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Increasing evidence shows that alterations in microRNA (miRNA) expression are involved in the occurrence and development of
various malignant tumors, including colon cancer. MiRNA-524-5p has been reported to have anticancer activity in colon cancer.
Tis study explored the infuence of the miRNA-524-5p/CXCR7 axis on angiogenesis using colon cancer cells and further studied
the mechanisms involved. We found that changing the expression of miRNA-524-5p can afect colonic proliferation, migration,
and angiogenesis. Furthermore, angiogenesis induced by miRNA-524-5p overexpression was reversed by overexpression of
CXCR7 in HT-29 cells, while the opposite was observed in Caco-2 cells. Furthermore, miRNA-524-5p inhibited the activation of
AKT and ERK signaling by targeting CXCR7. Overall, our results indicated that the miRNA-524-5p/CXCR7 axis regulated
angiogenesis in colon cancer cells through the AKT and ERK pathways.

1. Introduction

Colorectal cancers (CRCs) are the third most common
malignancy in the world [1, 2]. In the past 30 years, the global
incidence and mortality due to colon cancer have been high
[3]. Although trends in the incidence and mortality of co-
lorectal cancer vary between countries, the global burden of
this disease is projected to increase over the next decade [1].
Terefore, there is an urgent need to study new targeting
factors in colon cancer. Tere are several studies showing
that the inhibition of blood vessel formation can play an
important role in cancer progression [4, 5]. Many factors are
involved in angiogenesis, such as vascular endothelial
growth factor (VEGF). Most tumors are associated with the
overexpression of VEGF, especially the VEGF-A/VEGFR2

axis, which plays a key role in angiogenesis [6]. Terefore, it
is very important to better understand the mechanism of
angiogenesis-related factors in colon cancer.

MicroRNA (miRNA) are short RNA molecules of 19–25
nucleotides in size that can silence target genes after tran-
scription [7, 8]. A single miRNA can target hundreds of
mRNAs and afect the expression of many genes involved in
various interaction pathways [9–11]. In nonsmall cell lung
cancer (NSCLC), the knockdown of LINC00184 inhibits cell
proliferation, migration, and accelerates apoptosis, which
are closely related to the regulation of the miR-524-5p/
HMGB2 axis [12]. Zhao et al. [13] showed that miR-524 has
an inhibitory efect on glioma cells and targets C-myc, which
binds to its promoter region and activates the expression of
the epidermal growth factor receptor (EGFR). Te high
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expression of LncRNA TUG1 in oral squamous cell carci-
noma (OSCC) mediates the expression of distal homeobox 1
(DLX1) through competitive binding to miR-524-5p [14].
Terefore, dysregulation of miRNA-524-5p can be observed
in a wide range of diseases, including colon cancer [15].
However, its molecular mechanism for promoting angio-
genesis in colon cancer needs further study.

Growing clinical data on colon cancer suggests that
mRNA and protein levels of the CXC chemokine receptor 7
(CXCR7) were up-regulated in tumor tissues of colon cancer
patients with lymph node metastases compared to non-
metastatic tumors [16]. CXCR7 is attached to chemokine-
specifc seven transmembrane guanosine-bindingprotein-
coupled receptors [17]. Several studies suggested that, ex-
cept for embryonic neurons, fetal heart tissues, and certain
hematopoietic cells, CXCR7 is absent in most normal tissues
in humans but is highly expressed in the human endome-
trium and several types of malignancies, including colon
cancer [18–20]. Tis new chemokine receptor is defned as
a high-afnity receptor for the CXC chemokine ligand 12
(CXCL12) that can also bind CXCL11 [21]. Increasing
CXCR7 expression accelerated the growth and metastasis
capacity of various malignant tumors, which was accom-
panied by the regulation of angiogenesis and immunity [22].
Terefore, to study the molecular mechanism of miR-524-5p
that regulates CXCR7 expression in colon cancer, we re-
spectively regulated the expression of miR-524-5p and
CXCR7 in HT-29 and Caco-2 cells to evaluate the infuence
of the miR-524-5p/CXCR7 axis on colon cancer
angiogenesis.

