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Background. Ferrogenesis was strongly associated with tumorigenesis and development, and activating the ferrogenic process was
a novel regimen in treating cancer, especially conventional treatment-resistant cancers.�e purpose of the article was to construct
a ferroptosis-related long noncoding RNAs (FRlncRNAs) signature, regardless of expression levels to e�ectively predict prognosis
and immunotherapeutic response for head and neck squamous cell carcinoma (HNSCC).Methods.�e RNA-seq data for HNSCC
and corresponding clinical information were obtained in the TCGA database, and ferroptosis-related genes (FRGs) were extracted
in the ferroptosis database. On this basis, di�erentially expressed FRlncRNAs (DEFRlncRNAs) pairs were identi�ed through
coexpression analysis, di�erential expression analysis, and a fresh pairing algorithm. �en, a risk assessment model was
established with univariate Cox, LASSO, and multivariate Cox regression analysis. Finally, we evaluated the model from various
aspects, including survival status, clinicopathological characteristics, in�ltration status of immune cells, immune functions,
chemotherapeutic sensitivity, immune checkpoint inhibitors (ICIs)-related molecules, and N6-methyladenosine (m6A) mRNA
status. Result. We established a signature of 11-DEFRlncRNA pairs related to the prognosis of HNSCC that had AUC values above
0.75 in the one-, three-, and �ve-year ROC curves, underscoring the high susceptibility and speci�ability of predicting HNSCC
prognosis. Survival rates were remarkably higher for the low-risk patients than for the high-risk patients, and the signature was
signi�cantly correlated with survival, clinical, T, and N stages. Finally, immune cell in�ltration status, immune functions,
chemotherapeutic sensitivity, and expression levels of ICIs-related and m6A-related molecules were statistically di�erent among
di�erent groups. Conclusion. Our study established a novel lncRNA signature, which is independent of speci�c expression levels,
could predict patient prognosis, and might have promising clinical applications in HNCSS.

1. Introduction

Worldwide, the incidence and mortality of head and neck
cancer are estimated at 930,000 and 470,000, respectively [1].
Head and neck squamous cell carcinoma (HNSCC) con-
stitutes the majority of pathological types of head and neck
cancers, and its major risk contributors are alcohol con-
sumption, cigarette smoking, and human papilloma virus
infection. Despite signi�cant advances in treatment with

surgery, radiation, chemotherapy, targeted therapies, and
immunotherapy, the mortality rate of HNSCC remains high
[2]. High insensitivity or resistance to chemotherapy is a
major cause of death in patients with advanced HNSCC [3].
Signi�cantly, ferroptosis inducers may be an e�ective
weapon in the treatment of various chemotherapy-resistant
tumors, including HNSCC [4].

Cancer cells are usually characterized by a defect in the
cell death executioner mechanism, which is a main cause of
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resistance to treatment. Compared to normal cells, cancer
cells have an increased need for iron in order to promote
growth, and this dependence on iron leads to cancer cells
being more susceptible to iron-catalyzed necrosis called
ferroptosis [5]. Abundant evidence has found that ferro-
genesis is strongly associated with tumorigenesis and de-
velopment, and activating the ferrogenic process is a new
treatment regimen for cancer, especially conventional
treatment-resistant cancers [6–8]. Long noncoding RNAs
(lncRNAs) are the most common RNAs, which are more
than 200 nucleotides in length and have no protein-coding
ability [9]. A study illustrated that LINC00336 functioned
through interaction with ELAVL1 as a significant inhibitor
of ferroptosis in oncogenesis [10]. Mao et al. indicated that
P53RRA promoted ferroptosis in cancer by nuclear se-
questration of p53 [11]. One recent study revealed that
GABPB1-AS1 was upregulated by erastin, inhibiting per-
oxidase gene expression and accumulating reactive oxygen
species and cancer cell death, indicating that GABPB1-AS1
might have an essential molecular function in ferroptosis
with hepatocellular carcinoma cells [12]. Some other re-
search has suggested that lncRNAs exert their antitumor
effects by modulating ferroptosis [13, 14].

