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Accurate risk stratifcation for patients with serous ovarian cancer (SOC) is pivotal for treatment decisions. In this study, we
identifed a lncRNA-based signature for predicting platinum resistance and prognosis stratifcation for SOC patients.We analyzed
the RNA-sequencing data and the relevant clinical information of 295 SOC samples obtained from Te Cancer Genome Atlas
(TCGA) database and 180 normal ovarian tissues from the Genotype-Tissue Expression (GTEx) database. A total of 284 dif-
ferentially expressed lncRNAs were screened out between platinum-sensitive and platinum-resistant groups by univariate Cox
regression analysis.Ten, a signature consisting of eight prognostic lncRNAs was used to construct a lncRNA score model by least
absolute shrinkage and selection operator (LASSO) regression andmultivariate Cox regression analysis.Te ROC analysis showed
that this signature had a good predictive performance for chemotherapy response in the training set (AUC= 0.8524) and the
testing and whole sets with 0.8142 and 0.8393 of AUC, respectively. Dichotomized by the risk score of lncRNAs (lncScore), the
high-risk patients showed signifcantly shorter progression-free survival (PFS) and overall survival (OS). Based on the fnal Cox
model, a nomogram comprising the 8-lncRNA signature and 3 clinicopathological risk factors was then established for clinical
application to predict the 1, 2, and 3-year PFS of SOC patients.Te gene set enrichment analysis (GSEA) revealed that genes in the
high-risk group were active in ATP synthesis, coupled electron transport, and mitochondrial respiratory chain complex assembly.
Overall, our fndings demonstrated the potential clinical signifcance of the 8-lncRNA-based classifer as a novel biomarker for
outcome prediction and therapy decisions in SOC patients with platinum treatment.

1. Introduction

Ovarian cancer is the most lethal gynecological malignancy
with a 5-year survival rate of 46% in women around the
world [1]. According to the global cancer statistics 2020,
there were an estimated 313,959 new cases and 207,252
cancer deaths worldwide in 2020, representing the 8th most
commonly occurring cancer and the leading cause of cancer-
related death among women worldwide. As the most

prevalent histologic subtype, SOC accounts for over 70% of
all ovarian cancers and is composed of high-grade and low-
grade SOC. As for the treatment of ovarian cancer,
platinum-based chemotherapy has been introduced to
clinical practice as the backbone drug for more than 4
decades. Platinum, that directly interacts with DNA of
cancer cells after hydration, has been employed as a thera-
peutic standard-of-care for ovarian cancer since the late
1970s [2]. Although 70% of ovarian cancer patients initially
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respond favorably to the frst application of platinum-based
chemotherapy, over 80% of them eventually relapse at some
stage [3]. Chemoresistance remains the major obstacle to
improving prognosis [4]. Te outcome of patients with
platinum resistance is generally poor, with a low response to
further chemotherapy and a median survival of less than 12
months. Shortage of ideal platinum resistance-related bio-
markers for risk classifcation and prognosis prediction is
one of the major challenges in clinics.

Long noncoding RNA (lncRNA) is a class of RNA longer
than 200 nucleotides that do not encode proteins and have
no typical open reading frame [5]. It is now clear that
lncRNAs participate in pathological processes by acting as
enhancer RNAs (eRNAs), recruiting chromatin-modifying
complexes, regulating the activity of transcription factors,
and afecting the spatial conformation of chromosomes [6].
Accumulating evidence has highlighted that dysregulation of
lncRNAs was involved in the chemoresistance and pro-
gression of ovarian cancer [7–9], and lncRNAs could rep-
resent novel biomarkers for prognostic signature in ovarian
cancer [10, 11]. However, studies are limited regarding the
association of lncRNAs signature and platinum chemo-
resistance in SOC. From this perspective, there should be
some lncRNAs that could serve as risk stratifcation bio-
markers for platinum resistance in ovarian cancer. In this
study, we analyzed the sequencing datasets of SOC from
TCGA and GTEx databases and identifed a prognostic risk
model consisting of eight platinum sensitivity-related
lncRNAs. We also explored the potential molecular
mechanisms and critical pathways that were associated with
drug resistance in SOC induced by dysregulated lncRNAs.

