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Background. Pancreatic cancer (PC) has a high mortality and dismal prognosis, predicting to be the second most lethal ma-
lignancy. 5-Methylcytosine (m5C) and long noncoding RNAs (lncRNAs) are both crucial in the prognostic outcome and
immunotherapeutic effect for PC patients. 'erefore, we aimed to create an m5C-related lncRNA signature (m5C-LS) for PC
patients’ prognosis and treatment. Methods. Clinicopathological information and RNAseq data were acquired from 'e Cancer
Genome Atlas (TCGA) database. Pearson’s correlation analysis was used to extract m5C-related lncRNAs in PC. Univariate, least
absolute shrinkage and selection operator (LASSO), and multivariate Cox analyses were adopted to build an m5C-LS.
Kaplan–Meier (K-M), principal component analysis (PCA), and nomogram were utilized to assess model accuracy. In addition,
we explored the model’s possible immunotherapeutic responses and drug sensitivity targets. Results. 'ree m5C-related lncRNAs
were finally established to construct the risk signature, which has a good and independent predictive ability for PC patients. Based
on the m5C-LS, patients were classified into the low- and high-m5C-LS group, with the latter having a worse prognosis.
Furthermore, the m5C-LS allowed us to better discriminate the immunotherapeutic responses of PC patients in different
subgroups. Conclusions. Our study constructed an m5C-LS and established a nomogram model that accurately predicted the
prognosis of PC patients, as well as provides promising immunotherapeutic strategies in the future.

1. Introduction

Pancreatic cancer (PC) is a lethal disease with highmortality,
having overtaken breast cancer to become the third top
cause of cancer death in the United States in early 2017,
which is expected to be the second cause by 2030 [1, 2].
According to the latest epidemiological data, 56,770 new
instances of PC were discovered in the United States, while
45,750 patients died from the condition. It has a dismal
prognosis as the majority of PC patients diagnosed at an
advanced stage, with only a 9% five-year survival rate [3]. PC
patients are staged from I to IV using the AJCC TNM staging
criteria, and CT scan imaging was clinically used to group

them into grades I–IV. Surgery is now the only possible way
to cure PC and increase the 5-year survival rate to 20–30%.
However, when a tumor is discovered, it is often already
metastatic and spread, making surgical removal extremely
difficult [4]. Despite advances in adjuvant treatment
methods such as radiation, chemotherapy, and molecular
targeted therapy, PC patients’ survival rate remains dismal
[5]. 'erefore, finding new molecular biomarkers and
therapeutic targets helps for the improvement of prognosis
in PC.

It has been reported that RNAmodification is critical for
posttranscriptional gene expression regulation in various
cancers [6]. 'ere are over 100 distinct forms of RNA
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modification, including mRNA, microRNA, and long
noncoding RNA (lncRNA) [7, 8]. Especially, lncRNAs are
derived from noncoding sections of the genome that exceed
200 nucleotides in length [9]. Additionally, 5-methylcytosine
(m5C) is a frequent methylation modification that plays a
vital function in RNA metabolism such as RNA stability,
export, recognition, and translation [10, 11]. 'e m5C sites
have been confirmed to be abundantly distributed in
lncRNA [12], but our understanding of how m5C is regu-
lated in lncRNA is currently restricted. 'erefore, investi-
gating the role of m5C-related lncRNAs in the PC
progression might be beneficial for finding prognostic
targeting.

In this study, we extracted the expression patterns of 243
lncRNAs and 13 m5C genes from'e Cancer Genome Atlas
(TCGA) database. Pearson’s correlation was then used to
identify lncRNAs that were associated with m5C. A novel
m5C-related lncRNA signature (m5C-LS) was finally con-
structed, which accurately predicted PC patients’ OS. A
nomogram integrating clinical features and this model was
also established. Significantly, we identified prospective
medicines targeting the m5C-LS, thereby providing direc-
tion for the therapy of PC.

2. Materials and Methods

2.1. Data Acquisition. TCGA (https://cancergenome.nih.
gov/) database was used to retrieve the RNA tran-
scriptome data, pertinent clinical information, and mutation
data of PC patients. We collected a list of 13 m5C genes
based on the existing research [13, 14]. Pearson’s correlation
analysis was implemented to screen for m5C-associated
lncRNAs, and we found 243 m5C-related lncRNAs. 'e
correlation coefficient |R| >0.4 and p<0.001 were utilized as
criteria for the procedure.

