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Photodynamic therapy (PDT) can be developed into an important arsenal against cancer; it is a minimally invasive therapy, which
is used in the treatment or/and palliation of a variety of cancers and benign diseases. �e removal of cancerous tissue is achieved
with the use of photosensitizer and a light source, which excites the photosensitizer. �is excitation causes the photosensitizer to
generate singlet oxygen and other reactive oxygen species. PDT has been used in several types of cancers including nonmelanoma
skin cancer, bladder cancer, esophageal cancer, head and neck cancer, and non-small cell lung cancer (NSCLC). Although it is
routinely used in nonmelanoma skin cancer, it has not been widely adopted in other solid cancers due to a lack of clinical data
showing the superiority of PDT over other forms of treatment. Singlet oxygen used in PDT can alter the activity of the catalase,
which induces immunomodulation through HOCl signaling. �e singlet oxygen can induce apoptosis through both the extrinsic
and intrinsic pathways.�e extrinsic pathway of apoptosis starts with the activation of the Fas receptor by singlet oxygen that leads
to activation of the caspase-7 and caspase-3. In the case of the intrinsic pathway, disruption caused by singlet oxygen in the
mitochondria membrane leads to the release of cytochrome c, which binds with APAF-1 and procaspase-9, forming a complex,
which activates caspase-3. Mechanisms of PDT action can vary according to organelles a�ected. In the plasma membrane,
membrane disruption is caused by the oxidative stress leading to the intake of calcium ions, which causes swelling and rupture of
cells due to excess intake of water, whereas disruption of lysosome causes the release of the cathepsins B and D, which cleave Bid
into tBid, which changes the mitochondrial outer membrane permeability (MOMP). Oxidative stress causes misfolding of protein
in the endoplasmic reticulum. When misfolding exceeds the threshold, it triggers unfolding protein response (UPR), which leads
to activation of caspase-9 and caspase-3. Finally, the activation of p38 MAPK works as an alternative pathway for the induction
of MOMP.

1. Introduction

Developing chemotherapy against cancers is particularly
di�cult. Cancer cell is, in many ways, like every other cell in
the body, and drugs that kill cancer cells also kill normal
cells. Early cancer chemotherapy consisted of poisons.
Mustard gas was used in wars to kill humans. At right
dosages, it could be used as an anticancer drug [1]. Similarly,
a purine, 6-mercaptopurine, is highly toxic but can be used
as a chemotherapeutic agent [2]. Early innovations in
chemotherapy involved giving a concoction of drugs to
patients to prevent relapse. �e ¤rst experiment used 6-
mercaptopurine and methotrexate to treat cancer [3]. As the

e�ects of the poisons multiplied, the double dose was more
toxic than the single dose. However, the combination reg-
iment led to higher remission rates. �e ultimate set of
poisons used to try to cure cancer was a combination known
as VAMP acronym for vincristine, amethopterin, mercap-
topurine, and prednisone. �e severely sick patients got
sicker and came very close to death. �e bone marrow of the
patients was damaged. At the end of the tunnel, there was
hope. When ¤nally the bone marrow started recovering,
cancer cells did not come back [4] (Figure 1).

Like many predecessor cancer drugs, singlet oxygen is
also a poison [5]. It causes necrosis and apoptosis and leads
to cancer death. �e important advantage of using singlet
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oxygen as a cancer therapy is the ability to control the lo-
cation of death so that only the cancer cells are targeted, and
other cells are spared. In this review of the mechanism of
singlet oxygen-induced cell death, we ¤rst introduce the
concept of singlet oxygen.

1.1. Singlet Oxygen Introduction. Molecular oxygen is the
second most abundant gas in the atmosphere and plays a
critical role in the sustenance of life and the extinction and
destruction of materials [6]. It is widely taught in high school
textbooks that an oxygen atom has a total of 8 electrons,
which means 2 electrons in 2s orbital and 2 electrons in 2px
and 1 electron each in 2py and 2pz orbitals [7]. When two
oxygen atoms form orbitals, 2s orbitals combine to form
bonding and antibonding sigma 2s orbitals, both of which
are doubly occupied. px, py, and pz orbitals come to form one
sigma bonding and one antibonding orbital and two pi
sigma and anti-sigma orbitals. In the ground state of mo-
lecular oxygen, sigma and pi bonding orbitals are fully
occupied. Two remaining electrons are found in two anti-
bonding pi orbitals [8]. �ey both have the same spin.�is is
called the triplet oxygen ground state and is denoted as 3Σg−

[6]. Due to electronic excitation, if an unpaired electron in
the antibonding pi orbitals moves to another antibonding pi
orbital and changes its spin, excited singlet oxygen species
are formed. It is denoted as 1Δg. Another excited state of
oxygen occurs when the spin of one of the antibonding pi
orbitals is ¨ipped, which is the second excited state of singlet
oxygen and is denoted as 1Σg+ [9]. �e number of electron
spins possible gives the names singlet and triplet. �e total
quantum spin of singlet oxygen is 0 with only one possible
arrangement of electron spins. On the other hand, the total
quantum spin of triplet oxygen is 1 with three possible
arrangements of electron spins [9] (Figure 2).

1.2. Photosensitized Production of Singlet Oxygen.
Although singlet oxygen can also be produced from non-
photochemical, preparative chemical methods, and phosphite
ozonide, the photosensitized production of single oxygen is
discussed in this study since this method is widely used to
generate singlet oxygen in the treatment of cancers. Ground
state oxygen is excited using wavelength usually in the visible
range, using various sources such as LED and sunlight [6].
Photosensitizers are generally promoted to a higher energy
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Figure 1: Diagrammatic summary of the paper.
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state that can be a singlet state or a triplet state. Activation can
be caused using a single photon or two photons. From the
higher energy state, electrons reach lower energy states
through internal conversion (IC) or to a different spin state
through intersystem crossing (ISC). During the lowering of
electrons of photosensitizer from the triplet state to a ground
state, it can transfer energy to an oxygen molecule, which
leads to simultaneous promotion of electrons in molecular