2. Materials and Methods

2.1. Acquisition of Gene Expression and Clinical Data. Te
lncRNA sequencing profles of 180 normal ovarian tissues
from the GTEx database (https://www.gtexportal.org/home/
datasets) and the normalized lncRNA sequencing and
mRNA sequencing of 295 SOC samples from the TCGA
dataset (https://portal.gdc.cancer.gov/repository?
facetTab=cases) were downloaded. Te normalized gene
expression data of the TCGA-SOC database after log2-
transformed were used for analysis. Samples from the TCGA
database were divided randomly into a training set (n= 179)
and an internal validation set (n= 116) at a ratio of 3 : 2 by
the “caret” package Version 6.0–86 in R software (Version
4.0.2). Te corresponding clinical data such as gender, age,
pathologic grade, tumor-node-metastasis (TNM) stage,
treatment type, treatment or therapy, prior malignancy, and
survival data were also obtained from the TCGA.

Our inclusion criteria for the study cases were as follows:
the primary tumor located in the ovary; histopathologically
diagnosed with SOC; data for primary outcome evaluation
and complete follow-up were available; the histological
grade and clinical stage were clear; and all patients were
treated with cisplatin. According to version 2.2020, National
Comprehensive Cancer Network (NCCN) guidelines in
ovarian cancer [12], 295 SOC cases extracted from the
TCGA were divided into platinum-sensitive groups

(nonrelapse and platinum-sensitive) and platinum-resistant
groups (platinum-resistant and platinum-refractory).
Nonrelapse means that no recurrence occurred in patients
from the primary treatment until the end of follow-up.
Patients who relapsed 6 months or more after initial che-
motherapy were termed platinum-sensitive [13]. Tose
whose disease recurred in less than 6 months were termed
platinum-resistant, whereas patients who were defned as
platinum-refractory for cancer progression after two con-
secutive chemotherapy regimens without ever sustaining
a clinical beneft were also classifed in the platinum-
resistant group [14]. Te clinical beneft rate (CBR) is de-
fned as without recurrence of ovarian cancer within
6 months in patients with complete remission (CR), partial
remission (PR), or stable disease (SD) after primary therapy.

2.2. Analysis of Diferentially Expressed lncRNAs. We in-
tegrated the expression matrices from the TCGA and GETx
portal and identifed the diferentially expressed lncRNAs
(DE-lncRNA) between SOC and normal tissues (marked as
“TNlncRNAs”) using the R package “DESeq2” package
(version 1.28.1) [15] and the DE-lncRNAs between the
platinum-sensitive and platinum-resistant groups (marked
as “RSlncRNAs”) using the R package “edgeR” (version
3.30.3) [16].Te R package “ggplot2” [17] (version 4.0.2) was
then used to display the candidate DE-lncRNAs. Te
threshold for DE-lncRNA selection was based on a P val-
ue< 0.05 and |log2 (FC)|> 1. Ten, we extracted the
platinum-related lncRNAs based on the intersection set of
TNlncRNAs and RSlncRNAs for further analysis using the
“Venn” package (version 1.9).

2.3. Establishment and Validation of the Prognostic Gene
Signature. To identify a multi-lncRNA signature with
a good predictive performance for prognosis, DE-lncRNAs
that were correlated with patients’ PFS in the training set
were screened using univariate Cox regression analysis. Te
lncRNAs with a Wald P value< 0.01 or |HR− 1|≥ 0.35 were
retained by the “survival” R package (version 4.0.2). Te
prognostic lncRNAs with nonzero coefcients were further
screened by combining least absolute shrinkage and selec-
tion operator (LASSO) regression analysis with 10-
foldcross-validation in the training set using the “glmnet”
R package (Version 4.0.2).

2.4. Multi-lncRNA Signature Model Establishment and
Validation. Te risk coefcients (coefs) for the candidate
lncRNAs were subsequently calculated using a multivariate
Cox proportional hazards regression analysis. We calculated
the risk score of lncRNAs (lncScore) by the following
formula:

lncScore � ExplncRNAi ∗ coef lncRNAi, (1)

where ExplncRNAi indicates the expression level of lncRNA in
patients with SOC.

