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Osteosarcoma (OS) is the commonest malignant bone tumor in adolescent patients, and patients face amputation, tumor
metastasis, chemotherapy resistance, and even death. We investigated the potential connection between abnormal methylation
differentially expressed genes and the survival rate of osteosarcoma patients. GSE36002 and GSE12865 datasets of GEO
database were utilized for abnormal methylation differentially expressed genes, followed by function and pathway enrichment
analyses, the protein-protein interaction network in the STRING database, and cluster analysis in the MCODE app of
Cytoscape. The RNA-seq and clinical data from the TARGET-OS project of TCGA were used for univariate and least absolute
shrinkage and selection operator (LASSO) Cox regression analyses to predict the risk genes of osteosarcoma. 1191
hypermethylation-downregulated genes might function through plasma membrane, negative regulation of transcription from
the RNA polymerase II promoter, and pathways, including transcriptional misregulation in cancer. 127 hypomethylation-
upregulated genes were enriched in proteolysis, negative regulation of the canonical Wnt signaling pathway, and metabolic
signaling pathways. The univariate Cox analysis revealed 638 genes (P < 0:01), including 50 hypermethylation-downregulated
genes and 4 hypomethylation-upregulated genes, subsequently based on LASSO Cox regression analysis for 54 aberrant
methylation-driven genes, and three genes (COL13A1, MXI1, and TBRG1) were selected to construct the risk score model.
The three genes (COL13A1, MXI1, and TBRG1) regulated by DNA methylation were identified to relate with the outcomes of
OS patients, which might provide a new insight to the pathological mechanism of osteosarcoma.

1. Introduction

Osteosarcoma is the most common primary bone malig-
nancy. The annual incidence of new osteosarcoma, con-
firmed with histopathology, is 1.8 per million in Finland
[1], and approximate 800 new osteosarcoma patients are
diagnosed each year in the United States, 400 of whom are
under the age of 20 [2].

Currently, the overall 5-year survival rate for primary
osteosarcoma is 68% and the survival rate of patients with

metastasis or recurrences is less than 20%. The survival rate
improved from 11% with surgical resections in the 1960s to
70% with combined chemotherapy in the mid-1980s. For the
past 40 years, surgical techniques have made significant
progress, but a considerable number of patients still face
the threat of amputation and the survival rate has not made
any progress [3]. Therapies for preventing tumor metastasis
and chemotherapy resistance are urgently needed [4].

Epigenetics is defined as changes in gene expression
levels in the absence of changes in gene sequence, including
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DNA methylation, histone modifications, and noncoding
RNAs [5]. Understanding the epigenetic mechanisms of
osteosarcoma may give us an insight into its pathophysiolo-
gical characteristics [6]. DNA methylation is significant for
physiological phenomena, such as regulating transcription,
chromosome structure, and genome stability [7]. It mainly
occurs in the CpG island region and suppresses gene expres-
sion by compacting and inactivating the chromatin struc-
ture, making the transcription complex inaccessible [8].
Abnormal methylation has severe effects on gene expression
in a variety of tumors [9, 10].

Recently, genomic microarrays and RNA-seq can be
used to detect epigenetic alternations in the pathogenesis
of the tumor. Here, we applied the GSE36002 and
GSE12865 datasets of the GEO database for expression pro-
files of hypomethylation-upregulated genes (HUGs) and
hypermethylation-downregulated genes (HDGs) in osteo-
sarcoma, and subsequently, the annotated function and
pathway, protein-protein interaction (PPI) network, and
cluster analysis was performed. The RNA-seq and clinical
data from the TARGET-OS project in The Cancer Genome
Atlas (TCGA) program were employed for univariate and
LASSO Cox regression analyses. The correlation between
survival rate and aberrant methylation differentially
expressed genes was explored. We aim to elucidate the effect
of DNA methylation on the development of osteosarcoma
and thus provide new therapeutic targets for osteosarcoma.

