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Circulating tumor cells (CTCs) play a crucial role in tumor recurrence and metastasis, and their early detection has shown
remarkable bene�ts in clinical theranostics. However, CTCs are extremely rare, thus detecting them in the blood is very
challenging. New CTC detection techniques are continuously being developed, enabling deeper analysis of CTC biology and
potential clinical application. �is article reviews current CTC detection techniques and their clinical application. CTCs have
provided, and will continue to provide, important insights into the process of metastasis, which could lead to development of new
therapies for di�erent cancers.

1. Introduction

Circulating tumor cells (CTCs) were �rst described by
Ashworth in 1869 as a group of tumor cells in the peripheral
bloodstream originating from spontaneous solid tumor
tissues (primary or metastatic) and a biomarker for cancer
diagnosis and progression [1–5]. �e mechanism of tumor
metastasis caused by circulating tumor cells is shown in
Figure 1. Tumor cells shed into the blood in situ cause blood-
borne metastases [6]. CTCs with an epithelial-mesenchymal
transition (EMT) phenotype are invasive enough to pass
through the extracellular matrix (ECM), dissociate from the
marginal front, and invade the tumor vasculature. CTCs can
evade anoikis cell death in circulation. Disseminated tumor
cells (DTCs) exhibiting the EMT phenotype undergo in-
travascular stasis and develop cell protrusions to promote
transendothelial migration (TEM) of cancer cells into the
metastatic site, where they may stay dormant for some time
before colonizing. �is allows cancer cells to evade immune
surveillance and successfully colonize distant organs. DTCs
then acquire the mesenchymal-epithelial transition pheno-
type to proliferate and form secondary tumors. Cancer cells

promote self-growth and colonization of the metastatic site
by secreting exosomes that promote their dynamic in-
teraction with the tumor microenvironment [7]. �erefore,
CTCs provide cellular evidence for metastasis and are useful
biomarkers for cancer progression in most cancer patients
[8]. Several biological characteristics contribute to the
shedding of CTCs by the primary tumor and their role in
metastasis. Generally, EMT promotes the formation and
metastasis of CTCs. Metastasis is driven by cytokines,
proteins, and transforming growth factor (TGF)-β-Smad
signaling. TGF-β promotes metastasis by reducing the ex-
pression of epithelial cadherin (E-cadherin). On the other
hand, the resistance of A-kinase anchoring protein 8
(AKAP8) to EMT can inhibit breast cancer metastasis. �e
in�ltration of CTCs into the metastatic site is a complicated
process. In addition to producing EMT and proteases, en-
dothelial cells (ECs) secrete CXC chemokine ligand 12
(CXCL12) to promote in�ltration and perivascular tumor-
associated macrophages (TAMs) to upregulate epidermal
growth factor and matrix metalloproteinase-9 [9]. A hard-
ened ECM induces the formation of invasive pseudopodia in
cancer cells, enabling them to penetrate the ECM to invade
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blood vessels. -e activity of cancer-associated fibroblasts in
the recombinant ECM has been shown to promote drilling
and subsequent invasion of tumor cells [7].

CTCs are rare in healthy individuals, and even in pa-
tients with malignancies, less than one CTC per 105 to 107
peripheral blood mononuclear cells (PBMCs) could be
observed. -us, isolation and enrichment are often the first
steps in CTC detection in laboratories and hospitals [10].
-ere are two classical approaches to separating CTCs from
blood samples: physical separation that exploits unique
physical properties of CTCs (such as density and size) and
immune adhesion, which depends on the high binding af-
finity of receptors on CTCs to specific antibodies or
aptamers [11]. Compared with immune adhesion, physical
isolation is a simpler method as it obviates the need for cell
labeling. However, the immune adhesion method achieves
higher purity in CTC isolation.

Due to technical limitations, few studies have in-
vestigated the precision of CTC detection methods. Keller
and Pantel discussed how CTC analysis at single-cell res-
olution provides unique insights into tumor heterogeneity
[12]. Martin et al. reviewed preclinical and clinical data on
cancer treatment, CTC mobilization, and other factors that
may promote metastasis, establishing that advanced thera-
peutic strategies could benefit patients with locally advanced
cancer [13]. However, a systematic review of the occurrence,
development, and outcome of CTCs in metastatic cancer is
largely lacking. In this review, we present an overview of the
biological characteristics of CTCs, current CTC detection
techniques, and principles and methods of CTC isolation.
Finally, potential applications of CTCs in the treatment of
metastatic cancer are proposed.