Consequently, the identification of ferroptosis-related
lncRNAs (FRlncRNAs) has significant implications for elu-
cidating the specific mechanism of oncogenesis and pre-
dicting the prognosis of HNSCC. A variety of studies
identified different FRlncRNAs and established signatures to
predict patient prognosis with malignancies [15–18]. How-
ever, these promising signatures have a few intrinsic short-
comings that might not be clinically applicable for translation.
0ese signatures briefly incorporate transcriptomic data and
clinical data based on sequencing or microarrays. However,
because of varied platforms, detection, and batch technolo-
gies, the expression level of individual genes has great vari-
ability. In this scenario, the utilization of these models would
be severely limited, and they would be prone to biased di-
agnostic results, so their diagnostic accuracy would not be
sufficient to translate into practical applications [19, 20]. Here,
we built a 0-or-1 matrix based on differentially expressed
FRlncRNAs (DEFRlncRNA) pairs and replaced particular
transcriptome expression values with dichotomous aggre-
gated values to eliminate bias in the transcriptome expression
values obtained under diverse situations [21].

0e study established a novel prognostic model on the
basis of DEFRlncRNA pairs that is independent of ex-
pression level. We then assessed the model’s predictive
power, tumor immune infiltration, N6-methyladenosine
(m6A) mRNA status, chemotherapeutic efficacy, and im-
mune checkpoint inhibitors (ICIs)-related molecules. In
conclusion, this signature can accurately predict patient
prognosis and characterize diverse immune landscapes,
which is a promising prognostic biomarker.

2. Materials and Methods

2.1. Collection of Data and Identification of DEFRlncRNAs.
0e RNA-seq data of HNSCC patients and corresponding
clinical characteristics were extracted from 0e Cancer

Genome Atlas (TCGA (https://tcga-data.nci.nih.gov)). Tis-
sue sources of HNSCC in the TCGA database includemainly
the oral cavity, tonsils, pharynx, and larynx. By removing
duplicate or severely missing data (unknown or 0-day fol-
low-up time and unknown survival status), valid clinical data
were obtained. On the basis of GTF files in the Ensembl
database, we added annotations to these RNA-seq data and
then obtained the expression profiles of mRNA and lncRNA
[22]. Ferroptosis-related genes (FRGs, S1 Table) were ob-
tained from the ferroptosis database (FerrDb; https://www.
zhounan.org/ferrdb) and were applied to define FRlncRNAs
through a coexpression strategy [23]. Some lncRNAs were
recognized as FRlncRNAs by criteria of a p value smaller
than 0.001 and cor greater than 0.4. Finally, we utilized the R
package Limma to distinguish DEFRlncRNAs from
FRlncRNAs, and statistical significance was assumed as
FDR< 0.05 and |log2FC|≥ 1.5.

2.2. Pairing DEFRlncRNAs. 0e DEFRlncRNAs were sepa-
rately paired, and a 0-or-1 matrix was created. If the first
DEFRlncRNA expression is lower than the second one, it is
scored as 0; otherwise, it is scored as 1. Since some pairs with
no certain class do not precisely predict patient prognosis,
these pairs were filtered out, when the amounts with an
expression quantity of 0 or 1 made up less than 20% and
more than 80% of all pairs, respectively.

2.3. Establishment of the Risk Model. Univariate Cox,
LASSO, and multivariate Cox regression analyses were
utilized to construct a prognostic model. 0e concrete risk
score on each patient was computed, and the risk score
formula was as follows: the time-dependent receiver-oper-
ating characteristic (ROC) curves and the area under the
curve (AUC) were obtained to assess the predictive ability of
the model for survival. On the basis of the maximum in-
flection point of the Akaike information criterion (AIC)
values in the five-year ROC curve, we used it to be a cut-off
point for classifying patients into high- or low-risk groups.
0e ROC curve and decision curve analysis (DCA) were also
used to assess the precision of the model compared to the
traditional clinical features. 0e comparison between the
established models was utilized to assess the forecasting
ability of the novel model [16, 24–28].

2.4. Validation of the Prognostic Model. 0e Kaplan–Meier
analysis and log-rank test were applied to assess the
difference in survival between different groups on the
basis of the R package Limma. Next, the chi-squared test
was applied to show the association between the signature
and clinical characteristics. 0en, the Wilcoxon signed-
rank test was utilized to compute the risk score differences
among different groups of these clinical characteristics.
Also, univariate and multivariate Cox analyses were ap-
plied to confirm that the risk score was an independent
predictor of clinical prognosis. Finally, we developed a
nomogram integrating the signature and other clinical
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characteristics to predict the one-, three-, and �ve-year
survival rates of patients.

