
Research Article
Identification of Immune-Related lncRNAs for Predicting
Prognosis and Immune Landscape Characteristics of Uveal
Melanoma

Wei Chen, Liying Yan, Bo Long, and Li Lin

Department of Ophthalmology, Suining Central Hospital, No. 127, West Desheng Road, Chuanshan District, Suining 629000,
Sichuan Province, China

Correspondence should be addressed to Li Lin; vivalinli@hotmail.com

Received 1 July 2022; Revised 18 July 2022; Accepted 2 August 2022; Published 29 August 2022

Academic Editor: Jinghua Pan

Copyright © 2022 Wei Chen et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Immune-related genes and long noncoding RNAs (lncRNAs) have a signi�cant impact on the prognostic value and im-
munotherapeutic response of uveal melanoma (UM). �erefore, we tried to develop a prognostic model on the basis of
irlncRNAs for predicting prognosis and response on immunotherapy of UM patients. We identi�ed 1,664 immune-related
genes and 2,216 immune-related lncRNAs (irlncRNAs) and structured a prognostic model with 3 prognostic irlncRNAs by
co-expression analysis, univariable Cox, LASSO, and multivariate Cox regression analyses. �e Kaplan–Meier analysis
indicated that patients in the high-risk group had a shorter survival time than patients in the low-risk group.�e ROC curves
demonstrated the high sensitivity and speci�city of the signature for survival prediction, and the one-, three-, and �ve-year
AUC values, respectively, were 0.974, 0.929, and 0.941 in the entire set. Cox regression analysis, C-index, DCA, PCA analysis,
and nomogram were also applied to assess the validity and accuracy of the risk model. �e GO and KEGG enrichment
analyses indicated that this signature is signi�cantly related to immune-related pathways and molecules. Finally, we in-
vestigated the immunological characteristics and immunotherapy of the model and identi�ed various novel potential
compounds in the model for UM. In summary, we constructed a new model on the basis of irlncRNAs that can accurately
predict prognosis and response on immunotherapy of UM patients, which may provide valuable clinical applications in
antitumor immunotherapy.

1. Introduction

Uveal melanoma (UM) is the commonest primary in-
traocular malignancy in adults, contributing up to 85% of
ocular melanomas, and more than half of individuals with
UM experience systemic metastatic disease [1, 2]. UM
mainly originates from the choroid, iris, and ciliary body and
has a prevalence of 5.1 permillion in America [3, 4]. Over the
past 30 years, although local treatments for UM have been
developed, 5-year survival rates have not changed, and no
e¡ective complementary therapy is currently available to
decrease the risk of metastasis from UM [5, 6]. In addition,
because of the high heterogeneity of UM, patients with
identical stages receive similar treatment but showed very
diverse prognostic outcomes [7]. Hence, the identi�cation of

dependable prognostic biomarkers is essential for person-
alized treatment.

Noticeably, immunotherapy remarkably improved the
prognosis of patients with cutaneous melanoma, yet poorly
improved UM [4]. Previous retrospective studies have shown
a low immune response rate to immunotherapy in UM
patients, such as 10-21% for the combination of ibritumomab
and nilumab, 3.6% for anti-PD-1 antibodies, and 5% for
ibritumomab monotherapy [8–12]. Long noncoding RNAs
(LncRNAs) are engaged in tumor cell proliferation, invasive
metastasis, apoptosis, drug resistance, immune escape, and so
on due to their in¤uence on oncogenes and oncogenes of
tumors [13, 14]. �erefore, lncRNAs are considered a highly
promising candidate for personalized medicine for UM pa-
tients as a biomarker as well as a potential therapeutic target.
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In this research, we identified the immune-related
lncRNAs (irlncRNAs) and developed a risk assessment
model by using univariable Cox, LASSO, and multivariate
Cox regression analyses. Also, we evaluated the immuno-
logical atlas and found a variety of new potential therapeutic
drugs in the model. In summary, we developed a risk as-
sessment model for UM on the basis of irlncRNAs that can
predict the prognosis and immunotherapy response in UM
patients.

2. Methods and Materials

2.1. Preparation of Data. RNA-seq data and clinical in-
formation for UM were gathered using %e Cancer Genome
Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga). Annota-
tions based on the Ensembl database (http://asia.ensembl.
org) were used to derive mRNA and lncRNA expression
patterns. %e ImmPort database (http://www.immport.org)
was utilized to derive the expression patterns of immune-
related genes. In order to identify irlncRNAs, the cor >0.4
and p∗0.001 criteria were applied using the R
package limma.

2.2. Establishment of Risk Assessment Model. A training
subset and a test subset were created from the whole TCGA
dataset. %e whole set was utilized to identify prognosis of
irlncRNAs, LASSO regression analysis was used to filter
these prognosis of irlncRNAs, and multivariate Cox re-
gression analysis was used to examine the remaining
prognosis of irlncRNAs, resulting in a prognostic risk model.
Each patient had a unique risk score, which was determined
using the following formula:k

i�1 βisi. UM patients were
assigned to high- and low-risk groups on the basis of their
median risk score.

2.3. Validation of Prognostic Model. %e Kaplan–Meier
analysis was performed to compare the survival rates of the
high-risk and low-risk groups. %e area under the curve
(AUC) and time-dependentreceiver-operating characteristic
(ROC) curves were applied to assess the model's ability to
predict survival when compared to standard clinicopatho-
logical features. Cox analyses, both univariate and multi-
variate, were utilized to confirm that the model was an
independent determinant of prognosis. To examine the
model's accuracy in comparison to standard clinicopatho-
logical features, the concordance index (C-index) and de-
cision curve analysis (DCA) were used. A nomogram
integrating prognostic signatures was constructed to predict
the one-, three-, and five-year survival rates of patients. %e
whole gene expression profiles, immune-genes, irlncRNAs,
and the irlncRNAs in themodel were subjected to a principal
component analysis (PCA) study for exploratory display of
high-dimensional data.