oxygen from the ground state to the singlet state (Figure 3).
-ere are two singlet oxygen states, 1Δg and 1Σg+. 1Δg state is
more stable, and in the rest of the study, the singlet state refers
to this state of oxygen molecule. 1Δg can be further promoted
to 1Σg+, but immediate relaxation takes place [6]. Sunlight can
promote these higher energy states; however, more controlled
light sources (lasers and lamps) have been used in clinical
treatment [10].-e light source in the clinic application has to
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Figure 2: Molecular orbital diagram of two singlet excited states and a triplet state of oxygen. -ere are three different states of oxygen
molecules, i.e., 3Σg−, 1Δg, and 1Σg+. -ese states differ in the placement of two electrons in two antibonding orbitals (AOs). In the case of the
triplet state (3Σg−), the two electrons occupy two AOs singly and have the same spin, whereas in the first singlet state (1Δg) the two electrons
fill one AO (1Σg+) without filling another, which puts the second state in the higher energy state.-e first singlet state does not followHund’s
rule. -e second singlet state, in which the two electrons occupy two AOs singly but do not have the same spin, also does not follow Hund’s
rule. -e ground state oxygen molecule has one unpaired electron in each antibonding orbital and has like spins. When the ground state
triplet oxygen (3Σg−) (b) is excited by the transfer of energy, denoted by E, it changes to singlet oxygen (1Δg) (a), the first excited state. 1Δg has
paired electrons in only one antibonding orbital with opposite spin and is unstable and reactive. Even more unstable singlet oxygen (1Σg+)
(c), the second excited state, is formed by absorbing more energy where two electrons with opposite spin are aligned in two different
antibonding orbitals. Usually, 1Δg is more stable in comparison with 1Σg+, so the unstable form converts into a more stable 1Δg.

Journal of Oncology 3



have two properties: suitable spectral range and su�cient
tissue penetration without scatter or loss [10]. An appropriate
spectral range of the source radiation means that the sensi-
tizer has to have the same absorption range [11], which is
usually in the visible spectrum. If a red light is used, tissue
penetration is low, so interstitial delivery of light has to be
used to reach tumors that are deep lying. Generally, longer
wavelength near-infrared (NIR) lights can have lower tissue
scatter and can be used to penetrate deep-lying tumors [12].
Two-photon excitation is necessary for this kind of light [13].
Other than NIR light, X-rays can be used to penetrate deep
tumors [14].

1.3. Properties and Measurement of Singlet Oxygen. What
kind of e�ect the singlet oxygen will have will depend on the
lifetime of the singlet oxygen and the distance it can travel
within its lifetime. �e di�usion coe�cient of the medium
will have an impact on these parameters of singlet oxygen
[6]. Using earlier methods of calculations using indirect
photo-bleaching experiments and extrapolating data from

model solutions, lifetime of singlet oxygen was obtained as a
minimum of 10–300 ns [15]. Later, accurate measurements
gave the lifetime of singlet oxygen in the range of 15–30 μs
[16]. �e di�usion radius of singlet oxygen can be estimated
to be around 155 nm in neat water, whereas the value can be
estimated to be around 550 nm in deuterated water [6].
Given that the typical eukaryotic cell diameter is about
10–30 μm, singlet oxygen can be considered to be localized
to organelles when considering its activity inside a
eukaryotic cell. �us, singlet oxygen is considered a selective
and not a reactive intermediate [6].

Another important consideration is the measurement of
singlet oxygen in the cell, which is an essential factor in
understanding the e�ect of singlet oxygen in cells. For the
measurement, the e�ect of the lifetime on the change in the
solvent from water to deuterated water is used. �e lifetime
of singlet oxygen is known to be substantially longer in
deuterated water (about 67 μs), which is much longer than its
lifetime in water, which is about 3.5 μs [6]. �e O-H vi-
brational mode is important in determining the lifetime of
singlet oxygen, which leads to this di�erence in lifetimes.
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Figure 3: Jablonski diagram of photosensitizer excitation and production of singlet oxygen, and major nodes of improvement in pho-
todynamic therapy. When the light excites the electron of a ground state photosensitizer, it gets promoted to an excited singlet state. �e
excited photosensitizer (PS) returns back to the ground state via two processes. It can directly lose energy through ¨uorescence (hvf) or get
converted into a triplet state through the intersystem crossing. �e triplet-state PS settles down to the ground state by transferring energy to
oxygen molecules or transferring electrons or protons to substrates or via phosphorescence (hvp). Additionally, by absorbing more energy,
singlet oxygen (1Δg) (¤rst excited state) can convert to singlet oxygen (1Σg+) (second excited state). (a) Localized light focusing can be
achieved using two-photo light, which is often in a longer wavelength range. It is not absorbed by the surrounding medium; only a
photosensitizer that can sequentially absorb two photons of light will be excited. (b) Sensitizer location is very important in terms of
e�ectiveness and the pathway it takes to cause cell death. For example, sensitizer activity in the mitochondria causes cell death through the
intrinsic pathway, while sensitizer activity in the plasma membrane causes cell death due to cell rupture and extrinsic pathway. (c)
Quenching agent (Q) can be fused with the sensitizer(s) to control the location of its excitation. Q can only be detached from the sensitizer
under a certain cellular environment, which reduces the likelihood of sensitizer excitation in an unwanted location. (d) During the process of
photodynamic therapy, singlet oxygen is not only produced in cancer cells but also produced in normal cells. �e utilization of singlet
oxygen scavengers in the surrounding cells can reduce the oxidative stress on normal cells.
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Replacement of water with deuterated water does not seem
to have a detrimental effect on cells over a period of several
hours.-is time span is sufficient to observe several effects of
singlet oxygen on cells. Another way to observe singlet
oxygen in cells is directed by the spectral profile of single
phosphorescence. Singlet oxygen has unique phosphores-
cence at about 7850 cm−1 (about 1275 nm) [17]. Although
this signal is solvent-dependent, it can still be observed
under different conditions. -e only drawback of this signal
is that it is weak and often needs to be measured under
deuterated water. Often another luminescent probe mole-
cule is used to detect and amplify this signal. However, this
option is not without problems. -e last option to detect
singlet oxygen is by adding molecules of known specificity to
quench the singlet oxygen [6].-is approach is a variation of
the first method of using relative concentrations of H2O and
D2O. In this approach, care must be taken not to introduce
unwanted effects due to the addition of the quencher.