2. Materials and Methods

2.1. Microarray Datasets and Processing. The gene expres-
sion dataset (GSE12865) and the gene methylation dataset
(GSE36002) were downloaded from Gene Expression Omni-
bus (GEO, https://www.ncbi.nlm.nih.gov/Geo/) of the
National Center for Biotechnology Information (NCBI).
The gene expression dataset GSE12865 included 12 samples
from pediatric osteosarcoma and 2 samples of healthy oste-
oblast cells on the basis of the platform of GPL6244 (Affy-
metrix Human Gene 1.0 ST Array). The gene methylation
dataset GSE36002 included 19 samples from osteosarcoma
cell lines and 6 samples from healthy people based on the
platform of GPL8490 (Illumina HumanMethylation27 Bead-
Chip). We utilized GEO2R to save all the differently
expressed genes and abnormally methylated genes in
GSE12865 and GSE36002, with P < 0:05 and jtj > 2 as the
inclusion standards with after Student’s t test [11]. HDGs
and HUGs were determined with the Venn (http://
bioinformatics.psb.ugent.be/webtools/Venn/).

2.2. Function and Pathway Enrichment Analysis. Function
and pathway enrichment analyses of the abnormal methyla-
tion differentially expressed genes were implemented
through DAVID database (https://david.ncifcrf.gov/).

2.3. Protein-Protein Network Construction. We separately
constructed the PPI network of HDGs and HUGs with the
STRING database (https://string-db.org/). The minimum
required interactive score of high confidence (0.9) was con-

sidered a cutoff criterion, and the active interaction source
was limited to text mining, experiments, and databases.

2.4. Cluster Analysis and Key Gene Screening of the PPI
Network. CytoHubba app was used to identify key genes of
HDGs and HUGs by the Matthews correlation coefficient
(MCC) algorithm with node = 5 as criterion in Cytoscape.
Cluster analysis of HDGs and HUGs was performed with
the Molecular Complex Detection (MCODE) app, with
degree cut off = 2, node score cut off = 0:2, k − score = 2,
and max depth = 100 regarded as significant.

2.5. Screening of Prognostic Factors. The Therapeutic Appli-
cation Research to Generate Effective Treatments (TAR-
GET) project was aimed at identifying molecular changes
that lead to childhood cancer, and the main purpose of the
project is to use open source databases to document some
genetic and clinical information that will help develop novel,
effective, and less toxic therapy. The TARGET-OS project
includes RNA-seq data and associated clinical information
of 88 osteosarcoma patients at http://portal.gdc.cancer.gov/.
We downloaded TARGET-OS RNA sequencing data
through R studio and merged the mRNA expression of genes
with clinical information (vital status and survival time), and
there were 3 patients whose sequencing data and clinical
information did not match. Subsequently, we used univari-
ate Cox regression to screen for genes associated with sur-
vival (P < 0:01).

2.6. Risk Scoring Model Construction. First, we performed an
overlap analysis of survival-related genes and aberrant
methylation-driven genes. Second, we apply LASSO Cox
regression to further narrow down, using the glmnet pack-
age in R. LASSO regression is a method that uses the L1 pen-
alty to shrink the regression coefficients to zero. This
approach also reduces dimensionality and avoids collinearity
between variables. Finally, Using X-tile, a bioinformatic tool
for biomarker assessment and outcome-based cut-point
optimization [12], to determine appropriate cutoff values,
we divided 85 osteosarcoma patients in TARGET-OS into
low-risk and high-risk groups. ROC curves and the survival
ROC package in R were used to verify the predictive power
of risk models.

2.7. Statistical Analysis. R (version 4.0.0, http://www.r-
project.org/) was used for statistical analysis. P < 0:05 was
considered statistically significant. We performed all analy-
ses following the relevant guidelines in R.