2. Biological Characteristics of CTCs

2.1. Cellular Size. Due to high heterogeneity of tumor cells,
the pore size in the CellSearch system is typically slightly
larger than leukocytes [14]. Other researchers have suc-
cessfully separated CTCs using size-based platforms that
exploit difference in cell sizes. CTCs in prostate cancer are
divided into three categories based on size (diameter): very
small nuclear CTCs (<8.54 μm), small nuclear CTCs
(8.54–14.99 μm), and large nuclear CTCs (>14.99 μm) [3].

Jiang et al. selectively enlarged the size of tumor cells
covered with polystyrene microspheres and the modified
cells were clearly distinguishable from white blood cells. -e
modification method had no significant effect on cell sur-
vival and proliferation. Using this method, 15 CTC subtypes
were detected in 18 cases of colorectal cancer at a concen-
tration of 4–72 CTCs/mL. -us, this method has great
potential in the early diagnosis and individualized treatment
of cancer [15]. Zavridou et al. directly compared two dif-
ferent methods of isolating CTCs from head and neck
squamous cell carcinoma: a size-dependent microfluidic
system and epithelial cell adhesion molecule (EpCAM)-
dependent positive selection. -e results showed that, in the
same blood sample, the label-freesize-dependent CTC
separation system had higher sensitivity than the EpCAM-
dependent CTC enrichment system [16].

2.2. Cellular Density. Density is the physical property
exploited in traditional separation and enrichment methods
for CTCs [17]. In Ficoll density gradient centrifugation,
CTCs, plasma, and monocytes remain in the upper layer,
whereas erythrocytes and polymorphonuclear leukocytes
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Figure 1:-emechanism of circulating tumor cells (CTCs) driving tumormetastasis. CTCs refer to all kinds of tumor cells in the peripheral
blood. Due to their spontaneous or clinic operation, most of the CTCs undergo apoptosis or are swallowed after entering the peripheral
blood. A few can escape and are anchored to become metastatic.
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settle in the bottom layer. CTCs may occur in both plasma
and separation fluid. -us, some liquids above the red blood
cell layer should be collected for enrichment to prevent the
loss of CTCs [5]. Huang et al. developed a new density
gradient centrifugation method that uses biodegradable
gelatin nanoparticles wrapped on silica beads for isolation,
release, and downstream analysis of CTCs from colorectal
and breast cancer patients.-ismethod has remarkable CTC
capture efficiency (>80%), purity (>85%), high CTC-release
efficiency (94%), and viability (92.5%) [18]. -us, this ap-
proach provides new opportunities for personalized cancer
diagnosis and treatment and may also be useful in de-
veloping drug treatment guidelines for cancer.

2.3. Heteromorphy in CTCs. Marrinucci et al. conducted
cellular morphological evaluation of circulating components
of highly metastatic breast cancer. -ey found highly
polymorphic CTCs in breast cancer patients, including
CTCs with high and low nuclear-to-cytoplasmic ratios and
early and late apoptotic changes. In addition, compared with
tumor cells in other sites, the complete morphologic spec-
trum of cancer cells in primary and metastatic tumors was
also present in peripheral blood circulation [19]. Several
studies have found various forms of CTCs in peripheral
blood existing either independently or in clusters, with some
CTCs even interacting with platelets to form a shell around
them [20–23]. Aceto et al. found that CTC clusters in breast
cancer-bearing mice were shed as whole oligomeric colonies
rather than as simply a group of CTCs aggregating in the
bloodstream [24, 25].

2.4. Proliferation and Apoptosis of CTCs. For tumor cells in
circulation, only a few CTCs with high viability and potent
metastatic potential survive and colonize distant organs to
develop into metastatic foci. CTCs entering the circulatory
system have very short survival times, typically less than
24 h, and vary in their indices of proliferation [26]. Driemel
et al. found that the high expression of EpCAMwas common
in cancer cells in the proliferation stage, while the low ex-
pression of EpCAM inhibited the proliferation of CTCs [27].
Studies have reported low levels of expression of pro-
liferating nuclear antigen Ki-67 in CTCs, suggesting that
most CTCs may remain in a dormant state without entering
the cell division cycle [28, 29]. It has also been found that,
several years after primary tumorigenesis, dispersed CTCs
and micrometastasis niche can remain dormant for a long
time during resection of primary tumors [30]. -ese results
suggest that dormant CTCs can be attached to tissues or cell
clusters until their activation or that of a certain factor in the
isolation procedures.-e specific mechanismmay be related
to the body’s immune response.