2.5. Evaluation of Immune Cell In�ltration. To obtain ac-
curate immune in�ltration status, the widely accepted ap-
proaches to estimate immune cell in�ltration were used,
including TIMER, CIBERSORT, CIBERSORT-ABS,
QUANTISEQ, MCPCOUNTER, XCELL, and EPIC.

2.6. Exploration of the Risk Assessment Model. �e single-
sample gene set enrichment analysis (ssGSEA) was utilized
to evaluate the di�erence in immune function among diverse
groups. �en, we investigate the expression levels of ICIs-
related molecules and m6A-related genes and the half-in-
hibitory concentration (IC50) of chemotherapeutic agents in
di�erent groups.

3. Results

3.1. Identi�cation of DEFRlncRNAs. Figure 1 depicts a
§owchart of the complete procedure. �e RNA-seq data
and clinical information contained 44 normal samples and
501 tumor samples in TCGA-HNSCC. Table 1 shows the
clinical features of the patients. Next, according to GTF

�les from Ensembl, the data were annotated and coex-
pression analysis between FRGs and lncRNAs was done.
Finally, 1344 FRlncRNAs were distinguished by the cri-
teria of p value less than 0.001 and cor more than 0.4
(Table S2), and 196 FRlncRNAs were identi�ed as
DEFRlncRNAs by the standard of FDR < 0.05 and |
log2FC| ≥ 1 (Table S3), among which 174 genes were
upregulated and 22 genes were downregulated
(Figure 2(a)).

3.2. Construction of the Risk Assessment Model. 13,444
DEFRlncRNA pairs were acquired through the pairing of
these DEFRlncRNAs. Next, 2,753 DEFRlncRNA pairs were
distinguished as statistically signi�cant through univariate
Cox regression analysis (Table S4). Next, 19 candidate
DEFRlncRNA pairs were determined via the LASSO re-
gression analysis, whose coe©cient pro�les and a partial
likelihood deviation plot are presented in Figures 2(b) and
2(c). Finally, we utilized multivariate Cox regression analysis
to distinguish 11 DEFRlncRNA pairs and establish the
prognostic model (Figure 2(d)).

To evaluate the predictability of the model for survival,
ROC curves, AUC, and DCAwere assessed.�e ROC curves
indicated the high sensitiveness and speci�cation of the 11-
DEFRlncRNA-pair model for one-, three-, and �ve-year
survival prediction, with all AUC values exceeding 0.75
(Figure 3(a)). Also, this signature has a larger AUC value
compared to other established signatures (Figure S1).
Subsequently, in light of the maximum in§ection point
(0.302) of AIC values on the �ve-year ROC curve, we cat-
egorized patients into high- or low-risk groups (Figure 3(b)).
�e AUC and DCA for �ve-year survival prediction dem-
onstrated that the signature was more precise than other
traditional clinicopathological features (Figures 3(c) and
3(d)).
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RNA-seq of HNSCC
in TCGA

Ferroptosis-related
genes from the FerrDb

Distinguish 1344 FRIncRNAs
through co-ecpression strategy

Identify 196 DEFRIncRNAs
by differentially expressed analysis

Acquire 13,444 DEFRIncRNA pairs
through pairing DEFRIncRNAs

Obtain 2,753 DEFRIncRNA pairs
by univariate Cox regression analysis

Determine 19 DEFRIncRNA pairs
through LASSO regression analysis

Establish a 11-DEFRIncRNA-pairs model
by stepwise multivariate Cox regression analysis

ROC curve
and DCA

clinical correlation
analysis

univariate and
multivariate Cox analyse

Construction
of nomogram

Immune cell
infiltration status

Immune
function

chemotherapeutics
sensitivity

The expression of
ICIs-related genes

The expression of
m6A-related genes

Figure 1: Flowchart for this article.

Table 1: �e clinical features of HNSCC patients.

Variables Type Total
Age <�65/>65 323/174
Gender Female/male 133/364
Grade G1/G2/G3/G4/unknown 61/297/118/2/19
Stage I/II/III/IV/unknown 25/69/78/258/67
T T1/T2/T3/T4/unknown 45/131/96/170/55
M M0/M1/unknown 183/1/313
N N0/N1/N2/N3/unknown 168/65/164/7/93
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3.3. Assessment of the Prognostic Risk Model. �e pro�les of
risk score and survival status were displayed in the di�erent
groups of HNSCC patients, suggesting that the low-risk
patients had better survival status than the high-risk patients
(Figure 3(e)). With patients separated by the 11-
DEFRlncRNA-pair signature, the low-risk patients showed
substantially longer survival than the high-risk patients
(Figure 3(f)).