3. Results

3.1. Identification of HDGs and HUGs in OS. There were
5127 upregulated genes and 4296 downregulated genes in
GSE12865 ðP < 0:05, jtj > 2Þ. There were 9949 hypermethy-
lated genes, and 1149 hypomethylated genes in GSE36002
ðP < 0:05, jtj > 2Þ. 1191 HDGs were obtained by combining
9949 hypermethylated genes and 4296 downregulated genes.
127 HUGs were obtained by combining 1149 hypomethy-
lated genes and 5127 upregulated genes (Figure 1).
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3.2. GO and KEGG Enrichment Analysis of HDGs and
HUGs. As presented in Figure 2, HDGs were enriched in
the plasma membrane and voltage-gated potassium channel
complex in the aspect of cell component. In the biological
process category, HDGs were primarily enriched in the neg-
ative regulation of transcription from the RNA polymerase
II promoter and anterior/posterior pattern specification,
and in the molecular function, HDGs were mainly enriched
in transcription factor activity and sequence-specific DNA
binding, and the enriched pathways were transcriptional
misregulation in cancer and pathways in cancer.

As shown in Figure 3, in the cellular components, HUGs
were enriched in the integral component of the plasma
membrane, extracellular exosome, and extracellular region.
In biological processes, HUGs were mainly enriched in pro-
teolysis and negative regulation of the canonical Wnt signal-
ing pathway. In molecular function, the enrichment was in
hormone activity, integrin binding, and O-
methyltransferase activity. The enriched pathways of the
HUGs were metabolic pathways and phototransduction.

3.3. PPI Network Construction and Module Analysis of HDGs
and HUGs. The PPI network of the top 5 HDGs and neigh-
borhoods was represent in Figure 4(a), and the top1 cluster
was revealed in Figure 4(b); the PPI network of the top 5
HUG and neighborhoods was shown in Figure 5(a), and
the top1 cluster was demonstrated in Figure 5(b).

3.4. Development of the Risk Score Model for OS. During the
development of the operating system risk scoring model,
first, we used univariate Cox regression to explore the rela-
tionship between gene expression and survival status and
survival time of the TARGET-OS project. 638 genes were
analyzed as potential genes significantly associated with sur-
vival status and time (P < 0:01), and the top ten genes are
shown in Figure S1A. Then, Venn analysis of 1318
aberrant methylation-driven genes and 638 OS-related
genes is shown in Figure S1B, 54 genes were selected for
1000 repetitions of LASSO regression analysis, and 10-fold
cross-validation was used to select 3 genes with non-Zero
coefficients to serve as seed genes (Figures 6(a) and 6(b)),
and finally screened by risk score model for 3 genes

(COL13A1, MXI1, and TBRG1):Risk score = ð0:0339348 ∗
COL13A1mRNA levelÞ + ð0:1748218 ∗MXI1mRNA levelÞ
+ ð0:0303896 ∗ TBRG1mRNA levelÞ:

We calculated a risk score for each patient and then
divided the patients into low- and high-risk groups by X-
tile. The high-risk group had more deaths than the low-
risk group (Figures 7(a)a and 7(b)). The distribution and
Wilcoxon test of risk scores of patients with different sur-
vival status in the TCGA database were shown in
Figure 7(c). The ROC curve of the risk score model devel-
oped by the three genes driven by abnormal methylation
(COL13A1, MXI1, and TBRG1) was shown in Figure 7(d),
with an AUC of 0.819.

4. Discussion

Osteosarcoma is a major challenge and ranks first in primary
bone tumors [13]. Previous studies have demonstrated that
tumorigenesis may be related to whether aberrant methyla-
tion status drives gene silencing of oncogenes and tumor
suppressor genes [14]. Evidences have emerged revealing
that osteosarcoma is a differentiated disease caused by epige-
netic changes that interferes the differentiation of stem cells
into osteoblasts [15]. Exploring DNA methylation in osteo-
sarcoma may illuminate the mechanisms of disease
development.