2.5. 2e Metastatic Portent of Circulating Tumor Cells.
EMT is a biological process by which epithelial cells acquire
a mesenchymal phenotype through a series of biochemical
changes [31]. In recent years, accumulating evidence sug-
gests EMT phenomena in the process of cancer cell

metastasis [32–34]. In this process, cancer cells lose polarity
and their connection with ECM, transforming into fusiform
mesenchymal cells, which are easily detached from the tu-
mor cell population. Several ECM-degrading proteases are
upregulated in cancer cells with EMT, increasing their in-
vasiveness [32–35]. As shown in Figure 2, the occurrence of
EMT in CTCs could result in the loss of specific molecular
markers in epithelial cells such as EpCAM and cytokeratin
and overexpression of specific molecular markers in in-
terstitial cells such as vimentin and cadherin. -ese cells
have a strong survival advantage and high metastasis and
potential for transfer in the blood circulation [17, 36–38].
Based on the EMT stage, CTCs are divided into E-type, M-
type, E/M-type, and N (null)-type. Several studies have
shown that E/M-type CTCs have enhanced epithelial cell
adhesion and extravasation capacity, representing more
aggressive subtype of cancer cells with the highest metastatic
capacity [39–41]. Additionally, M-type CTCs exhibit en-
hanced resistance to clinically relevant chemotherapeutics.

3. Separation and Enrichment of CTCs

-ere are two major approaches based on the principle of
CTC separation and enrichment: physical property sepa-
ration and affinity-based identification [42, 43]. For the
physical property separation method, tumor cells are sep-
arated from other cells based on differences in size [44, 45],
density [46], deformability, and adhesion between tumor
cells and normal blood cells [18, 47]. -e affinity-based
identification method involves identification of the spe-
cific antigen on the surface of cancer cells using antibodies
[44, 48], aptamer [49, 50], or E-selectin [51, 52]. Additional
details are shown in Figure 3.

3.1. Gradient Density Centrifugation. Two centrifugation-
based systems are available in the market today: Onco-
Quick and AccuCyte [43, 53]. After isolation and enrich-
ment with Ficoll-Paque separation fluid, 24 CTCs were
detected in fifty-eight 1mL blood samples from colorectal
cancer patients using real-time reverse transcription-
polymerase chain reaction (RT-PCR) [53]. Rosenberg
et al. reported that using a new OncoQuick system to isolate
cancer cells had a 632-fold enrichment effect compared with
less than 4-fold enrichment effect using Ficoll-Paque [53]. In
addition, 11 CTCs were detected in 37 samples of gastric
cancer patients using a combination of OncoQuick and
RT-PCR [53]. In another study, 5 and 25 CTCs were de-
tected in 60 cases of early breast cancer patients after im-
munofluorescence and 63 samples of patients with advanced
breast cancer, respectively [2]. Although density-gradient
centrifugation is uncomplicated, it lacks specificity and can
easily lead to loss of tumor cells without corresponding
density.

-erefore, density gradient centrifugation is often used
as the first step to separate CTCs and then combined with
other methods to specifically bind and separate CTCs. For
example, Hu et al. used density gradient centrifugation and
magnetic separation based on CD45 antibody to separate
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CTCs [46]. Different from the traditional negative enrich-
ment, Hu et al. applied the subtraction enrichment and
immunostaining fluorescence in situ hybridization (SE-
iFISH) strategy to detect CTCs, which effectively removed
red blood cells by centrifugation rather than using hypotonic
injury [54].