1.4. Photodynamic +erapy. Since the early civilization of
Egyptians and Indians, it has been known that light can be
used to treat certain diseases such as psoriasis, vitiligo, and
skin cancers [18]. Early forms of therapy used sunlight or
other forms of light to treat the diseased tissues directly. With
the discovery of laser light, it could be used to directly treat the
tissue of concern [19]. However, this type of treatment has
important drawbacks. Other tissues that contain some
amount of chromophore are affected, and very high-intensity
laser light is required to achieve efficacy. -ese can lead to
safety and logistic issues. Hence, a need for a more direct light
therapy was felt. Photodynamic therapy (PDT) achieves such
a high level of precision through the use of photosensitizer
that localizes to the site of the tumor and the use of light
directly at the oncogenic site. In the clinic, photosynthesizing
agents can be topically applied, injected intravenously or
intraperitoneally, or can be consumed orally. Oral con-
sumption is easier but raises questions about bioavailability
differences due to pharmacokinetic and pharmacodynamic
variables [20]. After a certain amount of time, the light of a
fixed wavelength is shown on the tumorigenic area, where,
hopefully, the photosensitizer has reached so that light-in-
duced type I and type II reactions can be initiated. In PDT,
reactive oxygen species are generated by a type I or type II
reactions that lead to tissue destruction [10].

Photodynamic therapy can be divided into two types
based on the ROS generation mechanisms, i.e., type I PDT
and type II PDT [21]. In the case of type I PDT, when the
photosensitizer (PS) is under irradiation, the ground state
type I PS absorbs the energy and converts it to the singlet
state. -e singlet PSs go back to their ground state via
fluorescence emission or nonradioactive decay. On the other
hand, they can get de-excited into the long-living triplet state
through intersystem crossing (ISC). -us, formed triplet-
state PS can transfer electrons or the proton to substrates,
i.e., electron-rich molecules or cell membranes [22]. -e
radicals thus generated are short-lived and highly reactive.
-ey interact with water and oxygen molecules to produce
hydrogen peroxide, superoxide anion, and hydroxyl radical

[21], which cause specific damage to biomolecules and
initiate a chain of radical reactions [23]. However, in type II
PDT, the energy is transferred from the triplet PS to triplet
oxygen (3O2), which produces cytotoxic singlet oxygen that
specifically interacts with components of cells such as cell
membrane, nucleus, mitochondria, endoplasmic reticulum,
and lysosomes and causes cell death. Depending on the
concentration and type of PS used in the reaction, both
processes can co-occur [22]. Type I reaction often leads to
more severe damage. In type I PDT, PSs are consumed and
need to be regenerated [23].

While conventional type II PDT has immense anticancer
potential, hypoxia severely hinders its efficiency. -ere has
been considerable development in the new PDT paradigms,
which could help us cope with the problem, such as frac-
tional PDT, type I PDT, remote-controlled release of 1O2,
and multimodal therapy [24]. In the context of type I PDT,
the exact role of oxygen in the effectiveness is still up for
debate; however, multiple studies have shown that type I
PDTperforms better in comparison with type II PDTunder
low O2 concentration [25–28]. Additionally, Kolemen et al.
have developed a remote-controlled release of 1O2, which
overcomes the limitations of traditional PDT [29].

1.5. Effectiveness of PDT in Different Cancers. -e approved
application of PDT in the clinic so far is limited to pre-
cancerous keratosis skin lesions and some other non-
melanoma cancers [30]. Similarly, trials are ongoing to get
the approval of PDT against esophageal, lung, and prostate
cancers. Other indications against which PDT is being tried
are breast, head and neck, bile duct, bladder, pancreas,
cervix, brain, and some other cancers [10]. -e first approval
of PDT against cancer was using the photosensitizer “he-
matoporphyrin derivative” (HpD) against several cancers
[31]. -e active ingredient of HpD is porfimer sodium,
which is often used in non-cutaneous solid tumors [31]. So
far, it has been approved against bladder, esophageal, and
non-small cell lung cancer (NSCLC) [32]. Porfimer sodium
is mostly a harmless compound to tissues and is soluble in
water. However, it causes sensitization of the skin against
light [33] and can only be activated by specific wavelengths
of light and needs further improvement [10]. Generally,
PDT, although approved against solid cancer, is not widely
used in practice and the revenue generated from PDT is
fairly low in a clinic. In the next few paragraphs, the use of
PDTagainst esophageal, lung, head and neck, skin, and some
other cancer indications is described.

Cutaneous precancerous lesions or nonmelanoma skin
cancers are the biggest indications for PDT. Actinic kera-
tosis, Bowen disease, and basal cell carcinoma are treated
with topical PDT in a noninvasive manner. PDT treatment
has as good outcome as surgery in these cases in terms of
recurrence of cancer. In addition, PDT does not cause
scarring and has superior cosmetic outcomes [34]. Topical
photosensitizer 5-aminolevulinic acid (ALA) and its de-
rivatives are applied. -rough the body’s heme synthesis
pathway, these compounds are converted to protoporphyrin
IX (PPIX), which localizes to cancer sites because cancer

Journal of Oncology 5



tissues are better at taking up PPIX than normal tissues [35].
Typically, ALA is topically applied in regions of cancer, and
blue light of 417 nm is shown for 17 minutes after 14–18
hours of photosensitizer application. -rough various
clinical trials, surrogate sensitizers and light range have been
approved [10].

Another cancer often targeted by PDT is esophageal
cancer [36]. PDT and local treatments are favorable in
esophageal cancer because surgery often leads to postop-
erative complications [37]. In a number of clinical trials
using porfimer sodium, high remission rates and 5-year
survivals were observed for cancer of the esophagus [38].
Esophageal strictures and photosensitivity reactions were
common adverse events associated with the treatments.
Although PDT has been somewhat effective, other methods
of treatment such as endoscopic submucosal dissection,
radiofrequency ablation, and cryotherapy have been more
effective at treating esophageal cancer. Hence, treatments
using PDT have somewhat lost favor in the last few years
[39].