Ten, the receiver operating characteristic (ROC) curve
was drawn to assess the sensitivity and specifcity of the hub
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lncRNAs for chemotherapy response in the training set by
calculating the area under the curve (AUC) with the
“heatmap” package [15].Te cutof value of the risk score for
classifying patients into the high-risk group and low-risk
group was determined when the ROC curve reached the
optimum sensitivity and specifcity among the training
cohort. Ten, we validated its classifcation properties for
chemotherapy response in the testing cohort and the whole
cohort. Kaplan–Meier curve was performed to evaluate the
survival time of the high-risk and low-risk groups, and then,
the log-rank method was used to verify the results.

2.5. Independent Prognosis Analysis and Nomogram
Construction. To verify the efcacy of the candidate lncRNA
signature in predicting the prognosis and clinicopathological
features such as age at diagnosis, clinical stage, pathological
grade, tumor residual disease, and venous invasion, uni-
variate and multivariable Cox regression analyses were used
to select independent prognostic factors. Te cox regression
coefcients were introduced to generate nomograms with
the “rms” package version 6.0–0 [18] in R software (version
4.0.2). Te survival probability estimated by Kaplan–Meier
analysis was used to correct the nomogram [19].

2.6. Gene Set Enrichment Analysis (GSEA). Te 295 SOC
samples were divided into the high-risk and low-risk groups
according to the lncScore threshold. Te “edgeR” package
was used to analyze the DE-mRNA expression profle be-
tween the two groups with FDR <0.05 and |log2FC|> 1. Te
“clusterProfler” package (version 3.16.1) in R software
(version 4.0.2) was employed to perform GSEA [20] for the
signifcantly altered gene ontology (GO) function. P< 0.01
was considered as the cutof criterion. Finally, the
“enrichplot” package (version 1.8.1) in R software (version
4.0.2) was used to demonstrate the enrichment functions
that were statistically signifcant.

3. Results

3.1. Te Study Flowchart and Patient Clinicopathological
Features. A detailed data processing fowchart is shown in
Figure 1. Te 304 SOC samples with primary therapy
outcome were retained.Tese samples consisted of 212 cases

in the platinum-sensitive group, which included 52 cases of
nonrecurrence and 160 cases of platinum-sensitive, with
a median age of 58 years old (IQR, interquartile range:
51–67) and 83 cases in the platinum-resistant group which
included 35 cases of platinum-resistant and 48 cases of
refractory, with a median age of 59 years old (IQR: 50–67).
Te clinicopathological characteristics of the patients in the
training, testing, and whole cohorts are summarized in
Table 1.

3.2. Screening for lncRNAs Associated with Platinum-Based
Response from the TCGA andGTExDatabases. Based on the
bioinformatics analysis, a total of 7245 DE-lncRNAs (5247
upregulated lncRNAs and 1998 downregulated lncRNAs in
tumor tissues) between normal and tumor tissues were
identifed, as shown in Figure 2 (Figure 2(a)). Similarly,
a total of 284 DE-lncRNAs were identifed between the
sensitive and resistant groups (126 upregulated lncRNAs and
158 downregulated lncRNAs in the platinum-resistant
group) (Figure 2(b)). Te intersection set of TNlncRNAs
and RSlncRNAs got a fnal 220 platinum-related lncRNAs
(Figure 2(c), Supplemental Table S1).

By using a univariate Cox regression analysis, eight
lncRNAs were found to be signifcantly associated with PFS
(P value < 0.01 and |HR-1|> 0.35) and were defned as the
prognostic lncRNAs in the training set (Table 2). Te
prognostic signature was composed of the following
lncRNAs: LINC01673, MIR137HG, PLCH1-AS1,
AC009988.1, C20orf78, AC003659.1, AL162713.1, and
AC099542.1. Among them, AL162713.1 presented as a risk
factor (HR> 1) for poor PFS, while the other seven lncRNAs
were protective factors for cancer progression in patients
with SOC (HR< 1) (Table 2).