2. Material and Methods

2.1.Cell Culture. HCoEpiC, SW480, HCT116, Caco-2, RKO,
HT-29 cell lines, and human umbilical vein endothelial cells
(HUVEC) were purchased from the Cell Bank of the Chinese
Academy of Sciences (Shanghai, China). Te cell lines
HCoEpiC, HCT116, RKO, HT-29, and HUVECs were
cultured in PRMI 1640 medium (HyClone, GE Healthcare,
UK) containing 10% fetal bovine serum (FBS, HyClone).Te
Caco-2 and SW480 cell lines were cultured in DMEM
medium containing 10% fetal bovine serum. All cells were
cultured at 37°C in a 5% CO2 atmosphere.

2.2. Transfection. HT-29 cell lines at 70% confuence, were
prepared for transfection with the pCMV6 entry CXCR7
plasmid (CXCR7OE, OriGene, WuXi, China). HT-29 cells
were grown in a transfection medium containing miRNA-
524-5p mimic (RiboBio, Guangzhou, China) and CXCR7OE
at 37°C for 48 h while Caco-2 cells were grown in a trans-
fection medium containing the miRNA-524-5p inhibitor
(RiboBio) and CXCR7 siRNA (RiboBio) at 37°C for 48 h.
CXCR7siRNA sequences were 5′-GGAAGAUCAUCUUCU
CCUATT-3′ (sense) and 5′-UAGGAGAAGAUGAUCUUC
CGG-3′ (antisense). Cells were transfected with Lipofect-
amine 3000 (Invitrogen, Grand Island, NY) according to the
manufacturer’s instructions. After transfection, HT-29 and
Caco-2 cells were harvested for the future experiments.

2.3. CCK-8 Assay. HT-29 and Caco-2 cells were seeded in
96-well plates at a density of 4×103 cells. Cell growth of
HT-29 cells, transfected with themiRNA-524-5pmimic, and
Caco-2 cells, transfected with the miRNA-524-5p inhibitor,
was tested using the CCK-8 kit (Dojindo, Kumamoto, Japan)
after 0, 24, 48, and 72 hours of incubation. Next, HT-29 cells
cotransfected with miRNA-524-5p mimic and CXCR7OE,
and Caco-2 cells, cotransfected with miRNA-524-5p in-
hibitor and CXCR7 siRNA, were cultured for 48 hours, and
then cell proliferation was measured using the CCK-8 kit. A
microplate reader was used to measure the optical density
(OD) at a wavelength of 450 nm.

2.4.Te5-Ethynyl-20-Deoxyuridine (EdU)Assay. HT-29 and
Caco-2 cells were seeded in a 24-well plate at a density of
2×105 cells per well and cultured in the normal growth
stage. Cells were transfected with the miRNA-524-5p mimic
and the miRNA-524-5p inhibitor for 48 hours, then 50 μM
EdUwas added, and cells were incubated at 37°C for 2 hours.
Subsequently, cells were stained using cell light EdU DNA
imaging (RiboBio).

2.5. CellMigrationAssay. Te transfected cells (4×105 cells/
well) described above were seeded in the lower chamber and
cultured until the cells adhered to the plate. HUVEC (2×105
cells/well) was seeded in the upper chamber and incubated at
37°C for 12 h. After fxation and staining, the migrating cells
were photographed and counted using a microscope.

2.6. Tube FormationAssay. A 200 μl volume of Matrigel (BD
Biosciences) was added to each well in the lower chamber of
the 24-well plate and incubated at 37°C for 30 minutes.
HUVEC was seeded in the upper chamber at 2×105 cells per
well. Subsequently, the transfected cells (4×105 cells/well)
were resuspended in 200 μL of complete medium and added
to the upper chamber. After incubation for 6 hours at 37°C,
the number of junctions was counted after images were
acquired with a microscope.

2.7. Enzyme-Linked Immunosorbent Assay (ELISA). An
ELISA kit (R&D Systems) was used to estimate the con-
centrations of CXCL11, CXCL12, and VEGF according to
the manufacturer’s instructions. Te OD value at 450 nm
was measured using a microplate reader.