Certain non-small cell lung cancers (NSCLCs) that are
immune to all other treatments are treated with PDT [10].
Porfimer sodium PDT has been approved for microinvasive
endobronchial NSCLC and entirely or partially obstructive
endobronchial NSCLC [10]. External beam radiotherapy has
been combined with PDT to clear obstruction in certain
cases of NSCLC [40]. Additionally, bronchoscopy is used to
target light to the exact tumor locations [10]. Several studies
done using several different types of photosensitizer have
shown remission of cancer; however, often there is re-
emergence of cancer [10].

Similarly, head and neck squamous cell carcinoma
(HNSCC) is another indication where PDT is widely tested
[41]. Since this technique is often able to preserve sur-
rounding nonneoplastic tissues, it has been favored for use
in HNSCC. PDT is used to treat HNSCC early for curative
reasons or in a later stage for palliative reasons [10]. Since
HNSCC is very differently localized in different situations, a
variety of illumination strategies, including surface and
interstitial illumination with guided imaging, are possible
[42]. Although different sensitizers have been tried at dif-
ferent stages of cancer, it is unlikely that PDT will replace
surgery as a curative technique in the absence of further
randomized control trials. ALA, porfimer sodium, and
several other sensitizers have been tested in other cancer
indications, including gliomas, bladder cancer, and prostate
cancer with some promising results [10]. With the advent of
more precise agents, research in and outside the clinic will
continue for all these cancers.

1.6. Possible Areas of Improvement in Photodynamic+erapy.
As we have discussed earlier, PDT has found application in a
diverse range of solid tumors. Photosensitizers have been
gradually improved over the years. PDT will get more ef-
fective when the production of singlet oxygen in space and
time can be improved, which is possible at four key nodes:
improvement in sensitizer excitation, improvement in
sensitizer localization, improvement in sensitizer quenching,

and improvement in scavenging singlet oxygen [6]
(Figure 3).

Spatial and temporal control of PDT is possible through
manipulation of sensitizer excitation. Diffraction of light
places a limit on the resolution of light illumination. -ere
are many techniques that focus the light higher than that
allowed by the diffraction limit. One such method used to
generate singlet oxygen is evanescent wave irradiation,
achieved in a total internal reflection experiment. To achieve
localized light focusing, the use of two-photon light is rel-
evant. Often two photons are in a longer wavelength range,
so the surrounding medium does not absorb the light. Only
photosensitizers that can sequentially absorb two photons of
light will be excited [6].

Most PDT agents absorb light in the visible range (400
to 700 nm wavelength) or near-infrared range (700 to
1350 nm wavelength). Diode lasers (630 to 1100 nm), dye
lasers (390 to 1000 nm), alexandrite lasers (720 to 800 nm),
and neodymium-doped yttrium aluminium garnet (Nd:
YAG) lasers (1064 nm) are all available to excite sensitizers
[43]. Optical parametric amplification or oscillation can
generate NIR light source. A green tunable laser can be
used to generate light of a longer wavelength. Target tissue
can be irradiated using frontal diffuser fiber for radiation
at the surface, multiple cylindrical diffuser fibers at the
interstitial space, and balloon catheters for esophageal
space [44–46].

-ere has been a lot of research to improve sensitizer
quality and location. Photosensitizers can be classified into
three generations based on their timeline of discovery [47].
-e first generation of photosensitizer includes porfimer
sodium (also called Photofrin) and hematoporphyrin.
Naturally occurring porphyrins and their derivatives make
up the first generation. -ere are several disadvantages of
the first-generation photosensitizers, such as dark toxicity,
low absorption in the red light, cutaneous phototoxicity,
and issues related to hydrophobicity. -ese photosensi-
tizers were further improved to give second-generation
photosensitizers such as 5-aminolevulinic acid, chlorin,
phthalocyanine, and benzoporphyrin derivative (verte-
porfin). -ese photosensitizers demonstrate lower photo-
toxicity, are cleared from the normal tissues faster, are
activated by a shorter wavelength of light above 650 nm,
and have a higher single oxygen quantum yield and sol-
ubility in water [47].

To achieve better targeting and lower toxicity, third
generation of photosensitizers is being developed. Available
drugs are modified to create such compounds. -ird-gen-
eration sensitizers are antibody conjugated and encapsulated
into carriers to target specific areas. Potential insoluble
photosensitizers are being transported in carbon and
magnetic gold-based nanoparticles, liposomes, micelle,
quantum dot, dendrimer, and polymer [47]. -e hope is that
next-generation photosensitizers are better than older-
generation photosensitizers (Figure 4).

Photosensitizer targeting strategies can be passive and
active [10]. -e size and surface chemistry of nano-
particles carrying photosensitizers can be tuned so that
they selectively accumulate in the tumor through
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enhanced permeability and retention (EPR) e�ects [48].
Tumors generally grow faster and consume local nutrients
at a higher rate so that they end up taking more of our
target molecules. �ey are also supposed to contain leaky
pores in blood vessels that enhance the uptake of pho-
tosensitizer particles. Additionally, due to the imperfect
lymphatic drainage system in tumors, less of the photo-
sensitizers are lost [10]. Passive targeting involves the
selection of nanoparticles based on shape, electric charge,

hydrophilicity, and circulation time in the blood [49].
However, the relevance of EPR in actual human tumors
versus the fast-growing tumor models in mice is ques-
tionable. Active targeting uses high-a�nity ligands that
speci¤cally target cancer cells or tumor epithelial cells.
Several ligands have been explored for their roles in
targeting photosensitizers. �ese include peptides such as
epidermal growth factor and arginine-glycine-aspartate
peptide, proteins such as transferrin and antibodies,
aptamers, vitamins, and carbohydrates [10, 50–52]. �e
role of monoclonal antibodies in targeting has also been
explored in the clinic [53].