3.3. Construction of the Eight lncRNAs-Based Prognostic
Model. We fnally identifed eight markers with LASSO
coefcient >0.1 and developed a risk score formula by
a linear combination of the expression values of the eight
lncRNAs weighted by multivariate Cox regression co-
efcients (Figures 2(d) and 2(e); Table 2). Te risk score for
each patient was calculated based on the following formula:

lncScore � ExpLINC01673 ×(−0.46) + ExpMIR137HG ×(−0.45) + ExpPLCH1−AS1 ×(−0.63)

+ExpAC009988.1 ×(−0.84) + ExpC20orf78 ×(−0.48)

+ExpAC003659.1 ×(−0.77) + ExpAL162713.1 × 0.61 + ExpAC099542.1 ×(−0.57).

(2)

ROC curves were plotted to evaluate the predictive
power based on specifcity and sensitivity. Te AUC of ROC
for the prognostic signature is 0.8534, which shows excellent
performance for the efcacy prediction of platinum-based
chemotherapy. Te cutof value of the risk score for clas-
sifying patients into the high-risk group and low-risk group

was determined when the ROC curve reached the optimum
sensitivity (75.8%) and specifcity (82.4%) in the training
cohort (Figure 3). Te distribution of the risk score was
plotted along with the corresponding survival outcome
(Figure 3(b1)). Te expression of the eight lncRNAs in the
training set is shown in Figure 3(c1). Kaplan–Meier analysis
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showed that patients in the high-risk group had worse PFS
than those in the low-risk group in the training cohort
(HR= 1.81; 95% CI: 1.28–2.54; P= 0.0006; Figure 3(d1)).

Furthermore, similar results were obtained for the lncScore
on OS (HR= 1.97; 95% CI: 1.33–2.92; P= 0.00068;
Figure 3(e1)).

Gene Set Enrichment Analysis 

Diferential expressed analysis (tumor vs normal; resistant vs sensitive)
 in GTEx and TCGA database 

Training cohort Testing cohort Whole cohort

univariate Cox regression

LASSO-bagging algorithm 

Predictive performance evaluation

Cox regression model
ROC Kaplan-Meier

analysis Nomogram Calibration 
analysis

8 IncRNA signature (LncScore) 

Figure 1: Study fowchart of the analytical procedure. GTEx, the genotype-tissue expression; TCGA, Te Cancer Genome Atlas; LASSO,
least absolute shrinkage and selection operator; ROC, receiver operating characteristic.

Table 1: Clinical characteristics of patients with serous ovarian cancer involved in this study.

Characteristics Training cohort Testing cohort Whole cohort
n� 179 n� 116 n� 295

Age, median (IQR), y 58 (50–67) 58 (51–68) 58 (50–67)
Sex, n (%)
Female 179 (100) 116 (100) 295 (100)

Clinical stage, n (%)
Stage II 13 (7.26) 5 (4.31) 18 (6.10)
Stage III 139 (77.65) 94 (81.03) 233 (78.98)
Stage IV 27 (15.09) 17 (14.66) 44 (14.92)

Residual disease, n (%)
No macroscopic 32 (17.88) 24 (20.69) 56 (18.98)
1–10mm 88 (49.16) 53 (45.69) 141 (47.80)
11–20mm 11 (6.15) 8 (6.90) 19 (6.44)
>20mm 30 (16.76) 22 (18.96) 52 (17.63)
X 18 (10.05) 9 (7.76) 27 (9.15)

Cancer status, n (%)
Tumor free 45 (25.14) 30 (25.86) 75 (25.42)
With tumor 126 (70.39) 81 (69.83) 207 (70.17)
X 8 (4.47) 5 (4.31) 13 (4.41)

Histologic grade, n (%)
G1/2 20 (11.17) 19 (16.38) 39 (13.22)
G3/4 159 (88.83) 97 (83.62) 256 (86.78)

Venous invasion, n (%)
No 25 (13.97) 13 (11.21) 38 (12.88)
Yes 45 (25.14) 33 (28.45) 78 (26.44)
X 109 (60.89) 70 (60.34) 179 (60.68)

Primary therapy outcome, n (%)
Complete remission 129 (72.07) 77 (66.38) 206 (69.83)
Partial remission 24 (13.41) 17 (14.66) 41 (13.90)
Stable disease 11 (6.14) 10 (8.62) 21 (7.12)
Progressive disease 15 (8.38) 12 (10.34) 27 (9.15)

IQR1/4, interquartile range; y, year; X, unknown.
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3.4. Validation of the Eight lncRNAs-Based Prognostic Model.
To verify the predictive performance of this 8-lncRNA
model, we divided patients from the testing and whole
cohorts into high-risk and low-risk groups according to the
cutof value determined in the training cohort. Te AUC of
patients in the testing and the whole sets was 0.8023 and
0.8344, respectively (Figures 3(a2) and 3(a3)), implying that
the lncScore of this model has a good performance in
predicting the efcacy of platinum-based chemotherapy.