3.2. Method for Separation and Capture Based on Cell Size.
-e method takes advantage of the larger size of CTCs
compared with erythrocytes [55]. Isolation by size of epi-
thelial tumor cells (ISET) and ScreenCell systems have been
used for clinical trials in melanoma, breast, lung, and
pancreatic cancers [56, 57]. For the first time, Zheng et al.
used parylene-C to make circular and oval microporous
filters, achieving a CTC capture efficiency of 90% [58]. A
model for gene analysis and analysis of cells after chip
electrolysis developed by Birkhahn et al. [59] was sub-
sequently applied to the detection of exfoliated cells from
urinary bladder cancer. Hosokawa et al. integrated nickel
microporous sieves made from micro-electroforming into
a microfluidic chip. -e team also applied the improved
nickel microporous sieves to the detection of CTCs in the
blood of patients with small-cell lung cancer [60].

To improve the capture efficiency of CTCs, Coumans
et al. studied factors affecting the trapping of filter cells [61].
In microfluidic chips, the precise fabrication of shapes and
microstructures in microchannels makes it possible to
separate and enrich tumor cells on a size-by-size basis [62].
Erythrocytes have stronger deformability and smaller vol-
ume, thus can easily cross various microstructures [63].
Niciński et al. proposed a new tool that uses microfluidic
devices, photovoltaic (PV)-based SERS activity platform,
and shell separation nanoparticles (shins) for simultaneous
separation and unlabeled analysis of circulating tumor cells
in blood samples. -e results demonstrated the potential of
SERS-based tools for isolating tumor cells from whole blood
samples in a simple and minimally invasive way in a scaled-
up detection and molecular identification pipeline [64].
Ohnaga et al. used a microchannel to capture circulating
tumor cells in esophageal and breast cancers [65]. Zeinali
et al. used a sensitive microfluidic CTC capture device to
analyze circulating epithelium and EMT-like CTCs in
pancreatic cancer [66].

To capture CTCs larger than the maximum pore size
regardless of cell surface expression, blood is filtered through
pores (usually 8 μm in diameter). However, the success of
this process depends on many factors, including blood flow
rate, pore size uniformity, and membrane stiffness. High
flow velocity will cause CTC to “squeeze” through pores,
causing membrane distortion. A very slow flow rate will lead
to excessive accumulation of white blood cells, blood co-
agulation, and prolonged processing time [67]. Moreover,
tumor cells undergoing epithelial-mesenchymal transition
(EMT) were smaller than those without EMTcharacteristics
[68]. -erefore, CTCs receiving EMT may not be detected
using these technologies. Due to the inherent heterogeneity
and dynamic expression of EpCAM and the degradation of
cytokeratin during the transformation of epithelial cells into
mesenchymal cells, the detection of circulating tumor cells in

hepatocellular carcinoma with conventional methods is
significantly limited, leading to false-negative detection of
such CTCs. Wang et al. reported for the first time the ex-
istence of small-sized CTCs (<5 μmWBC) with cytogenetic
abnormalities in aneuploid chromosome 8, which is pre-
dominantly detected in hepatocellular carcinoma (HCC)
patients [69].

3.3. ImmunomagneticBeads. Almost all cells in the blood are
diamagnetic or weakly magnetic [70]. -erefore, tumor cells
are usually labeled with antibody-conjugated magnetic
beads or nanoparticles. -ese antibodies bind primarily to
tumor-cellsurface-specific antigens, including some in-
tracellular antigens [71].-e number of CTCs counted using
cell search has been used for prognosis of some cancers after
metastasis [72–74]. Wu et al. developed a magnetic cell
centrifugation platform (MCCP) combining the separation
mechanism of magnetically labeled cells with the size-based
method and obtained target cells with 97% purity, high
throughput of 2 μL/s, and a sample enrichment factor of
66 times [75]. Overall, the performance of the immuno-
magnetic particle separation method mainly includes the
following factors: (1) the expression level and specificity of
the target antigen and the binding ability of the corre-
sponding antibody and (2) the efficiency of immuno-
magnetic particle labeling. Immunomagnetic particles used
for cell separation have high recovery and purity and even
detect CTCs in one step [76–78].

3.4. Chip Technology. In the 1990s, Manz et al. proposed
a microfluidic chip technology [79]. Commonly used CTC
antibodies include human EpCAM and leukocyte common
antigen CD45 [80]. Affinity sorting includes two types of
capture methods. -e first type is the positive sorting
method, which directly targets and specifically captures
target cells. -e second type is the negative sorting method,
which involves the capture nontarget cells, which are then
discarded. A schematic diagram of the working principle is
shown in Figure 4.