Quenching agent (Q) can be added along with sensitizer
(S) to increase the speci¤city of singlet oxygen action in
cancer cells. Normally, the electrons in the sensitizer relax,
leading to the excitation of oxygen electrons to give a triplet
oxygen state. Q can be fused to S in a changeable switch
manner. In the blood or other tissues, excited electrons from
S transfer onto Q due to absorption of light, and there is no
creation of singlet oxygen species. Nevertheless, when Q is
detached from S in cancer cells due to an acidic and/or
hypoxic tumor microenvironment or action of proteases
expressed by tumor cells, the promotion of electrons in S can
lead to the formation of singlet oxygen, which can selectively
kill cancer cells [6, 10] (Figure 5).

Similarly, there are selective quenchers of singlet oxygen
that can be localized to regions other than tumors to de-
crease the side e�ects of singlet oxygen. In the same vein,
after the activity of singlet oxygen is over, it can be quenched
so that the activity does not spread over long distances.
Among quenchers of singlet oxygen, water, sodium azide,
and imidazole are the most prominent ones [6].

2. Mechanisms of Cell Death Caused by
Singlet Oxygen

2.1. Catalase and Singlet Oxygen. Catalase is one of the most
important antioxidant enzymes found in almost all aerobic
organisms. It is a peroxisomal enzyme containing heme [54]
and plays a key role in controlling the concentration of
H2O2, which is produced particularly via the electron
transport chain, and/or as a by-product of cellular meta-
bolism, including protein folding [55–57]. Catalase is as-
sociated with the initiation of in¨ammation and aging,
initiation of mutagenesis [58], apoptosis inhibition [59–62],
and stimulation of a broad spectrum of tumors [63].

In comparison with normal cells, it has been reported
that catalase expression in cancer tissues is altered. Some
authors have observed an increase in catalase expression in
tumors [64–66]. On the other hand, other studies have
shown a decline in catalase expression in cancer cells
[67–72]. In this context, a large body of evidence indicates
that cancer cells are more sensitive to oxidative stress [73].
Most resistant cell lines (mesothelioma cell lines, HepG2
cells, WEHI 7.2 cells, etc.) showing high catalase expression
are resistant to oxidative stress [74–76]. It has been found
that inhibiting catalase activity using 3-aminotriazole (3-AT,
speci¤c inhibition of catalase) or catalase siRNA remarkably

(a) (b)

First Generation PSs
H3C

H3C

H3C

HO
HOO

O

CH3

CH3

CH3

OH

OH

NH

NH HN

N

N

NH

N

N

(c) (d)

(e)

Second Generation PSs

NH HN

N
O

OH

O

HNNH

N

N
O

N

H3C

H3C

CH2

CH3

CH3

OH3C

H3CH2N

O

OH O

O

O

O
H3C

Third Generation PSs

(f)

(g)

NHO
O

O

N+

FF

N
B–

O

O

O

CH3

CH3OO

H3C

H3C

~77
SH

N

Figure 4: Examples of ¤rst-, second-, and third-generation pho-
tosensitizers with structure. (a) Porphyrin, (b) hematoporphyrin,
(c) 5′-aminolevulinic acid, (d) chlorin, (e) vertepor¤n, (f ) an-
thracene-9,10-endoperoxide derivative, and (g) 2-pydidone con-
jugated BODIPY.

Journal of Oncology 7



reduces the resistance of HepG2 and BT-20 cell lines to ROS
[76, 77].

Chronic exposure to high H2O2 concentration or
prooxidants has resulted in the generation of oxidative
stress-resistant cells expressing high levels of catalase, as in
Redox cell, leukemia, and fibroblast cell lines [78–80]. Ex-
posure to high oxidative stress may have triggered the cell to
increase catalase expression, which could be caused due to
heritable changes in catalase gene dosage, transcription,
translation, or a mutation in the coding region itself [81].
-is phenomenon can also be observed in treatments
related to anticancer drugs; increased levels of catalase
were reported in oral cancer cells, bladder cancer cells,
pancreatic cancer cells, and gastric cancer cells [82–85].
Furthermore, patients in a postoperative or/and postop-
erative chemotherapy stage showed a significant increase
in catalase activity [86].

When exposed to singlet oxygen, catalase was susceptible
to oxidative modification and damage, as indicated by the

loss of activity [87–90]. Catalase plays a crucial role in re-
moving the H2O2, so when the catalase within the cancer
cells is deactivated or expressed in lower numbers, the cancer
cells are significantly more sensitive to oxidative stress [91].
-us, singlet oxygen can eliminate cancer cells by altering
the activity of catalase enzyme.

2.2. Hypochlorous Acid (HOCl) Signaling. Hypochlorous
acid (HOCl) functions as a potent antimicrobial agent and is
a well-known physiological oxidant. It is enzymatically
generated by the interaction of peroxidase (POD), H2O2,
and chloride anions [92–94]. Besides having antimicrobial
properties, it also has a vital role as a signaling molecule for
oncogenesis control [95]. HOCl triggers immunogenic
modulation (IM) through modification of antigens, which
leads to immune response [96]. HOCl has been seen to
increase HOCl-dependent tumor necrosis factor in pe-
ripheral blood mononuclear cells, which suggests that it
contributes to activating signaling pathways in cells of the
immune system leading to an inflammatory response [97].

A systematic review done by Han et al. indicates that an
increase in NADPH oxidase (NOX) activity and expression is
associated with tumorigenesis [98]. -e production of su-
peroxides correlates with the increase and decrease in NADH
or NADPH, which is catalyzed by NADPH oxidase [99, 100].

H2O2 plays a vital role in tumor progression; however, it
also seems essential in the antitumor mechanism [96]. It is
formed by the dismutation of superoxide ions catalyzed by
sodium oxide dismutase (SOD) [101]. -e proliferation and
maintenance of malignant phenotypes are driven by su-
peroxide anions and H2O2 [95].

Myeloperoxidase (MPO) is a peroxidase enzyme abun-
dantly expressed in neutrophils. It represents the “classical
peroxidase (POD),” and it catalyzes the reaction between
chloride and H2O2, generating HOCl [96, 102]. -e chloride
and H2O2 reaction catalyzed by MPO is a two-step reaction.
Firstly, an H2O2 generated by the dismutation of superoxide,
generated by NOX, reacts with a ferric MPO to form a
compound I (MPO-I) and a water molecule. In a second step,
MPO-I releases the oxygen in the presence of chloride and
hydrogen ions to produce MPO and HOCl molecules.