�e association of the risk score of the model with the
clinicopathological features of the patients was performed by
chi-squared tests. �e strip chart and scatter diagrams ac-
quired indicated that survival status, clinical, T, and N stages
were signi�cantly related to the risk score (Figures 4(a)–
4(e)). Univariate Cox analysis demonstrated that clinical
elements, such as risk score (p value <0.001), age (p
value<0.001), and clinical stage (p value<0.001), were sig-
ni�cantly related to prognosis (Figure 4(f)), andmultivariate

Cox analysis demonstrated that risk score (p value<0.001),
age (p value <0.001), and clinical stage (p value <0.001) were
also individual prognostic risk elements (Figure 4(g)). De-
tailed information is provided in Supplementary Table S5.
�e nomogram combining clinicopathological characteris-
tics and the 11-DEFRlncRNA-pair signature was reliable and
accurate and can be utilized in the survival prediction of
HNSCC patients (Figure 5).

3.4. Exploration of Tumor-In�ltrating Immune Cells. A large
number of clinical trials in cohorts have shown that im-
munotherapy has a signi�cant role in the therapy of
HNSCC, so we have further investigated the association of
this model with the tumor immune microenvironment. �e
immune cell in�ltration on the basis of TIMER, CIBER-
SORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER,
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Figure 2: Establishment of a prognostic risk model. (a) Recognition of DEFRlncRNAs. (b) LASSO coe©cient pro�les. (c) Coe©cient pro�le
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Figure 3: Continued.
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XCELL, and EPIC algorithms is presented in Figure 6. �e
�ndings revealed that the high-risk group was positively
related to tumor-in�ltrating immune cells, including B cells,
CD4+ T cells, CD8+ T cells, NK cells, macrophages,
monocytes, and myeloid dendritic cells. �e detailed
Spearman correlation analysis is presented in Supplemen-
tary Table S6.

3.5. Association between the Risk Model and Other
Biomarkers. Association between immune cell subsets and
immune functions according to ssGSEA suggested that
costimulation of APC, immune checkpoint response, cy-
tolytic response, HLA, promotion of in§ammation, cos-
timulation of T cells, coinhibition of T cells, and type II INF
response were observed as statistical di�erences among the
di�erent groups (Figure 7(a)). We discovered that the IC50
of methotrexate, gemcitabine, and docetaxel was statistical
di�erences between the di�erent groups; however, the dif-
ference in IC50 for cisplatin and paclitaxel was small
(Figure 7(b)). We also explored if the model was associated
with ICIs and revealed remarkable di�erences in the ex-
pression of CTLA-4 (p< 0.001), PDCD1 (p< 0.001), LAG3
(p< 0.01), TIGIT (p< 0.001), and BTLA (p< 0.001) among
others, between the di�erent groups (Figure 7(c)). �e
comparison of m6A-related mRNAs in di�erent subgroups
showed that the expression levels of METTL14 (p< 0.001),
YTHDC2 (p< 0.001), RBM15 (p< 0.01), YTHDF2

(p< 0.01), YTHDC1 (p< 0.001), and HNRNPC (p< 0.05)
were signi�cant (Figure 7(d)).

4. Discussion

Ferroptosis is a unique pattern of cell death that has received
extensive interest, especially in the area of tumorigenesis and
therapies [29]. Several research studies have mainly con-
centrated on developing DEFRlncRNA signatures to assess
the prognosis of tumor patients [16, 18, 30–32]. Never-
theless, the vast majority of signatures are established on the
basis of the expression levels of quantitative transcripts. �e
study was motivated by the idea of establishing an immune-
related lncRNA-pair signature and tried to establish a ra-
tional signature with two FRlncRNA combinations, which
are not a�ected by their precise expression levels in the
signature [33].

To begin with, we acquired the RNA-seq data in TCGA,
conducted coexpression analysis and di�erentially expressed
analysis to screen out DEFRlncRNAs, and obtained
DEFRlncRNA pairs by pairing DEFRlncRNAs. Secondly,
univariable Cox, LASSO, and multivariate Cox regression
analysis were applied to identify these DEFRlncRNA pairs,
and a prognostic model was established. �irdly, we com-
puted the AIC values for each point on the AUC to decide
the optimum cut-o� point to classify patients into di�erent
groups. Lastly, we assessed the novel model in various
clinical settings, such as survival, clinicopathological
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characteristics, tumor-in�ltrating immune cells, immune
functions, chemotherapeutic sensitivity, ICIs-related mole-
cules, and m6A-related genes.