As was demonstrated, HDGs were enriched in regulation
of transcription from the RNA polymerase II promoter,
transcription factor activity and sequence-specific DNA
binding, plasma membrane, voltage-gated potassium chan-
nel complex, the signaling pathways regulating the pluripo-
tency of stem cells, and transcriptional misregulation in
cancer and Rap1 signaling pathway. There is no doubt that
transcriptional misregulation and pathways in cancer are
involved in osteosarcoma.

In plasma membrane proteomic analysis that compared
human osteosarcoma and normal osteoblasts, cell mem-
brane components accounted for 69% of the differentially
expressed proteins, which were involved in cell adhesion,
signal transduction, cellular structure, and biological pro-
cesses involved in cell-cell contact [16]. Dysregulation of
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Figure 1: Venn map of gene methylation dataset (GSE36002) and gene expression dataset (GSE12865): (a) hypermethylation-
downregulated genes and (b) hypomethylation-upregulated of genes.
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Figure 2: Function and pathway enrichment analysis of hypermethylation-downregulated genes.
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Figure 3: Function and pathway enrichment analysis of hypomethylation-upregulated genes.
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these highly dynamic membrane domains can promote
oncogenic signaling [17].

The RNA polymerase II core promoter is simply labeled
as a sequence that directs transcription initiation; however, it
can mediate many complex transcriptional patterns and
responses to enhancers [18]. Evidences have suggested that
various sequence-specific transcription factors and tran-
scriptional enhancers have specific effects on the core pro-
moter, and promoter hypermethylation can perform
transcriptional silencing of tumor suppressor genes in can-
cer. Inactivation of tumor suppressor function is found in
osteosarcoma and acts as a key role in its pathogenesis
[19]. Hypermethylation of the promoter located in the
CpG island could influence genes of apoptosis, cell cycle,
carcinogen metabolism, DNA repair, angiogenesis, and
cell-cell interaction, all of which contribute to cancer devel-
opment [14].

Ras-related protein-1 (Rap1) signaling pathway regulates
cell adhesion and influences the expression of matrix metal-

loproteinases (MMPs), thus taking effects on cancer invasion
and metastasis [20], which was proved by differentially
expressed genes between primary and lung metastases are
involved in the Rap1 signaling pathway [21].

HUGs showed enrichment in proteolysis, negative regu-
lation of the canonical Wnt signaling pathway, hormone
activity, plasma membrane, and extracellular exosome of
cellular components. Invasive migration of tumor cells
depends on proteolytic extracellular matrix (ECM) remodel-
ing [22]. The proteolytic procedure is significant in numer-
ous phases of the metastasis. The level of MMPs is
upregulated in breast cancer, leading to enhanced proteoly-
sis and consequently tumor metastasis [23]. Wnt/β-catenin
pathway activity is essential for osteoblast differentiation,
and inactivation of Wnt/β-catenin pathway activity takes a
vital role in carcinogenesis of osteosarcoma [24]. Studies
have shown that tumor exosomes promote the progression
of cancer and act as correspondents in the interreaction of
tumors and bone cells in skeletal microenvironment [25].

(a) (b)

Figure 4: PPI network and top1cluster of hypermethylation-downregulated genes: (a) PPI network of top 5 genes and neighborhoods in
hypermethylation-downregulated genes and (b) top1 cluster.

FFAR3

BDKRB1
SAA1

TAS2R1 GRM4

NMUR2

(a)

BDKRB1

SAA1

TAS2R1

GRM4

NMUR2

(b)

Figure 5: PPI network and top1 cluster of hypomethylation-upregulated genes: (a) PPI network of top 5 genes and neighborhoods in
hypomethylation-upregulated genes and (b) top1 cluster.
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Numerous studies have concluded that the specific diag-
nosis and assessment of prognosis can be made from the
perspective of DNA methylation [9]. Therefore, three aber-
rant methylation-driven genes (COL13A1, MXI1, and
TBRG1) were screened for survival by univariate Cox regres-
sion, Venn analysis, and LASSO Cox regression. Risk models
were constructed using gene expression levels and Cox
regression coefficients. Survival analysis of risk scores

showed that patients with high risk scores had poorer sur-
vival. The AUC of the risk model in the ROC curve was
greater than 0.810. This is the first report on three aberrant
methylation-driven gene risk models for OS, which may be
a novel prognostic biomarker for OS.