MPO + H2O2⟶ MPO − I + H2O,

MPO − I + Cl− + H+⟶ MPO + HOCl.
(1)

HOCl triggers an immunogenic response and is linked to
the attack of neutrophils on tumor cells [103–105]. However,
at the later stage, cancer cells are resistant to HOCl-con-
trolled death of cancer cells.-e reason behind the control of
HOCl signaling at later stages of tumor progression can be
attributed to themembrane-associated catalase on the tumor
cells [96]. Catalase intercepts the HOCl signaling pathway by
eliminating the H2O2 [95]. H2O2 elimination constrains the
interaction between the POD, H2O2, and halide system, thus
reducing the HOCl production. Reduced HOCl is not able to
induce immunogenic modulation. By reducing catalase
expression level or inactivation of catalase, inhibition of
HOCl signaling can be minimized.

ROS
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Activation of 
photosensitizer

Activation by
aciditiy and hypoxia 

Cancer-targeted
ligand

Sensitizer
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Activated 
photosenitizer

Excited 
photosenitizer

Light

Figure 5: Process of ROS generation in a cancer cell due to
photodynamic treatment. Photosensitizer (PS) specially designed
for a particular cancer cell receptor will bind with it through the
cancer target ligand. After recognizing the photosensitizer, the
cancer cell takes it up through receptor-mediated endocytosis. -e
cellular environment inside the cancer cell is different from the
extracellular space. -e protease enzyme in the cell activates the
engulfed PS by cleaving the quencher, and when the light is focused
on the activated PS, it gets excited and converts the oxygen to ROS.
ROS, such as singlet oxygen, causes cell death through several
mechanisms. Sometimes, the sensitizer may be activated in the
extracellular space due to acidity and hypoxia.
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In photodynamic therapy, singlet oxygen is generated
by light-induced excitation of photosensitizers [106].
Besides, singlet oxygen is also produced through bio-
logical reactions, such as the reaction between hydro-
peroxide and hypochlorite during phagocytosis [107].
Allen et al. in 1972 observed the production of singlet
oxygen by phagocytes when stimulated with bacteria and
exposed to radioactive decay of singlet oxygen [108]. -e
role of MPO/H2O2/Cl− in the biological generation of
singlet oxygen was confirmed by Khan in 2012 [109]. -e
relation between the singlet oxygen and HOCl is based on
a positive feedback loop. By intervening with catalase, the
singlet oxygen from an external source or a biological
source helps auto-amplify singlet oxygen through HOCl
[110] (Figure 6).

H2O2 + HOCl⟶ 1O2 + Cl− + H2O. (2)

2.3. Apoptotic Pathways Induced by Singlet Oxygen. -e
mechanism of apoptosis is highly complex, involving a
multitude of signalingmolecules working in tandem to cause
a molecular event. Our understanding of the process is still
rudimentary, and research to date suggests that there are two
major apoptotic pathways: the extrinsic or death receptor
pathway and the intrinsic or mitochondrial pathway.

2.4. Extrinsic Pathway. Singlet oxygen is generated by two
methods: photoactivation of photosensitizer and interaction
between cell-derived H2O2 and peroxynitrite [111]. It
stimulates the ligand-independent oligomerization of the
Fas receptor, which binds with the adapter protein FADD
[112]. Procaspase-8 binds with the FADD via the death
effector domain, and this protein complex is called a death-
inducing signaling complex (DISC), which autocatalyzes to
activate procaspase-8 to caspase-8 [113]. Autoproteolysis of
caspase-8 is essential for FAS-induced apoptosis. Mice with
caspase-8 or a mutant of caspase-8 that cannot self-cleave
were not able to go through Fas-induced apoptosis [114].
Active caspase-8 can also activate other caspase proteins,
such as caspase-3 and caspase-7. Additionally, active cas-
pase-8 causes the degradation of certain cellular proteins
[115]. Caspase-3 catalyzes the cleavage of many vital cellular
proteins and is the most frequently activated death protease
[116]. It is activated during apoptosis [117, 118] and is re-
sponsible for the release of caspase-activated deoxyribo-
nuclease (CAD) from inhibitor of caspase-activated DNase
(ICAD) [119].

Caspase-activated DNase (CAD) or DNA fragmentation
factor subunit beta is a protein that breaks down the DNA
during apoptosis. Activation of CAD induces inter-nucle-
osomal DNA degradation during apoptosis [119, 120]
(Figure 7(a)).

2.5. Intrinsic Pathway. -e intrinsic pathway involves a
diverse range of non-receptor-mediated stimuli that evoke
intercellular signaling, initiating mitochondrial events to

induce apoptosis. -e link between the singlet oxygen and
mitochondrial associate apoptosis is not fully understood.
Singlet oxygen can activate mitochondrial permeability
transition (MPT) or inactivate it depending on the site [121].
In 1999, it was found that PDT targeted Bcl-2 protein
[122, 123].

Bcl-2 family proteins control the permeability of the
mitochondria membrane. Bax is a proapoptotic Bcl-2 family
protein, and it increases the permeability of the mito-
chondria membrane, whereas Bcl-2 inhibits it [124]. Due to
their opposing roles, the concentration of proteins deter-
mines the fate of the cell. When the cancer cell is exposed to
the PDT, it triggers the destruction of Bcl-2 proteins, due to
which it cannot interfere with Bax. Bax increases the per-
meability of the mitochondrial outer membrane, thus re-
leasing ALF, endonuclease G, CAD, cytochrome c, and
second mitochondria-derived activator of caspase (SMAC)
into the cytoplasm [125].-ese proteins activate the caspase-
dependent and caspase-independent mitochondrial path-
ways. -e released cytochrome C binds with apoptotic
protease-activating factor 1 (APAF1), leading to the for-
mation of apoptosome [126, 127]. It binds and activates
procaspase-9 to caspase-9 [126, 128]. Caspase-9 activates the
caspase-3 and caspase-7, leading to apoptosis [129]
(Figure 7(b)).