2.2. Construction of the Predictive Signature. 'e complete
TCGA dataset was randomly assigned to two subsets: a
discovery and a testing cohort. 'e baseline features of these
two groups are shown in Table S1. In the discovery cohort,
we determined prognostic m5C-lncRNAs using univariate
analysis (p< 0.05). 'en, we discovered that four m5C-as-
sociated lncRNAs were differentially connected to the
outcome of PC cases by the least absolute shrinkage and
selection operator (LASSO) method. 'e four m5C-related
lncRNAs were analyzed using multifactor Cox regression,
and an m5C-LS was eventually developed. 'e risk factor of
m5C-LS�  exp(m5C − ln cRNAs)∗ β. β is the coefficient
of each m5C-lncRNA from Cox analysis. Subgroups were
created based on the median risk score, including low- and
high-risk groups.

2.3. Gene Ontology (GO) Analysis. GO method was applied
to find the possible biological function [15]. 'e R package
clusterProfiler was used in this procedure [16]. 'e p value
was used to define the analysis threshold, and p value <0.05
showed that the functional pathway was significantly
enriched.

2.4. Immunotherapeutic Response Prediction. To analyze the
mutation data, we utilized the R program maftools. 'e
tumor-specific mutant genes were used to calculate the
tumor mutational burden (TMB). We employed the TIDE
algorithm to estimate the probability of an immunothera-
peutic response.

2.5. Principal Component Analysis (PCA). 'e whole-ge-
nome expression profiles, 13 m5C genes, three m5C-
lncRNAs, and the m5C-LS were all analyzed using PCA [17]
to achieve model identification. Kaplan–Meier (K-M) sur-
vival method was implemented to determine differences in
clinical outcomes between the two groups.

2.6. Chemotherapy Response Prediction. To detect the ability
of the m5C-LS, we assessed the half-maximal inhibitory
concentration (IC50) to mirror the chemotherapeutic drug
response. Using the R package pRRophetic [18], IC50 of
drugs according to the Genomics of Drug Sensitivity in
Cancer (GDSC) online tool was predicted for PC samples.

2.7. Independence of the m5C-LS. When additional clinical
characteristics (gender, age, stage, and grade) were taken
into consideration, the predictive pattern was assessed using
multivariate and univariate Cox regression analyses in pa-
tients with PC to determine whether it was an independent
predictor.

2.8. Establishing a Predictive Nomogram. 'e m5C-LS and
other factors (age, gender, risk score, stage, and grade) were
used to establish a predictive nomogram. Moreover, Hos-
mer–Lemeshow test was utilized to detect the exactness of
the nomogram.

3. Results

3.1. Identification of the m5C-Related lncRNAs. A total of 13
m5C genes and 14,056 lncRNAs were extracted from the PC
dataset. m5C-related lncRNAs were defined as those with a
significant link (r> 0.4 and p< 0.001) to one of the 13 m5C
genes. Finally, the m5C-lncRNA coexpression network is
shown in Figure 1(a). 'roughout TCGA dataset,
Figure 1(b) depicts the association between 13 m5C genes
and three prognostic m5C-related lncRNAs.

3.2. Determination of the m5C-LS. Using univariate Cox
regression analysis, we selected m5C-associated prognostic
lncRNAs from 243 m5C-lncRNAs in the discovery cohort.
In TCGA dataset, 45 m5C-related lncRNAs were substan-
tially linked with OS (Table S2). A typical approach of
multiple regression analysis, LASSO-penalized Cox, not only
improves the statistical model’s prediction accuracy but also
allows for variable choices and regularization at the same
time. We used LASSO analysis to reduce the overfitting of
the m5C-LS, resulting in 45 m5C-lncRNAs remaining
(Figures 2(a) and 2(b)). Finally, three m5C-related lncRNAs
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were screened in the discovery queue to create the m5C-LS
for PC patients (Table 1).

Based on the median value of the prognostic risk grade,
PC samples were divided into low- and high-risk groups.
K-M analysis revealed a notable difference between two
groups (p< 0.001, Figure 3(a)). 'e distribution of risk
grades, survival status of cases, and expression of model
lncRNAs are shown in Figures 3(b)–3(d).

We used the standard method to confirm the reliability
of the m5C-LS. As we expected, a similar trend is verified in
the verification cohorts (Figure 4).

In TCGA-PC dataset, the disparities in the clinical
outcome stratified by clinical features were studied between
two groups. 'e patient outcome of the low-m5C-LS group
remained superior to the high-m5C-LS, regardless of sub-
groups defined by gender, age, stage, or grade (Figure 5).

3.3. PCA of the m5C-LS. PCA was used to examine the
difference between the two risk groups. 'e distributions of
the two groups were rather dispersed (Figure 6). 'ese
findings implied that the m5C-LS may differentiate between
the two groups.