Three genes (COL13A1, MXI1, and TBRG1) were
hypermethylated and downregulated in OS. Type XIII colla-
gen is a transmembrane protein located at cell-cell and cell-
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Figure 6: LASSO regression analysis of methylation-driven genes: (a) LASSO coefficients and (b) Plots of the tenfold cross-validation error
rates. The dotted lines indicate the minimal standard error and the optimal λ value.
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ECM junctions [26]. This type of collagen is poorly studied
in the field of oncology. However, it has been reported that
in urothelial carcinoma, the production of collagen type 13
alpha 1 (COL13A1) by tumor cells is closely related to tumor
invasion. And studies have shown that urinary COL13A1
protein content can act as an independent risk factor for
bladder cancer recurrence. COL13A1 in urine may be a
potential diagnostic and prognostic biomarker for bladder
cancer. Knockdown of COL13A1 with siRNA resulted in
dramatic changes in invasion patterns and reduced invasive
capacity by reducing invadopodia [27].

MAX interactor 1 (MXI1) is considered a tumor sup-
pressor gene located in the cancer hotspot region 10q24-
q25 of the human chromosome [28]. MXI1 protein specifi-
cally competes with MYC for MAX protein [29], preventing
the formation of MYC-MAX heterodimers to antagonize the
transcriptional activity of MYC [30], and participates in
multiple biological processes consist of cell growth and dif-
ferentiation [31], cell cycle regulation [32], apoptosis, and
radiosensitivity [33]. Infection of cultured DU145 prostate
cancer cells with adenovirus expressing MXI1 resulted in
decreased cell proliferation and a higher proportion of cells
in the G [2]/M phase of the cell cycle, and decreased c-
MYC expression by MXI1 resulted in cell growth arrest

[34]. Loss of the MXI1 allele is found in approximately
50% of melanoma cases and occurs more frequently in
recurrent or metastatic tumors [35]. Mxi1 knockout mice
are prone to squamous cell carcinoma and malignant lym-
phoma, and higher MXI1 protein levels are associated with
better breast cancer prognosis [36]. It is suggested that
downregulation of MXI1 may contribute to tumorigenesis
and correlate with the prognosis of tumor patients [37].

Transforming growth factor beta regulator 1 (TBRG1)
acts as a growth inhibitor and tumor suppressor. TBRG1
can activate p53/TP53, causes G1 arrest, and collaborates
with CDKN2A to restrict proliferation [38] but does not
require either protein to inhibit DNA synthesis. TBRG1
can redistribute CDKN2A into the nucleoplasm and is
involved in maintaining chromosomal stability [39]. Inhibi-
tion of miR-155 target gene TBRG1 expression by overex-
pression of miR-155 increased cell proliferation in B-cell
lymphomas [40]. Interventions for specific genes need to
be analyzed together with the HR value of survival analysis.
Thus, promoting the expression of these genes by reducing
the DNA methylation levels of these genes can inhibit oste-
osarcoma development.

Due to the lack of relevant data, the effect of abnormal
methylation on gene expression needs to be confirmed by
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collecting clinical samples. In addition, effects of DNA meth-
ylation inhibitors on osteosarcoma cell phenotype and prog-
nosis in animal models targeting the three identified genes
(COL13A1, MXI1, and TBRG1) deserve further study.

5. Conclusion

After the combined analysis of GSE36002, GSE12865, and
TARGET-OS, we discovered the key genes in osteosarcoma
that are regulated by DNA methylation and thus affect sur-
vival time. Three genes, including COL13A1, MXI1,
andTBRG1, could be used as DNA methylation biomarkers
of accurate diagnosis and therapy for osteosarcoma in the
future.
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