SMAC works differently. It inhibits inhibitors of apo-
ptosis proteins (IAPs) [130, 131]. Likewise, AIF gets
translocated to the nucleus, where it causes DNA frag-
mentation and nuclear chromatin condensation [132].

2.6. Subcellular SingletOxygenandCellDeath. At the cellular
level, singlet oxygen can induce cell death via multiple
subroutines that can be accidental or not. Localization of
singlet oxygen generation will help determine the means of
induced cell death. So, precise understanding of the effect of
subcellular response due to singlet oxygen can be crucial for
designing methods to efficiently eradicate tumor cells using
photodynamic therapy. Precise localization of photosensi-
tizers has been reported in select subcellular locations such
as endoplasmic reticulum (ER), mitochondria, Golgi com-
plex, lysosomes, and the plasma membrane [133, 134]
(Figure 8).

2.7. Lysosome. -e lysosome is an important cell organelle
needed to process degrading and recycling cellular waste, for
cellular signaling and for energy metabolism. Besides its role in
cellular homeostasis, it also plays a crucial role in inducing
lysosomal-dependent cell death (LDCD). Subcellular genera-
tion of singlet oxygen in lysosomes has been shown to cause the
rapid release of lysosomal enzymes that activates caspases,
leading to mitochondrial-mediated apoptosis [135–137].
-rough the expulsion of degradative enzymes, singlet oxygen
causes digestion of vital proteins and activation of caspase
cascade [138]. Cathepsins B and D are the main proteases
released after lysosomal membrane permeabilization (LMP),
which causes the proteolytic activation of Bid, leading to
caspase-dependent apoptosis [139, 140] (Figure 10(a)).
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A Bcl-2 protein family is a group of proteins that shares
BH (Bcl-2 homology) domains. �ey have been associated
with apoptosis regulation, and these proteins can be divided
into antiapoptotic and proapoptotic proteins. Some proteins
only have the BH3 domain such as Bim, Bid, and Puma
[124, 141]. Proapoptotic proteins, such as Bax and Bak, after
activation, induce mitochondrial outer membrane perme-
ability (MOMP), while antiapoptotic proteins such as Bcl-2
and Bcl-xl block the process. �e activated Bid proteins
interact with Bcl-2 to neutralize its e�ect so that the process
of apoptosis continues [138]. MOMP is one of the important
steps towards mitochondria-mediated apoptosis, and it is
explained in the section on the intrinsic pathway.

2.8. EndoplasmicReticulum(ER). �e endoplasmic reticulum
(ER) is an essential cell organelle that synthesizes, folds,
modi¤es, and transports proteins. Additionally, it also induces
ER-related cell death when faced with irreversible ER stress.
�e full understanding of the involvement of singlet oxygen is
still unknown; however, hypericin-based PDT has been shown
to engender ROS-based ER stress or photooxidative (phox)-ER
stress [142]. ER stress causes disturbance in ER proteostasis,
which stimulates the unfolded protein response (UPR).

UPR is an important cellular response to ER stress.
During ER stress, the folding capacity of ER is compromised,
causing accumulation of unfolded protein, which is miti-
gated by UPR by refolding them. However, UPR can also be
unsuccessful. When incorrect folding exceeds the threshold,
cells commit to cell death [143]. Unfolding proteins in the
ER initiate a stress signaling pathway via a stress sensor such
as IRE1a. IRE1a recruits TRAF2 followed by procaspase-12,
which forms IRE1a/TRAF2/caspase-12 complexes. �is
complex is able to activate caspase-12 [144]. Overexpression
of IRE1a has been found to induce apoptosis related to
caspase-12 [145], which activates caspases 9 and 3, which
¤nally leads to caspase-dependent apoptosis. Besides, the
recruitment of TRAF2 by IRE1a followed by ASK-1 activates
the JNK signaling pathway, which also increases the caspase-
12 activation [146] (Figure 10(b)).

Another central molecule associated with ER stress-in-
duced apoptosis is C/EBP homologous protein (CHOP) and
was the ¤rst molecule to be observed during ER stress [147].
ER stress induces increases in the transcription of CHOP. It
was found that the overexpression of CHOP induces apo-
ptosis [148], while CHOP-de¤cient cells were resistant to ER
stress-induced apoptosis [149]. CHOP regulates the ex-
pression of Bcl-2 proteins when it binds with cAMP-
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responsive element-binding protein (CREB) [150]. -is
regulation of Bcl-2 helps increase the susceptibility of mi-
tochondria towards proapoptotic BH3-only proteins such as
Bax/Bak [151]. Sensitivity towards Bax/Bak also affects ER itself.
Studies indicate that it alters calcium ion homeostasis [152, 153]
and triggers calcium ion release during ER stress, which trickles
down to activation of calpain and finally caspase-12 [151].

2.9. Plasma Membrane. -e plasma membrane plays a
crucial role in regulating the flow of the material in and out
of the cell and acts as a gatekeeper. Its involvement in the two
necrotic forms of regulated cell death (RCD) [154] can help
us explain the molecular mechanism behind cell death
caused by the photodynamic activation of subcellular lo-
calized photosensitizer in the plasma membrane.

-e membrane-localized activation of photosensitizer
has been shown to cause membrane disruption and suc-
cessive necrosis-like cell death [155–158]. Morphological
features associated with necrotic cell death are swelling of

cell membranes, chromatin condensation, and subsequent
rupture of a nucleus, organelles, and plasma membrane
[159]. In a study done by Nakajima et al., minute plasma
membrane perforations were observed, which were large
enough for the entry and exit of ions but not for dextrans
that were caused by photodamage. However, subsequently,
longer photodamage to the plasma membrane after bleb
formation leads to the entry of ethidium homodimer-
1(EthD-1) (∼2.6 nm) and staining of the nucleus [157].
EthD-1 cannot penetrate the intact plasma membrane due
to its size and charge. However, a damaged plasma
membrane cannot hinder its entry, leading to staining of
the nucleus.