3.4.1. Positive Sorting Methods. -e traditional affinity
sortingmethod involves direct binding of the antibody to the
microfluidic chip channel [81]. Sequist et al. developed the
second-generation CTC chip called herringbone (HB)-chip
[82]. Compared with first-generation CTC chips, the
second-generationHB-chip is easy to use and more efficient,
providing comprehensive and easy access to data. Hughes
et al. integrated halloysite nanotubes into this chip [83] by
immobilizing E-selectin and anti-EpCAM on nanotubes. In
this design, E-selectin captures rapidly moving CTCs,
whereas anti-EpCAM specifically captures CTCs [84, 85],
increasing the purity of the captured CTCs. To simplify the
experimental procedures, Stott et al. designed a fishbone-
based affinity sorting chip for direct analysis of whole blood
samples with a sorting speed of up to 1mL/h. Captured
circulating tumor cells could also be used for other assays or
cell culture [86]. Sheng et al. optimized the fishbone
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structure to achieve a CTC capture e¦ciency and sorting
purity higher than 90% and 84%, respectively [87]. �ese
micro¥uidic chip technologies have shown good CTC
capture capability. However, releasing CTCs from micro-
¥uidic chips for subsequent analysis is challenging. �ere-
fore, researchers have introduced magnetic materials into
micro¥uidic chips for CTC sorting [88].

3.4.2. Negative Sorting Methods. EpCAM-based a¦nity
separation cannot be applied to CTCs with weakly expressed
or nonexpressed EpCAM in the process of tumor cell me-
tastasis, which leads to the signi�cant decrease or even loss of
EpCAM expression. For example, Lee designed a chip called
“μ-MixMACS”, which greatly increased the number of CTCs
detected [89]. Sajay et al. designed a two-step negative CTC
sorting platform where the recovered cells remain bioactive
and can be further analyzed for protein or nucleic acid
content [90]. A CTC-negative enrichment scheme, which
utilized the RosetteSep™ CTC Enrichment Cocktail

Containing Anti-CD56 to collect CTCs in peripheral blood,
was used to monitor the occurrence and disease response to
treatment at di�erent time points [91].

Unlike traditional negative enrichment, researchers
utilize subtraction enrichment (SE), independent of cell size,
cluster, or surface anchor protein expression. �e immu-
nostained proteins were proved to be free from the re-
striction of antigen epitopes inside and outside cells and
membrane-related tumor biomarkers. With the clinical
application of SE-iFISH, in addition to the traditional tumor
cell types, there are more and more accidental discoveries of
various phenotypes of CTCs [54]. Zhang et al. have shown
that aneuploidy CD31− CTC and CD31+ CTEC may be used
as a pair of biomarkers for circulating cell tumors to predict
patients with non-small-cell lung cancer receiving anti-
angiogenesis combined therapy [40]. Based on the SE-iFISH
strategy, Yang et al. demonstrated that patients with early
bladder cancer had more triploid CTCs, tetraploid CTCs,
and total circulation endothelial cells (CECs). Various CTC/
CEC subtypes may have di�erent potential function to guide

Red blood cells

Positive sorting method

Target cells

Negative sorting method

Non-target cells

Immunocytes
CTCs

Microfluidic chip

Blood sample from patients

Figure 4: Peripheral blood samples from patients with non-small-cell lung cancer were obtained before any treatment and immediately
processed in the circulating tumor cell (CTC) herringbone (HB)-chip that captures anti-EP-CAM-coated column epithelial cell adhesion
molecules (left). Negative consumption of untargeted cells by a negative consumption method, including red blood cells and immune cells.
Targeted cells such as CTCs were left in the chip for further analysis (right).
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the diagnosis, prognosis prediction, and treatment decision
of bladder cancer [92]. Li et al. found that the presence of
circulating tumor-cell-associated white blood cell (CTC-
WBC) clusters is an independent prognostic factor for
advanced non-small-cell lung cancer [93].