2.8. Dual-Luciferase Reporter Assay. Te binding site of
miRNA-524-5p and CXCR7 was predicted by the TargetScan
bioinformatics website (https://www.targetscan.org/). HT-29
and Caco-2 cells were cotransfected with miRNA-524-5p
mimic or negative control miRNA and a CXCR7 3′-UTR
wild-type (WT) or CXCR7 3′-UTR mutant (MUT) reporter
plasmid (RiboBio) using Lipofectamine 3000 (Invitrogen)
under the manufacturer’s guidance to verify whether CXCR7
was a direct miRNA-524-5p target gene. Te Dual-Luciferase
Reporter Gene Detection Kit (KeyGENBioTECH, China) was
used to check luciferase activity.
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2.9. Tumor Model. BALB/c nude mice (aged 4–5 weeks)
were obtained from Beijing Vital River Laboratory Animal
Technology Co., Ltd. After one week of adaptation, BALB/c
nude mice were injected with HT-29 cells to establish
a subcutaneous human colon cancer xenograft model. When
the tumors grew to approximately 0.5 cm3 in volume, miR-
524-5p agomir and the negative control agomir were in-
jected into the tumor every three days. Te tumor size was
measured every 7 days. Animal studies were performed in
compliance with the Guide for the Care and Use of Labo-
ratory Animal Resources (1996), the National Research
Council, and approved by the Animal Ethics Committee of
the China Medical University (IACUC Issue No. 16071). All
procedures were followed under supervision and inspection
by the Committee and the Laboratory Animal Department.

2.10. Real-Time Polymerase Chain Reaction Analysis.
After the total RNA of the sample was extracted with TRIzol
reagent (Invitrogen, Grand Island, NY, USA), real-time
polymerase chain reaction (RT-PCR) was performed
with a reverse transcription kit (TaKaRa, Dalian, China).
Te primers used were as follows:5′-
GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCAC-
CAGAGCCAACGAGAAA-3′ (miR-524-5p RT), 5′-CGC
TACAAAGGGAAGCACTT-3′ (miR-524-5p forward), 5′-
GCAGGGTCCGAGGTATTC-3′ (miR-524-5p reverse); 5′-
GCTTCGGCAGCACATATACT-3′ (U6 forward), 5′-GCA
GGGTCCGAGGTATTC-3′ (U6 reverse); 5′-CAACCTCTT
CGGCAGCATTT-3′ (CXCR7 forward), 5′-ACGACACGG
CGTACCATCTT-3′ (CXCR7 reverse); 5′-TCACCAAGG
CCAGCACATAG-3′ (VEGFA forward), 5′-AGGCTCCAG
GGCATTAGACA-3′ (VEGFA reverse); 5′-GACCTGACC
TGCCGTCTAG-3′ (GAPDH forward), 5′-AGGAGTGGG
TGTCGCTGT-3′ (GAPDH reverse).

2.11. Western Blotting Analysis. RIPA Lysis Bufer (Beyo-
time, Shanghai, China) was used to lyse the protein from
cells or tissue samples. Proteins were then electrophorized
on a 10% or 8% SDS-PAGE gel. After electrophoresis, the
protein was transferred to a polyvinylidene fuoride (PVDF)
membrane (Millipore, USA), blocked in 5% skim milk
powder for 2 hours, and incubated with the diluted antibody
overnight at 4°C. Te primary antibodies used were as
follows: AKT, p-AKT Ser473 (Cell Signaling Technology,
Danvers, Mass, USA), ERK, p-ERKTr202/Tyr204, PDGF
(Abcam, Cambridge, UK), GAPDH, E2F1, VEGF, and
CXCR7 (Proteintech, China). Te protein bands were de-
tected using ImageLab software and displayed using
photographic flm.

2.12. Immunohistochemical Analysis. Te tumor tissues
obtained were fxed, embedded, and sliced (thickness, 6 μm)
and then subjected to immunohistochemical experiments.
Tumor sections were incubated with the primary antibodies
Ki67, CXCR7, AKT, p-AKT, ERK, p-ERK, VEGF, PDGF,
and CD34 at 4°C overnight, and then incubated with sec-
ondary antibodies. Te sections were stained with

diaminobenzidine. Immunopositive proteins were observed
under an optical microscope at 200x and 400xmagnifcation.

2.13. Statistical Analysis. All data were expressed as
means± standard deviation (SD). All statistical analyses
were performed using SPSS version 20.0 software (IBM
Corp., Armonk, NY, USA). Statistical diferences between
groups were calculated using one-way analysis of variance or
the Student’s t-test. Te p-value ＜0.05 was considered
statistically signifcant.

