ACC, accuracy; CI, con�dence interval; NPV, negative predictive value; PPV, positive predictive value; SEN, sensitivity; SPE, speci�city.
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Figure 2: Heatmap of pairwise Spearman correlations between the selected radiomic features after feature reduction in the training cohort.
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Table 4: Performance of the radiomic model and integrated model for predicting large-volume LNM in the PTMC and CPTC subgroups.

AUROC (95% CI) AUPR (95% CI) ACC
(95% CI)

SEN
(95% CI)

SPE
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

PTMC subgroup (n� 114)
Integrated model 0.901 (0.790–1) 0.298 (0.261–0.335) 96 (90–99) 60 (15–95) 97 (92–99) 50 (12–88) 98 (93–100)
Radiomic model 0.875 (0.794–0.957) 0.145 (0.131–0.159) 87 (79–93) 67 (22–96) 88 (80–93) 24 (7–50) 98 (93–100)
Clinical model 0.752 (0.494–1) 0.016 (0.010–0.022) 80 (71–87) 60 (15–95) 81 (72–88) 12 (3–32) 98 (92–100)

CPTC subgroup (n� 192)
Integrated model 0.897 (0.825–0.970)∗ 0.539 (0.496–0.582) 92 (87–95) 68 (46–85) 95 (91–98) 68 (46–85) 95 (91–98)
Radiomic model 0.877 (0.817–0.936)∗ 0.463 (0.432–0.494) 83 (77–88) 72 (51–88) 84 (78–90) 41 (26–57) 95 (90–98)
Clinical model 0.704 (0.593–0.814) 0.292 (0.245–0.339) 77 (70–83) 44 (24–65) 82 (75–88) 27 (14–43) 91 (85–95)

∗Signi�cantly di©erent (Delong test) p< 0.05 from clinical model. AUPR, area under the precision-recall curve; AUROC, area under the receiver operator
characteristic curve; ACC, accuracy; CI, con�dence interval; CPTC, conventional papillary thyroid cancer; NPV, negative predictive value; PPV, positive
predictive value; PTMC, papillary thyroid microcarcinoma; SEN, sensitivity; SPE, speci�city.
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Figure 3: Predictive performance of the radiomic model and integrated model. Calibration curves (a, e), ROC curves (b, f ), PR curves (c, g),
and DCA (d, h) of the models. ∗Statistically di©erent (Delong test) from the clinical model. #Statistically di©erent (Delong test) from the
radiomic model. AUPR, area under the precision-recall curve; AUROC, area under the receiver operator characteristic curve; CI, con�dence
interval; DCA, decision curve analysis.
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5. Conclusions

In conclusion, radiomics can improve the performance of
independent clinical predictors in outcome prediction. �e
ANN-based ultrasound radiomic model and integrated
model combining imaging and clinical information have the
potential to predict large-volume LNM in cN0 PTC patients
preoperatively.
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