4. Detection of CTCs

4.1. Immunocytochemistry. Immunochemistry is a modern
technology that binds specific monoclonal antibodies with
CTCs, followed by conjugation of a chromogenic reagent to
visualize CTCs. -e most commonly used monoclonal
antibody are anti-CK antibodies, such as epithelial-specific
markers (CK) [94], interstitial cell surface markers (Snail1,
E47, and Twist) [95], E-cadherin antagonist [96], stem cell
markers (CD133+, CD44+, and CD24−), aldehyde de-
hydrogenase 1 (ALDH1) [97–100], special marker Survivin
[101, 102], estrogen receptor (ER) [103], and progesterone
receptor (PR) [104]. EpCAM and CK may be lost during
epithelial-mesenchymal transition (EMT), leading to the
failure of EpCAM- and CK-dependent strategies to detect
CTCs. -erefore, Li et al. used SET-iFISH technology to
enrich and characterize CTCs in advanced gastric cancer
(AGC) and obtained a higher positive detection rate than
that obtained using EpCAM-dependent detection strategies
(CellSearch) [105]. In addition, Li et al. captured CTCs in
AGC through SE-iFISH and found that cHER2 phenotype is
useful to understanding the treatment resistance of AGC
patients [106]. Subsequently, scientists used this method to
characterize the markers of CTC, such as EpCAM [41],
PD-L1 [107], vimentin [40], and CD44 [108].

4.2. RT-PCR. Currently, RT-PCR is considered the gold
standard in the detection of some viruses because of its high
sensitivity [109, 110]. RT-PCR is also widely used in tumor
detection [111, 112]. However, selecting optimal RNA
markers can be challenging, limiting its efficacy. An ideal
RNA marker should have the following characteristics: all
types of tumor cells are expressed in peripheral blood
leukocytes, nontumor epithelial cells are not expressed, and
no illegitimate transcription events [113]. Using qualitative
RT-PCR, Wang et al. found that the expression of androgen
receptor variant 7 (AR-V7) in CTCs from patients with
prostate cancer was associated with drug resistance. -e
upregulation of AR-V7 led to the enhancement of cancer cell
proliferation, suggesting poor patient prognosis [114]. Wei
et al. recruited 78 patients with stage IA2–IIA1 cervical cancer
who had undergone radical hysterectomy by laparotomy or
laparoscopy and selected 34 uterine fibroid patients and 32
healthy subjects as the positive control group and negative
control group, respectively. RT-PCR was used to amplify
peripheral blood CK19, CK20, and SCC-Ag from total RNA.
-e results showed that CTCs were highly expressed in both
the open surgery group and the laparoscopic radical mas-
tectomy group, with no significant difference between the
two groups [115]. Using Survivin, hTERT and hMAM
markers to detect CTC in breast cancer patients, Shen et al.
found that these markers improved the sensitivity of parallel

tests and the specificity of series tests [116]. -e molecular
spectrum of four genes, including CK20, CK19, CEA, and
GCC, identified 87.7% of tumor metastases with a false-
positive rate of only 2.2% [117].

5. Clinical Applications of CTCs

CTCs are a promising biomarker for early disease diagnosis,
treatment response and disease progression evaluation, re-
currence monitoring, and therapeutic target identification
for drug development [118]. Detection of CTCs has been
widely used in the diagnosis of early and metastatic cancers
(Table 1).

5.1. Early Diagnosis and Staging of Cancer. Traditional im-
aging methods cannot effectively detect early tumor lesions.
CTC detection approaches can detect tumor earlier than
imaging or clinical manifestations when the lesion is <1 cm,
hence facilitate early diagnosis. Besides its role in early
tumor diagnosis, CTC is also correlated with tumor grade
and TNM stage. Santos et al. found that CTCs have great
potential in the early diagnosis of colorectal cancer since
they can be detected in the peripheral blood of patients with
early-stage colorectal cancer.-erefore, the CTC test may be
applied to the diagnosis of colorectal cancer [123]. Clinical
staging of colorectal cancer is often based on anatomical
alterations of the intestine; however, it is difficult to accu-
rately identify micrometastasis during the prognosis and
treatment of patients [124]. Detection of CTCs in the blood
does not necessarily indicate the occurrence of metastasis.
However, several studies have shown the value of detection
of CTCs in the staging of colorectal cancer in clinical
practice [125]. Using an advanced CanPatrol CTC enrich-
ment technique and in situ hybridization to sort and classify
CTCs in blood samples, 90.18% of hepatocellular carcinoma
(HCC) patients were found to be CTC positive, even at the
early stage of HCC [126]. CTCs were also detected in 2 of 12
patients with hepatitis B virus (HBV) infection, with both
patients developing small HCC tumors in less than five
months. Another study by Wang et al. implicated CTCs in
tumor staging [127]. Recent studies have shown that CTCs
also put into good use in hematologic malignancies. Primary
plasma cell leukemia (pPCL) is clinically distinguishable
from newly diagnosed multiple myeloma (NDMM) based
on the proportion of circulating tumor cells of 20% [128].
Zhang et al. also used a technology based on oncolytic
herpes-simplex-virus-1 to detect CTCs in non-Hodgkin’s
lymphoma [129].