Even though cells are equipped with the plasma mem-
brane repair mechanism, the long duration of photodamage
causes irreversible disruption to the membrane and com-
promises the permeability of the cell membrane. Due to the
lack of a barrier to entry, an increased inflow of calcium ions
can activate cysteine proteases, which are responsible for the
proteolysis of cytoskeletal protein. Besides, the ion inflow
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Figure 9: Cell swelling and p38 MAPK signaling. (a) Photosensitizer activity in the plasma membrane increases the permeability of the
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mitochondrial outer membrane, which leads to activation of caspase-9 and apoptosis via the intrinsic pathway.
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also disturbs the ionic imbalance leading to a surge of water
inside the cell, causing swelling and, ¤nally, cell rupture
[160–163] (Figure 9(a)).

2.10. P38 MAPK Mediates Cell Death and Singlet Oxygen.
Mitogen-activated protein kinases (MAPKs) are signaling
components needed to communicate stimuli for a wide range
of cellular responses. �ere are three subfamilies of MAPKs:
extracellular signal-regulated kinases (ERKs), c-JunN-terminal
kinases (JNKs), and p38 mitogen-activated protein kinases.
Among these, JNKs and p38MAPKs are called stress-activated
protein kinases, which are associated with stress-activated
protein kinase pathways and activated by various stimuli such
as UV irradiation, osmotic shock, and oxidants [164–166].

JNK and p38 kinase are both responsive to reactive
oxygen species, but selective activation of p38 kinase has
been reported in some cell systems [165, 167, 168]. For
example, when HL-60 cells were treated with singlet ox-
ygen, H2O2 causes rapid phosphorylation of p38; however,

JNKs were not phosphorylated. P38 is necessary for apo-
ptosis induced by singlet oxygen, whereas JNK is not.
Similarly, p38 inhibition caused a partial reduction in the
formation of DNA fragments induced by singlet oxygen
[169].

Caspase-3 is a key protease behind the apoptosis induced by
the singlet oxygen [170, 171] and the blockade of caspase-3
completely stopped the apoptosis, while it did not interfere with
the p38 phosphorylation [169]. From this, we can conclude that
caspase-3 acts downstream of the p38 kinase pathway.

Caspase-8 is one of the upstream components needed
for the activation of the caspase cascade leading to the
activation of caspase-3 during the singlet oxygen-induced
apoptosis [172]. �e linkage between the p38 and the
caspase-8 was not found as inhibition of the p38 did not
hinder the cleavage of caspase-8, while it reduced the
caspase-3 cleavage and DNA fragmentation [169]. �e
involvement of p38 MAPK in receptor-induced cell death
was poorly understood until the study conducted by Farley
et al. �ey found that the p38 activated caspase-3 through
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mitochondrial-associated apoptosis rather than by direct
activation [173].

Singlet oxygen has been found to stimulate the ligand-
independent oligomerization of the Fas receptor, which
binds with the adapter protein FADD [112]. -e activation
of p38 MAPK by the Fas receptor has been described in
several studies [174]. In the study done by Farley et al., p38
MAPK contributed to Fas-induced cell death through
phosphorylation of Bcl-2 and Bcl-xl and activation of
caspase-9 [173]. In prior studies, it has been found that
phosphorylation of Bcl-2 and Bcl-xl is associated with their
inactivation [175–177]. In comparison with wild type,
mutant MKK6 (Glu) CD8+ t cells showed strong phos-
phorylation of both Bcl-2 and Bcl-xl in the presence of p38
MAPK, thus preventing the mitochondrial accumulation of
Bcl-2 and Bcl-xl [173]. Besides, during the PDT treatment
of LoVo cells, the upregulation of Bax was also observed
[178]. -e downregulation of Bcl-2 and Bcl-xl and upre-
gulation of Bax have a direct impact on the permeability of
the mitochondrial membrane and the release of the cyto-
chrome c (Figure 9(b)). -e pathway followed by the cy-
tochrome c to activate the caspases-3 is explained in the
intrinsic pathway.

-e activation of caspase-9 is linked to p38 MAPKs
[173, 178]. -e direct activation of caspase-9 by p38 MAPKs is
not understood until now. Activation of caspase-9 is triggered
by the release of cytochrome c due to the increase in per-
meability of the mitochondrial. -e formation of Apaf/cyto-
chrome c/procaspase-9 apoptotic complex causes cleavage of
caspase-9 [179]. Caspase-9 is associated with the activation of
caspase-3 and caspase-7, which finally leads to apoptosis [129].

2.11. Caspase 8 and Bid. Caspase-8 is a significant compo-
nent in mitochondrial apoptosis [180, 181]. Activation of
caspase-8 starts with the ligand-independent oligomeriza-
tion of the Fas receptor, which binds with the adapter
protein FADD [112], which is activated by the ROS such as
singlet oxygen [111]. Procaspase-8 binds with the FADD to
form DISC, which autocatalyzes to activate procaspase-8 to
caspase-8 [113]. -is activation of caspase-8 could activate
caspase-3 directly or through the mitochondrial pathway by
cleaving Bid [182].

Cleavage of Bid results in the formation of truncated Bid
(tBid), which is capable of rapidly accumulating at mito-
chondria and causing MOMP [183, 184]. MOMP causes a
release of cytochrome c. -e release of cytochrome c causes
mitochondria-mediated apoptosis, which is explained in the
intrinsic pathway.

3. Concluding Remarks

PDT can be developed into an important arsenal against
cancer; however, poor understanding of the underlying
mechanism has hindered its optimal application. PDT has
come a long way since its initial development. -e gener-
ation of singlet oxygen and other reactive species can be
improved through the advancement of chemical engineering
of the new generation of sensitizers. Besides, advancement in

understanding the biological signaling and process during
the PDT is also quintessential for utilizing novel targets for
better response.

Subcellular localization of the sensitizer has shown
different responses depending on the location. -ese re-
sponses can be tied to the different signaling pathways
triggered by the elicitor. Complete understandings of these
signaling pathways are still lacking; however, deciphering
these uncharted biochemical reactions can help us find novel
targets for intercepting apoptosis and ways to neutralize
cancer.
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