3.4. Clinical Value of the Signature. Both univariate and
multivariate methods unearthed the robust independence of
our proposed m5C-LS (p< 0.001, Figures 7(a) and 7(b)).
Figure 7(c) shows that the AUC values for one, three, and
five years are all more than 0.70, showing that this model had
a high predictive value. 'e AUC of the risk grade was
similarly greater than the AUCs of other clinical parameters,
suggesting that the m5C-LS for PC was rather reliable
(Figure 7(d)).'e risk score’s concordance index was usually
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Figure 1: Selection of m5C-related lncRNAs in PC patients. (a) Sankey diagram for the network of m5C genes and related lncRNAs.
(b) Heatmap for relationships between 13 m5C genes and 3 m5C-related lncRNAs. ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001.

Journal of Oncology 3



higher than that of other clinical indicators as time went on,
indicating the favorable performance of the m5C-LS
(Figure 7(e)).

3.5. Construction of a Nomogram Model. 'e 1-, 3-, and 5-
year OS occurrences were predicted utilizing a nomogram
that included risk grade and clinical risk features. In the
nomogram, the m5C-LS exhibited superior predictive power
when compared to clinical parameters (Figure 8(a)). 'e
observed vs. projected rates of 1-, 3-, and 5-year OS showed
perfect consistency in correlation charts (Figure 8(b)).

3.6. Evaluation of the Immunotherapy Reaction Based on
m5C-LS. Based on m5C-LS, the immune status, enrichment
pathways, or activities were also investigated in 177 PC
samples. 'e expression of immunological markers differed
significantly between the low- and high-m5C-LS groups
(Figure 9(a)). We used GO analysis to investigate possible
molecular processes of the m5C-LS, which indicated the
participation of several immune-related biological processes
(Figure 9(b)). 'e relationship between the m5C-LS and
immunotherapy biomarkers was next examined. Predict-
ably, the high-m5C-LS group was more likely than the low-
m5C-LS group to react to immunotherapy, suggesting that
this m5C-based classifier score might be used to predict the
TIDE (Figure 9(c)). 'e mutation data were evaluated and
summarized utilizing R maftools. 'e variant effect

predictor was used to stratify themutations. Figures 9(d) and
9(e) show the top 20 genes with the largest modifications
between two groups. 'e TMB scores were then generated
using TGCA somatic mutation data, and it was discovered
that the m5C-LS had a strong connection with TMB
(Figure 9(f)). We discovered that a high TMBwas linked to a
poor OS (p � 0.005, Figure 9(g)). We investigated if com-
bining m5C and TMB could become a more stronger
prognostic biomarker. We used IGPM and TMB to divide all
of the samples into four groups: high TMB/high m5C-LS,
low TMB/low m5C-LS, low TMB/high m5C-LS, and low
TMB/low m5C-LS. As demonstrated in Figure 9(h), there
were significant differences across all groups (p< 0.001),
with patients in the low TMB/low m5C-LS group having the
highest OS. 'ese findings clearly indicated that m5C-LS
was connected to tumor aggressiveness.

3.7. Discovery of Novel Chemical Compounds Targeting the
m5C-LS. We used the pRRophetic algorithm to figure out
which drugs might work for PC patients by looking at IC50
for each sample in the GDSC database. We found 12
compounds filtering out due to substantial variations in
predicted IC50 between two groups, with the high-m5C-LS
group being more sensitive to the majority of them.
Figure S1 shows the top 12 drugs that could be investigated
further in PC.

4. Discussion

PC is a highly malignant cancer with a dismal prognosis, and
treating it is still tough. Although multimodal therapy in-
cluding surgery, chemotherapy, radiation, targeted therapy,
and immunotherapy has helped patients with PC live longer,
the treatment result is still poor [19]. 'e prognosis and
tumor responses of patients with various PC subtypes and
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Figure 2: Description of m5C-LS. (a) 'e LASSO analysis of PC. (b) Determine the optimal LASSO settings.

Table 1: Multivariate Cox analysis of 3 m5C-related lncRNAs.

ID Coef HR HR.95L HR.95H p value
TRPC7-AS1 −0.6005 0.3505 0.1594 0.7711 0.009
TRAF3IP2-AS1 −1.7203 0.061 0.0126 0.2937 <0.001
AC009974.1 −1.2224 0.1136 0.0273 0.4726 0.002
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clinical features are variable. As a result, for the prognosis
and treatment of PC, it is essential to investigate effective and
personalized treatments.