Currently, the regulatory mechanisms of ferroptosis are
not su©ciently clear, particularly in the �eld of lncRNAs. A
study showed that P53RRA speci�cally interacted with the

functional regions of signaling proteins in the cytoplasm
and suppressed tumor development by regulating nuclear
sequestration of p53 through ferroptosis [11]. A group
recently reported that LINC00618 accelerated ferroptosis
by inhibiting SLC7A11, a signi�cant negative modulator of
ferroptosis [34]. Wang et al. demonstrated that LINC00336
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suppressed ferroptosis and facilitated tumor development
in lung cancer by its interaction with ELAVL1 [10]. Zhang
et al. indicated that OIP5-AS1 promotes ferroptosis re-
sistance in prostate cancer by miR-128-3p/SLC7A11 sig-
naling [35]. In this study, various FRlncRNAs in the
modeling process that have been identi�ed perform an
essential function in the tumorigenesis and progression of
HNSCC. A study showed that overexpression of C5orf66-
AS1 can prevent oral squamous cell carcinoma through
suppressing cell growth and metastasis by modulating
CYC1 [36]. Li et al. revealed that HOTAIR can bind with

miR-206, facilitating STC2 and activating the PI3K/AKT
signal pathway, thereby regulating cell biological functions
in HNSCC [37]. Cui et al. disclosed that MNX1-AS1
competitively bounds miR-370, regulating FoxM1 and
thereby modulating laryngeal squamous cell carcinoma
progression [38]. �ese �ndings might provide a valuable
perspective for future research.

Immune regulation is critical in the development, es-
tablishment, advancement, and treatment of HNSCC. A
study revealed that patients with low levels of CD8+ T cell
in�ltration received worse treatment responses to
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pembrolizumab [39]. To obtain the correlation between risk
score and tumor-infiltrating immune cells, some widely
accepted approaches were used to estimate immune infil-
trating cells, including TIMER, CIBERSORT, CIBERSORT-
ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC
[40–45]. By integrating and analyzing these results, the
results revealed that the high-risk group was positively re-
lated to tumor-infiltrating immune cells such as B cells,
CD4+ T cells, CD8+ T cells, NK cells, macrophages,
monocytes, and myeloid dendritic cells. Recent research
revealed that tumor cells experiencing ferroptosis could
enhance antitumor immunity and their efficacy can be
collaboratively contributed by ICIs, including in ICI-resis-
tant tumors [46, 47]. A novel study has shown that mac-
rophages can effectively engulf ferroptotic cancer cells in
vitro [48]. An increasing number of evidence shows that
ferroptotic cancer cells may have inherent immunogenicity,
similar to necroptotic cancer cells [49, 50].

In the study, we developed for the first time a prognostic
signature based on FRlncRNA pairs in HNSCC by struc-
turing a 0 or 1 matrix. Moreover, the signature showed
superior diagnostic accuracy and was predictive of patient
prognosis, which has clinical application in HNCSS. 0e
model can guide clinicians to choose appropriate chemo-
therapeutic agents for the treatment of HNSCC by com-
paring the sensitivity of the different groups to commonly
administered drugs. 0e expression levels of ICIs-related
molecules and m6A-related genes were statistically different
in the different groups, which could provide a therapeutic
theory for different immune and targeted therapies for
HNSCC patients.

Ferroptosis is a novel mode of programmed cell death
that may offer a novel way of antitumor treatment. None-
theless, the current study has many shortcomings and
limitations. Firstly, our sample size is relatively small and the
normal to tumor sample counts are not proportional.
Secondly, the results may be biased as the majority of
samples from TCGA are nonmetastatic. 0irdly, our sig-
nature needs further validation using external validation to
be more convincing.

In general, our research identified a new lncRNA sig-
nature that was unaffected by expression level, which might
be used to predict patient prognosis and has potential
clinical uses in HNCSS.0e putative regulatory mechanisms
by which lncRNA regulates ferroptosis and how it impacts
the therapeutic efficacy of ferroptosis inducers are likely to
be explored in future investigations. We expect that the
practicability of the model can be verified in further clinical
studies.
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