3. Results

3.1. MiR-524-5p Infuenced Cell Proliferation. To investigate
the role of miR-524-5p in colon cancer proliferation, we
measured miR-524-5p expression in diferent colon cancer
cell lines (HCoEpiC, SW480, HCT116, Caco-2, RKO, and
HT-29). MiR-524-5p expression was the lowest in the HT-29
cell line and the highest in Caco-2 cells (Figure 1(a)).
Subsequently, we used miR-524-5p mimic to induce miR-
524-5p overexpression in HT-29 cells and miR-524-5p in-
hibitors to decrease miR-524-5p expression in Caco-2 cells
(Figure 1(b)). Te CCK-8 cell growth assay showed that the
miR-524-5p mimic signifcantly reduced the proliferation of
HT-29 cells (Figure 1(c)). In contrast, the miR-524-5p in-
hibitor signifcantly increased Caco-2 cell proliferation
(Figure 1(d)). Furthermore, we further verifed the ex-
pression of E2F1 in HT-29 and Caco-2 cells, and the results
showed that miR-524-5p mimic reduced E2F1 expression in
HT-29 cells. Te miR-524-5p inhibitor up-regulated E2F1
expression in Caco-2 cells (Figure 1(e)). Te EdU assay
showed that the number of EdU-positive cells in HT-29 cells
transfected with miR-524-5p mimic was signifcantly re-
duced. In contrast, the number of EdU-positive cells in
Caco-2 cells transfected with miR-524-5p inhibitor signif-
cantly increased (Figures 1(f)–1(h)).

3.2. Efects of MiR-524-5p on the Migration and Tube For-
mation of HUVECs. To explore whether miR-524-5p is
associated with tumor angiogenesis, we cocultured colon
cancer cells transfected with miR-524-5p with HUVECs and
used transwell and lumen formation experiments to detect
the migration and angiogenesis abilities of HUVECs. As
shown in Figures 2(a) and 2(b), the number of migrating
cells in cocultured HUVECs and HT-29 cells transfected
withmiR-524-5pmimic decreased signifcantly.Te number
of cocultured HUVECs with migrating cells and Caco-2 cells
transfected with the miR-524-5p inhibitor increased sig-
nifcantly. After coculturing with HT-29 cells transfected
with the miR-524-5p mimic, the number of HUVECs
junctions was signifcantly reduced. In contrast, coculturing
of Caco-2 cells transfected with the miR-524-5p inhibitor
signifcantly increased the number of HUVECs junction
(Figures 2(c) and 2(d)).

3.3. MiR-524-5p Infuences VEGF Expression. Since VEGF is
an important factor involved in angiogenesis, we detected
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Figure 1: Continued.
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Figure 1: Efects of miR-524-5p on proliferation. (a) Te relative miR-524-5p expression in colon cancer cells. (b) Relative miR-524-5p
expression in HT-29 and Caco-2 cells after relevant transfection. CCK8 assay showing the proliferation of HT-29 (c) and Caco-2 (d) cells
after the indicated transfection. (e) Relative E2F1 protein expression in HT-29 and Caco-2 cells after relevant transfection. Representative
images of EdU-positive cells of HT-29 (f) and Caco-2 (g) cells after the indicated transfection. (h) Quantitative measurement of EdU-
positive cells. Magnifcation 200x. ∗p< 0.05 vs. the indicated group.
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the expression of VEGF in HT-29 and Caco-2 cells trans-
fected with miR-524-5p by quantitative RT-PCR and
western blotting. As shown in Figures 3(a) and 3(b), the
expression of VEGF mRNA and protein in HT-29 cells
transfected with miR-524-5p mimic was signifcantly re-
duced, and the expression of VEGF mRNA and protein in
Caco-2 cells transfected with the miR-524-5p inhibitor in-
creased signifcantly. At the same time, we also detected the
concentration of VEGF in the supernatant of each group.
Te results showed that the concentration of VEGF in
HT-29 cells transfected with miR-524-5p mimic was sig-
nifcantly reduced, while the concentration of VEGF in
Caco-2 cells transfected with the miR-524-5p inhibitor was
signifcantly increased (Figure 3(c)).