Researchers are continuing to describe more molecular
properties such as the transcriptome, proteome, and
metabolome as high-throughput sequencing methods im-
prove [20]. Chemical alteration of different RNAs at the
posttranscriptional level has been shown to control carci-
nogenesis and tumor growth in recent years. Noncoding
RNAs such as microRNA and lncRNA, which have direct
functional impacts on gene expression, undergo RNA
modification in addition to protein production (mRNA) and
effector molecules (tRNA and rRNA) [21]. Among these,
N6-methyladenosine (m6A) modification is the most
prevalent RNA modification that has participated in the
regulation of stem cells [22] and the progression of various
cancers. Wang et al. [23] investigated the role of m6A-re-
lated lncRNAs in gastric cancer (GC) and developed a
predictive signature with a high prognostic value for GC
patients. A previous study also discovered that m6A-related
genes were significantly associated with malignancy and

prognosis in PC [24]. Currently, m5Cmethylation is another
important posttranscriptional modification, which could be
catalyzed indicated methyltransferases, mainly including the
NOL1/NOP2/SUN (NSUN) family and DNA methyl-
transferase homologue DNMT [13]. Increasing evidence
suggests that m5C methyltransferases have been implicated
in many cellular processes and cancer progression. NSUN2,
for example, may stabilize the mitotic spindle, promoting
tumor cell proliferation, and has been utilized to discover
many targets in gallbladder carcinoma, bladder cancer, and a
variety of malignancies [25–27]. In breast, ovarian, and
prostate cancers, NSUN4 operates as a cancer risk locus
[28, 29]. Furthermore, lncRNAs, which are abnormally
expressed in distinct cancer cells, play a critical role in
cancer-related cellular activities [30]. lncRNAs communi-
cate with DNA,mRNAs, ncRNAs, and proteins to exert their
regulatory effects mechanically. However, research into the
pathogenic involvement of m5C and lncRNAs in PC de-
velopment is insufficient, and further research into bio-
logical processes and prognostic indicators of PC involving
m5C-related lncRNAs is warranted.
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Figure 3: Identification of the prognostic value of m5C-LS in TCGA training set. (a) K-M curves of patients’ OS between high- and low-
m5C-LS groups. (b) Distribution of the risk score and patients. (c) Dot plot of survival status. (d) Heatmap of 3 m5C-related lncRNAs’
expression between two groups.
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Figure 5: K-M curves of patients’ OS grouped by (a) age, (b) gender, (c) TNM stage, and (d) tumor grade between two groups in TCGA
entire set.
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To investigate the prognostic function of m5C-related
lncRNAs in PC, we firstly selected 243m5C-related lncRNAs
from TCGA dataset, then 13 m5C-related lncRNAs were
found to have predictive significance, and three of themwere
finally used to build a prognostic signature. AC009974.1, one
of the three m5C-related lncRNAs, was shown to be im-
plicated in an EMT-related lncRNA signature that predicts
prognosis in PC patients [31], indicating that it was a sig-
nificant prognostic indicator. Abnormal TRAF3IP2-AS1
expression in glioblastoma and renal cell carcinoma has been
found in several studies [32, 33], which is likely to be a

prognostic marker in tumors. TRPC7-AS1, another lncRNA,
was discovered to be overexpressed in hepatoma cells [34].
Following this, we divided PC patients into high- and low-
m5C-LS groups based on median scores, with the high-risk
group showing worse clinical outcomes. Subgroup studies
categorized by gender, age, TNM stage, or tumor stage
yielded similar findings. 'e m5C-LS grouping ability was
further confirmed by PCA. Multivariate Cox analysis
showed that this model could be an autocephalous risk factor
for PC patients’ OS. We also created a nomogram that
showed perfect consistency between observed and predicted
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OS rates of 1 year, 3 years, and 5 years. 'us, the established
m5C-LS model might lead to the discovery of new bio-
markers for future research.

'e tumor microenvironment of pancreatic cancer is
attracting much attention [35]. We used the TIDE

algorithm, a computational technique for modeling tumor
immune evasion pathways, to predict cancer treatment by
immune checkpoint blockade (ICB) [36]. 'is result showed
that PC patients with high-risk scores had a better response
to immunotherapy. TMB refers to the total amount of
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somatic coding mutations and is linked to the formation of
antitumor neoantigens [37]. TMB has been identified as a
novel biomarker for predicting PD-L1 therapy response
[38]. 'e TMB in the high-m5C-LS group was greater than
in the low-m5C-LS group, implying the immunotherapy in
the high-m5C-LS group was more effective. Furthermore,
combining TMB with m5C-related lncRNA resulted in an
excellent forecast outcome. As a result, this research con-
tributed to our understanding of the molecular biology of
m5C-related lncRNAs in PCs.

However, there are still several limitations in this study.
First, the data used in the study came from TCGA database,
but we lacked a patient cohort to validate them. Second,
additional functional experiments on the key three lncRNAs
in this signature are required to uncover the special
mechanism of m5C methyltransferases in the progression of
PC. At last, the predictive value of the m5C-LS needs to be
evaluated for clinical applications.

5. Conclusion

'is study could help us better understand the biological
function of m5C-regulated lncRNAs and provide insight
into PC prognosis. Furthermore, our constructed m5C-
regulated lncRNA signature might guide individual im-
munotherapy for patients with PC.
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