Te distribution of risk scores and survival status of
patients in the testing and whole cohorts are shown in
Figures 3(b2) and 3(b3). Te expression of these eight
lncRNAs in the testing and whole cohorts is shown in
Figures 3(c2) and 3(c3). In the testing cohort, patients with
a high lncScore had a poor PFS (HR� 1.77; 95% CI:
1.17–2.68; P� 0.0071; Figure 3(d2)) and a short OS
(HR� 2.19; 95% CI: 1.35–3.56; P� 0.0015; Figure 3(e2)).
Likewise, a high lncScore was associated with short PFS
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Figure 2: Selection of candidate lncRNAs from TCGA and GTEx databases. ((a), (b)) Te volcano plot showing the distribution of
diferentially expressed lncRNAs between TNlncRNAs (a) and between RSlncRNAs (b) Te red, blue, and grey points represent the
upregulated, downregulated, and nondiferentially expressed lncRNAs, respectively. (c) A Venn diagram between TNlncRNAs and between
RSlncRNAs. (d) LASSO regression coefcient profles of the eight potential lncRNAs. (e) Plot of the cross-validation error rates.
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Table 2: Te eight lncRNAs screened out by a univariate Cox regression and a signature established by a multivariate Cox regression
(n� 295).

Gene ID Gene symbol Chromosome
Univariate Cox

regression Multivariable Cox regression

HR (95% CI) P value HR (95% CI) Coefcient P value
ENSG00000234052 LINC01673 chr21: 27638613–27675024(+) 0.53 (0.36–0.78) 0.001 0.63 (0.43–0.93) −0.46 0.02
ENSG00000225206 MIR137HG chr1: 97933474–98049863 (+) 0.61 (0.44–0.84) 0.002 0.64 (0.48–0.86) −0.45 0.003
ENSG00000239508 PLCH1-AS1 chr3: 155449184–155457753 (+) 0.52 (0.33–0.82) 0.005 0.53 (0.33–0.85) −0.63 0.009
ENSG00000223432 AC009988.1 chr10: 121615425–121615839 (−) 0.49 (0.33–0.71) <0.001 0.43 (0.29–0.64) −0.84 <0.001
ENSG00000149443 C20orf78 chr20: 18809728–18830153 (−) 0.45 (0.26–0.78) 0.004 0.62 (0.37–1.04) −0.48 0.071
ENSG00000237994 AC003659.1 chrX: 28942050–28942568 (+) 0.44 (0.24–0.78) 0.006 0.46 (0.25–0.84) −0.77 0.011
ENSG00000270522 AL162713.1 chr13: 43787591–43787852 (+) 1.36 (1.09–1.70) 0.006 1.84 (1.47–2.31) 0.61 <0.001
ENSG00000241593 AC099542.1 chr3:81246579–81297345 (−) 0.59 (0.44–0.79) <0.001 0.57 (0.42–0.77) −0.57 <0.001
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Figure 3: Continued.
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Figure 3: Construction and validation of the eight lncRNAs-based prognostic model. (a) ROC curve for the efcacy prediction of platinum-
based chemotherapy in the training set (a1), testing cohort (a2), and the whole cohort (a3). (b) PFS status scatter plots and risk score
distribution for patients in the training set (b1), testing cohort (b2), and the whole cohort (b3). Red and blue indicate high-risk and low-risk
scores, respectively. (c) A heatmap for the 8-lncRNA signature in the training set (c1), testing cohort (c2), and the whole cohort (c3), and red
and blue indicate high and low expression, respectively. Kaplan–Meier curves of PFS (d) and OS (e) for the high- and low-risk patients
grouped by the 8-lncRNAs signature in the training set (d1, e1), testing cohort (d2, e2), and the whole cohort (d3, e3). Te time-dependent
AUC analysis of the individual lncRNA and lncScore for predicting PFS (f) and OS (g) in the whole set.
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Multivariate Cox Regression HR (95%Cl)
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Figure 4: Forest plot for clinical characteristics and lncScore related to SOC prognosis in univariate and multivariate Cox analyses.
Identifcation of possible risk factors for poor OS in SOC by the univariate Cox analysis. (a) Multivariate Cox analysis (b). Te coordinate of
the solid circle represents the hazard ratio, and the length of the line represents the 95% confdence interval. lncScore, the risk score of
lncRNAs.
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(HR� 1.81; 95% CI: 1.39–2.36; P< 0.0001; Figure 3(d3)) and
OS (HR� 2.02; 95% CI: 1.49–2.74; P< 0.0001; Figure 3(e3))
in the whole cohort. Te time-dependent ROC analysis
indicated the area under the ROC curve of the lncScore was
the biggest for PFS and OS prediction compared with
a single lncRNA alone in the whole set data (Figures 3(f) and
3(g)).