3.4. CXCR7 Acted as a Target of miR-524-5p. We studied the
targeting relationship betweenmiR-524-5p and CXCR7.Te
luciferase reporter vector CXCR7 3′UTR wild-type (WT)
that we constructed contained the complementary sequence
to miR-524-5p, and the CXCR7 3′UTR mutated (MUT)
reporter plasmid was used as a control (Figure 4(a)). Te
results of the double luciferase reporter gene assay indicated
that in the presence of the miR-524-5p mimic, the luciferase
activity of CXCR7 3′UTR WT was reduced in HT-29 and
Caco-2 cells. However, the miR-524-5p mimic did not re-
duce the CXCR7 3′UTR MUT luciferase activity in HT-29
and Caco-2 cells (Figures 4(b) and 4(c)). As shown in
Figures 4(d) and 4(e), the expression of CXCR7 mRNA and
protein in HT-29 cells transfected with miR-524-5p mimic
was signifcantly reduced, and the expression of CXCR7
mRNA and protein in Caco-2 cells transfected with miR-
524-5p inhibitor increased signifcantly.

3.5. MiR-524-5p Regulated Angiogenesis by Activating AKT/
ERK Signaling in HT-29 Cells. We manipulated the ex-
pression of miR-524-5p and CXCR7 in colon cancer cell
lines to study their relationship with angiogenesis. Te
CCK-8 assay revealed that the reduced proliferation ca-
pacity of the miR-524-5p mimic could be reversed by
overexpression of CXCR7 in HT-29 cells (Figure 5(a)).
Simultaneously, the release of CXCL11, CXCL12, and
VEGF could also be reversed (Figures 5(b)–5(d)). Te co-
culture of HT-29 cells transfected with miR-524-5p mimic
and HUVEC cells reduced the number of migrating cells
and the number of junctions, which was reversed by the
overexpression of CXCR7 (Figures 5(e)–5(g)). Further-
more, CXCR7, VEGF, and PDGF expression and phos-
phorylation of AKT and ERK also increased after
overexpression of CXCR7 in HT-29 cells transfected with
miR-524-5p mimic (Figure 5(h)).

3.6. MiR-524-5p Regulated Angiogenesis by Activating AKT/
ERK Signaling in Caco-2 Cells. Te CCK-8 results showed
that the increase in proliferation capacity of the miR-524-5p
inhibitor could be reversed by silencing CXCR7 expression
in Caco-2 cells (Figure 6(a)), and at the same time, the
release of CXCL11, CXCL12, and VEGF could also be re-
versed (Figures 6(b)–6(d)). Coculture of Caco-2 cells
transfected with the miR-524-5p inhibitor and HUVEC cells
increased the number of migrating cells and the number of
junctions, which was reversed by the silencing of CXCR7
expression (Figures 6(e)–6(g)). Furthermore, CXCR7,
VEGF, and PDGF expression and phosphorylation of AKT
and ERK were also inhibited after silencing CXCR7 ex-
pression in Caco-2 cells transfected with the miR-524-5p
inhibitor (Figure 6(h)).
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Figure 2: Efects of miR-524-5p on the migration and tube formation of HUVECs. (a) Representative images of migration of HT-29 and
Caco-2 cells after relevant transfection. (b) Quantitative measurement of migration cell number. (c) Representative image of tube formation
in HT-29 and Caco-2 cells after relevant transfection. (d) Quantitative measurement of the junction number. Magnifcation 200x. ∗p< 0.05
vs. the indicated group.
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3.7. Efects of MiR-524-5p on Tumor Growth in Vivo.
Finally, we injected HT-29 cells subcutaneously into BALB/c
nude mice to study the efects of miR-524-5p overexpression
on colon cancer growth (Figure S1). After injection, tumor
size was tested every 7 days, and miR-524-5p agomir was
injected into the tumor every 3 days. Nude mice were eu-
thanized 28 days after tumor formation and weighed. Te
size of the transplanted tumor injected with miR-524-5p
agomir was signifcantly reduced compared to the control
group (Figure 7(a)). Te size and weight of the transplanted
tumor also decreased signifcantly (Figures 7(b) and 7(c)).
Te results of immunohistochemical staining confrmed that
the expressions of Ki67, CXCR7, VEGF, CD34, p-AKT, and
p-ERK in miR-524-5p agomir xenografts were signifcantly
inhibited (Figures 7(e) and 7(f )). In addition, the expression
of miR-524-5p in the miR-524-5p agomir xenograft was
signifcantly increased (Figure 7(d)). In contrast, the ex-
pression of CXCR7 mRNA as well as the protein expression
of CXCR7, VEGF, PDGF, p-AKT, and p-ERK was signif-
cantly suppressed (Figures 7(g) and 7(h)).