5.2. Treatment Evaluation and Recurrence Monitoring.
Treatment evaluation and recurrence monitoring of CTCs
has been extensively studied. Lin et al. measured the number
of peripheral blood CTCs before and after NK cell immu-
notherapy in stage IV non-small-cell lung cancer (NSCLC)
patients, providing a useful reference for monitoring any
change in NK cell therapeutic effect [130]. Nagrath et al.
detected and monitored CTCs using a CTC chip and found
that the CTC count of patients with lung and prostate cancer
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decreased significantly before and after chemotherapy and
endocrine therapy. Although the changes in the CTC count
due to treatment are affected by the differences between
individual patients, they can still be used as a reference for
evaluating the efficacy of tumor treatment [131–133]. In
some cases, CTCs are more sensitive than imaging, thus they
are included in efficacy evaluations [134]. In recent years,
several detection techniques have been developed for CTC
genotyping as well as detection of crucial gene mutations,
such as ER [135], HER2 [136], and TP53 [137]. -us, these
techniques can help clinicians in treatment evaluation and
monitoring tumor recurrence. Zhou et al. used PCR and
fluorescence-activatedsingle-cell sorting (FACS) to detect
levels of EpCAM mRNA+ CTCs and CD4+CD25+Foxp3+
Treg cells in 49 HCC patients before surgery. -e data
showed that CTC/Treg levels were positively correlated with
the risk of postoperative recurrence [138].

Due to differences in tumor type and stage among cancer
patients and occult, it is difficult to detect metastatic tumor
relapse within five years of primary tumor resection. Cancer
that persists despite treatment and cannot be detected by
current medical imaging modalities is defined as minimal
residual disease (MRD), which is in the occult stage of cancer
progression. Liquid biopsy methods based on detection of
small amounts of circulating tumor cells (CTCs) or trace
amounts of circulating cell-free tumor DNA (ctDNA) are
now available for MRD detection in patients with various
malignant tumors. Monitoring CTCs and ctDNA during
postoperative follow-up assessments can detect disease re-
currence months earlier than other medical imaging
methods. Further characterization of CTCs and ctDNA
could provide insights into the molecular evolution of MRD
during tumor progression, which has important implica-
tions for treatments that delay or even prevent metastatic
recurrence.-erefore, the detection of CTCs has become the
main method for the assessment of minimal residual disease
(MRD) [139].

6. Conclusion

Despite the initial promise of CTCs in clinical application,
several challenges must be addressed before CTC analysis
gains widespread application in clinical practice. At present,
CTC cell count and molecular phenotype analysis are ap-
plied in practice. More comprehensive characterization of
CTC-based genomes, transcriptomes, and proteomes from
high-throughput sequencing projects will further benefit
clinical applications but also increase the complexity and
difficulty of data analysis.

-e survival of CTCs in the peripheral blood is a com-
plex process involving multiple factors and mechanisms. It
has been reported that hypoxia, autophagy, and secretion of
exosomes may affect the prognosis of CTCs. Whether CTCs
can be differentiated based on their phenotypes and kar-
yotypes or not and how to formulate individualized treat-
ment regimens for CTCs to resist apoptosis-induced drug
resistance are urgent problems that need to be solved. Given
the increasing popularity of molecular diagnosis in clinical
practice and continuing decline in the cost of the technology,

the detection of CTCs will become a powerful and in-
dispensable tool for the diagnosis of circulating tumor cells
(tumor DNA) with its advantages of repeatability, mutation
detection at the molecular level, noninvasive diagnosis and
broad application potential in targeted therapy, efficacy
testing, postoperative prognosis, radiotherapy and chemo-
therapy strategy guidance, as well as in differential diagnosis.
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