3.5. Establishment and Validation of a Nomogram.
Univariate Cox regression analysis was performed to assess
the possible risk factors for SOC patients, including age at
frst diagnosis, clinical stage, venous invasion, pathological
grade, and tumor residual disease (Figure 4) (Figure 4(a)).
Te results showed that the clinical stage III/IV, increased
risk score and age, and residual disease >20mm were related
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Figure 5: Construction and validation of the lncScore clinicopathologic nomogram for PFS prediction in SOC patients. (a) A nomogram for
predicting 1, 2, and 3-year PFS of SOC patients. ((b)-(d)). Calibration curves of the nomogram for 1-year PFS (b), 2-year PFS (c), and 3-year
PFS (d) in the whole cohort. (e) Te ROC plot is platinum sensitivity prediction in the whole set. AUC, area under the curve.
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to poor prognosis of SOC patients. Afterward, according to
the multivariate Cox analysis, lncScore (HR= 1.91; 95% CI:
1.39–2.64; P< 0.001), age at diagnosis (HR= 1.02; 95% CI:
1.00–1.04; P= 0.003), and tumor residual disease with
1–10mm (HR= 1.87; 95% CI: 1.11–3.15; P< 0.001) and
>20mm (HR= 2.00; 95% CI: 1.11–3.61; P= 0.021) were
identifed as independent prognostic factors for OS in the
whole cohort (Figure 4(b)).

To develop a clinically applicable tool that can provide
individualized estimates of 1, 2 or 3-year PFS and 3 or 5-year
OS, a nomogram was subsequently established based on the
fnal Cox model for PFS and OS. As shown in Figure 5 (for
PFS) and Supplementary Figure S1 (for OS), the lncScore
takes the biggest weight for prediction, followed by age at
diagnosis, clinical stage, and the tumor residual disease.
Most important, the calibration plots of the nomogram
predicting PFS and OS performed well with the ideal model
(Figures 5(b)–5(d), Figures S1(b) and S1(c)).

Likewise, the lncScore showed the strongest predictive
power in distinguishing platinum-sensitive and platinum-
resistance patients with SOC (AUC� 0.8295), whereas the
AUC-ROC for postoperative tumor residual disease, clinical
stage, age at diagnosis, and pathological grade ranged from
0.5031 to 0.6555 (Figure 5(d)).

3.6. Functional Analysis of the Prognostic lncRNA Model.
GSEA was carried out to explore the biological efects of this
lncRNAmodel, and our results suggested that the high score
of lncRNAs in the model showed signifcant enrichment in
a crowd of biological process terms, mainly involved in ATP
synthesis coupled electron transport, mitochondrial re-
spiratory chain complex assembly, nuclear-transcribed
mRNA catabolic process (nonsense-mediated), protein
targeting to ER, and translational initiation (Figure 6).