4. Discussion

In recent years, the role of miRNA in tumors has been
extensively studied, including colon cancer [22]. Chen et al.
showed that LINC00662 overexpression regulates colon
cancer development through competitive binding to miR-

340-5p [23]. Yan et al. showed that the overexpression of
miR-182-5p in colon cancer cells signifcantly inhibited the
carcinogenicity of SW620 cells and the angiogenesis and
lymphangiogenesis of xenograft tumors in nude mice [24].
In this study, we examined changes in the proliferation,
migration, and luminal formation of colon cancer cells
(HT-29 and Caco-2) after forced up- or down-regulation of
miR-524-5p. Overexpression of miR-524-5p inhibited the
proliferation, migration, and luminal formation of colon
cancer cells. Te opposite was observed in the absence of
miR-524-5p. We further tested the expression of VEGF, and
the results showed that overexpression of miR-524-5p
inhibited the expression of VEGF. In contrast, the lack of
miR-524-5p increased the expression of VEGF. Altogether,
these fndings indicated that miR-524-5p was closely related
to angiogenesis.

To further investigate themolecular mechanisms of miR-
524-5p in colon cancer angiogenesis, we detected altered
CXCR7 expression in transfected HT-29 and Caco-2 cells.
Recently, the identifcation of CXCR7, formerly called the
orphan receptor RDC1, was confrmed [18]. As a high-
afnity receptor for CXCL12 and a low-afnity receptor
for CXCL11 and CXCR7 serves as the key factor regulating
cell survival, growth, and migration, rather than typical
chemokine responses, such as calcium mobilization medi-
ated by G protein-coupled receptors [21, 25]. Recently,
several studies have shown the tumorigenic role of CXCR7
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in polytype cancers, such as breast carcinoma and lung
tumors, with stimulative growth and migration [18, 26].
Based on these fndings, we analyzed CXCR7 expression
after artifcially engineering miR-524-5p expression. We
found that CXCR7 expression was negatively regulated by
miR-524-5p through target binding. Furthermore,

knockdown of CXCR7 could decrease angiogenesis caused
by loss of miR-524-5p. Tese results indicated that CXCR7
was an important downstream molecule of miR-524-5p.

Recent investigations have reported that CXCR7 can
promote Akt phosphorylation, and the ERK pathway has
also been found to play an important role in angiogenesis
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[27, 28]. In the present study, co-transfection with the miR-
524-5p inhibitor and the CXCR7 siRNA was carried out in
Caco-2 cells and co-transfection with the miR-524-5p mimic
and CXCR7OE in HT-29 cells to investigate changes in
angiogenesis, VEGF and PDGF production, and in Akt and
ERK phosphorylation. Our data indicated that the angio-
genetic ability of HUVECs was signifcantly enhanced fol-
lowing coincubation with the miR-524-5p inhibitor-
transfectedCaco-2 cells, an efect that could be reversed
by CXCR7 knockdown. Meanwhile, VEGF and PDGF
production by miR-524-5p inhibitor-transfectedCaco-2 cells
also increased and was accompanied by elevated phos-
phorylation levels of Akt and ERK. However, the angioge-
netic ability of HUVECs was signifcantly reduced following
incubation with miR-524-5p mimic-transfected HT-29 cells,
and this efect could be reversed by CXCR7 overexpression.
Meanwhile, VEGF and PDGF generation in transfected
HT-29 cells treated with miR-524-5p mimic also decreased,
which was accompanied by reduced phosphorylation levels
of Akt and ERK. Terefore, we inferred that miR-524-5p/
CXCR7 signaling regulated angiogenesis through AKT and
ERK phosphorylation in colon cancer cells. Finally, the
potential signifcance of increasing miR-524-5p expression
was studied in transplanted tumor nude mice. Our fndings
provide evidence that the injection of miR-524-5p agomir
reduced the expression of CXCR7, VEGF, PDGF, Ki67,
CD34, and the levels of p-AKT and p-ERK, proving that
miR-524-5p could inhibit the growth and angiogenesis of
a colon cancer tumor. In conclusion, our results indicated
that the miRNA-524-5p/CXCR7 axis regulated angiogenesis
in colon cancer cells through the AKT and ERK pathways.
CXCR7 will be a new target for future treatment and re-
search in colon cancer.
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