4. Discussion

Te existing FIGO (International Federation of Gynecology
and Obstetrics) and AJCC (American Joint Committee on
Cancer) cancer staging systems, as well as pathological
grade, are the major factors afecting the therapeutic regi-
men decision, but they could not give enough information in
predicting platinum resistance for patients with SOC. In
recent years, dysregulated lncRNAs have been documented
to be involved in tumor progression and have a great po-
tential in the diagnosis and prognosis of ovarian cancer as
novel independent molecular biomarkers [21]. Tere is
growing evidence that lncRNAs could serve as potential
biomarkers for the prediction of platinum-based chemo-
resistance [22–24]. Several studies have shown the potential
of a lncRNA expression signature for predicting the che-
motherapeutic sensitivity of ovarian cancer while narrowly
restraining its cohort in advanced stages or high-grade SOC
[25, 26]. To date, the lncRNA expression profles-based
prognostic signature for the prediction of platinum sensi-
tivity in SOC patients have not been developed.

In this study, a comprehensive analysis of lncRNA ex-
pression profles was conducted to discriminate platinum-

based chemotherapeutic outcomes in patients with SOC.
Eight lncRNAs with predictive signatures of platinum-based
chemotherapeutic sensitivity were identifed in a large
number of SOC patients from the TCGA. Among these
lncRNAs, an increased expression level of AL162713.1 was
associated with a poor PFS, and the other 7 lncRNAs were
positively correlated with PFS time. We validated the pre-
dictive power of this 8-lncRNA signature on an internal
validation set of 116 TCGA patients as well as on the entire
TCGA cohort. Te AUC value of the prognostic signature
was 0.8295, which was similar to the previous lncRNA panel
for platinum-resistance prediction in patients with high-
grade SOC developed by Song et al. [26], whereas higher
than those developed are presented in two published studies
in advanced stage and high-grade SOC patients [21, 25]. In
stratifcation of the subjects according to the cutof value of
lncScore, the survival curves showed a high level of con-
sistency among the three datasets, which indicates that SOC
patients with higher scores have a shorter duration of PFS
andOS than patients in the lower score group.Moreover, the
8 core lncRNAs in this prognostic panel were found to be
more reliable and accurate than a single lncRNA alone. Tis
fnding is consistent with the common perception that
a multiple noncoding RNA panel is generally more precise
and robust in predicting the outcomes of patients with
cancer [27].

With further validation, the subsequentmultivariate Cox
regression analysis showed that the prognostic signature
value of the lncScore functioned as an independent risk
factor for poor prognosis in SOC patients besides age at
diagnosis and tumor residual disease >20mm. Based on the
fnal Coxmodel, a nomogramwas established for clinical use
by integrating the 8-lncRNA signature and three clinico-
pathological risk factors for the clinical assessment of the 3-
and 5-year PFS and OS probabilities for SOC patients. And
from the nomogram, we can see that the patient with
a higher lncScore, or with residual tissue of 1–10mm or
>20mm, or higher clinical staging, would have a higher total
of points and get a higher probability of disease progression
in 1, 2, or 3 years postsurgery. Notably, the AUC-ROC value
of the lncScore in the nomogram showed excellent prog-
nostic value in predicting the efcacy of platinum-based
chemotherapy compared with that of other existing risk
factors, including postoperative tumor residual disease,
clinical stage, and age at diagnosis, implying that this 8-
lncRNA signature could be a clinically applicable tool for
individualized estimation and guidance of clinical decision-
making regarding the usage of platinum-based
chemotherapy.

Among the eight lncRNAs with this signature, only
MIR137HG has been illustrated in some literature.
MIR137HG (gene ID: 400765) is the host gene for MIR137.
It was demonstrated that recruiting DNA methyltransferase
DNMT3a to the promoter of MIR137 in colorectal cancer
cells could lead to suppression of MIR137 expression [28].
Earlier studies focused on its mutation involved in the
development of liver cancer [29]. Recently, MIR137HG was
introduced to be one of the lncRNA signatures for predicting
the survival of patients with hepatocellular carcinoma [30].

Journal of Oncology 11



Additionally, MIR137HG was identifed as a core lncRNA
included in the tumorigenesis-related ceRNA network and
as a potential prognostic biomarker for laryngeal squamous
cell carcinoma and muscle-invasive bladder cancer [31, 32].
It is with regret that existing research rarely reported the
biological functions of MIR137HG in cancer. Lyu et al.
performed GO and KEGG enrichment analyses and revealed
that MIR137HG may function as an oncogene in muscle-
invasive bladder cancer by regulating epithelial cell difer-
entiation, cytokine production, the PPAR signaling pathway,
and TNF signaling pathway [31]. In the study by Zhong
et al., MIR137HG was identifed as an immune-related
lncRNA and used in a prognostic lncRNA signature in
neuroblastoma, which was mainly enriched in cancer-
related pathways and immune-related pathways [33].
Tese results are in line with what was found in this study,
which suggests that MIR137HG might be an lncRNA that
afects the prognosis in pan-cancers.

Afterward, an in-depth study by GSEA enrichment
analysis for the characteristics and biological behavior of the
constructed lncRNA model was performed to understand
the potential mechanisms involved in platinum resistance in
SOC. Earlier evidence indicated that intracellular ATP-
dependent processes contributed to cisplatin resistance of
tumor cells, and the elevated ATP level appeared to be
a consequence of enhanced mitochondrial ATP production
[34]. Meanwhile, ATP-binding cassette transporters were
implicated in the infux or efux of platinum-based che-
motherapeutic agents [35]. Consistent with the literature,
the current research found that the high-risk group of
chemoresistance was more active in ATP synthesis coupled
electron transport, further supporting this signature's in-
volvement in platinum resistance.

Mitochondria are known to play a central role in reg-
ulating cellular metabolism and producing adenosine tri-
phosphate (ATP). Interestingly, mitochondrial respiratory
chain complex assembly was also found to be active in the
high-risk group. It was documented that mitochondrial
defects and the dysfunctions of energy production con-
tributed to the resistance to platinum drugs in cancers [36],
ovarian cancer included [37]. Tis fnding is consistent with
that of Dong et al., who indicated that mitochondrial dys-
function was associated with platinum resistance [38].

In addition, GSEA results showed that some diverse
functions, like NMD, were clustered in the high-risk group.
NMD is a conserved mRNA surveillance mechanism that
triggers the degradation of aberrant mRNAs harboring
premature termination codons. In some cases, tumors
exploited NMD by positively selecting for nonsense muta-
tions to downregulate tumor suppressor genes, as has been
shown for BRCA1 and BRCA2, which were associated with
inherited susceptibility and platinum resistance in ovarian
cancer [39–43]. However, the fndings of the current study
do not support these two following studies. Although
BRCA1-Δ11q alternative splice isoform has been shown to
contribute to cisplatin-resistance in ovarian cancer, the al-
ternative splicing rate or BRCA1-Δ11q level was not altered
by frameshift mutations in exon 11-induced NMD or its
containing-transcripts. Another recent research

demonstrated that inhibition of NMD induced by stress
could lead to upregulation of the cystine/glutamate ex-
changer SLC7A11 [44], which has been associated with
platinum resistance in ovarian cancer [45]. Accordingly, this
result needs to be interpreted with caution.

Te present results indicated that the lncScore model
based on the eight lncRNAs can efectively stratify the pa-
tients with SOC into platinum-sensitive and -resistant
groups, which updated the current prognostic risk pre-
diction model for platinum resistance. Almost inevitably,
there were some shortcomings in the current study. First, the
cases were collected only from the TCGA database without
other independent datasets, which might be skewed by se-
lection bias. Furthermore, this study employed a retrospec-
tive design, so it requires prospective cohorts in clinical trials
to further address this issue. And third, the biological
function of the lncRNAs included in this 8-lncRNA sig-
nature has not been fully characterized before, and further
functional studies, both in vitro and in vivo, are required.

In summary, by analyzing the available transcriptome
sequencing data from the public data repositories, our study
presents a panel of platinum sensitivity-related 8-lncRNA
signatures with superior accuracy for prognosis and good
predictive performance in SOC patients with platinum
treatment. Furthermore, a nomogram combining the panel
of these 8 lncRNAs with clinicopathologic characteristics
showed excellent calibration consistency, improving the
model's practicality for clinical applications. In view of the
contribution to drug resistance-related biological processes,
8 lncRNAs could be potential therapeutic targets.
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