2.4. Exploration of Immunological Atlas. %e Gene Ontology
(GO) p< 0.05 and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) p< 0.05 enrichment analyses for

differentially expressed genes were used to investigate
possible causes of prognostic variations in various risk
categories. In order to obtain a valid assessment of immune
infiltration, we employed the current established method-
ologies, including xCELL, TIMER, quanTIseq, MCP-
counter, EPIC, CIBERSORT-ABS, and CIBERSORT. In
our study, Wilcoxon signed rank test was used to compare
the expression levels of immune checkpoint inhibitors
(ICIs)-related molecules between groups. Single-sample
gene set enrichment analysis (ssGSEA) was used to de-
termine whether immune function differed between groups.
Using the tumor immune dysfunction and exclusion (TIDE)
method, we were able to predict the variation in immu-
notherapeutic responses between groups.

2.5. Identificationof PotentialDrugs. Based on the Genomics
of Drug Sensitivity in Cancer (GDSC, https://www.
cancerrxgene.org), we calculated the half inhibitory con-
centration (IC50) of compounds. In addition, we used
Wilcoxon signed rank testing to identify potential com-
pounds for UM treatment in the clinic based on the dif-
ference in IC50 between different groups.

3. Results

3.1. Identification of Immune-Related lncRNAs. TCGA was
employed to acquire RNA-seq data and clinical information
for UM, which included 80 tumor samples. On the basis of
the given data, we extracted expression profiles for
1,664 immune-related genes and 16,876 long noncoding
RNAs. As a result of the co-expression analysis, 2,216
irlncRNAs were identified (cor >0.4 and p 0.001).

3.2. Construction of Prognostic Risk Model. Based on a ratio
of 1 :1, the entire TCGA set (80 samples) was randomly
allocated to a training set (40 samples) and a testing set (40
samples), and a risk model was built by the entire set. We
screened 409 prognostic irlncRNAs using univariate Cox
regression analysis from a total of 2,216 irlncRNAs (p 0.05;
Supplementary Table1). %e LASSO regression analysis was
utilized to filter out 6 candidate irlncRNAs from a total of
409 prognostic irlncRNAs, as shown in Figures 1(a) and
1(b), with the associated LASSO coefficient profiles and
a partial likelihood deviation plot. Finally, a risk assessment
model on the basis of multivariate Cox regression analysis
was developed, which incorporated 3 irlncRNAs
(AP005121.1, AC104117.3, and SOX1-OT; Figure 1(c)).
Supplementary Table 2 demonstrates the baseline features of
these datasets, with no statistically significant variations in
clinical features (p> 0.05).

3.3. Validation of Risk Assessment Model. %e survival
analysis, irlncRNA expression profiles, pattern of survival
status, and distribution of risk grades between different
groups were described in the entire set (Figures 1(d) and
1(e)), the training set (Supplementary Figure 1(a)), and the
testing set (Supplementary Figure 1(b)), indicating that
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Figure 1: (a) LASSO coefficient profiles. (b) Coefficient profile plot generated against the log sequence. (c) 3 prognostic irlncRNAs identified
bymultivariate Cox regression analysis. (d) Kaplan–Meier survival curve of the model in the entire set. (e)%e expression of the 3 prognostic
irlncRNAs, patterns of survival outcome, and distribution of risk score for patients between different groups in the whole set.
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Figure 2: (a) One-, three-, and five-year AUC values, respectively, were 0.974, 0.929, and 0.941 in the entire set. (b)%e five year AUC values
of the model were higher than the traditional clinicopathological characteristics. (c) Univariate Cox regression analysis demonstrated that
risk score was statistically associated with prognosis. (d) Multivariate Cox regression analysis showed that the risk score was an individual
prognostic risk factor. (e, f ) %e C-index and DCA demonstrated that the signature better forecasted the prognosis of UM than other
traditional clinicopathological characteristics.
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patients in the high-risk group had a shorter survival time
than patients in the low-risk group. %e ROC curves dem-
onstrated the high sensitivity and specificity of the signature
for survival prediction, and the one-, three-, and five-year
AUC values, respectively, were 0.974, 0.929, and 0.941 in the
entire set (Figure 2(a)), 0.967, 0.886, and 0.964 in the testing
set (Supplementary Figure 2(a)), and 0.974, 0.924, and 0.939
in the training set (Supplementary Figure 2(b)). And, the five-
year AUC values of themodel were higher than the traditional
clinicopathological characteristics (Figure 2(b)).

Risk score was shown to be a significant prognostic risk
factor in univariate Cox regression analysis (p � 0.001;
Figure 2(c)) and an independent prognostic risk factor in
multivariate Cox regression analysis (p � 0.003;
Figure 2(d)). %e risk model predicted the prognosis of UM
better than other standard clinicopathological features,
according to the C-index and DCA (Figures 2(e) and 2(f )).
%e signature and clinicopathological features nomogram
was found to be trustworthy and sensitive, and it may be
used to predict UM patient survival (Figure 3). %e
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Figure 4: (a–d) PCA indicated that the distributions of entire gene expression profiles, immune-related genes, and irlncRNAs between
different groups were relatively scattered, while the distributions of 3 irlncRNAs in the signature between different groups had different
distributions.
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nomogram's calibration plot predicts the probability of
a one-, three-, and five-year prognosis (Supplementary
Figure 2(c)). PCA indicated that the distributions of entire
gene expression profiles, immune-related genes, and
irlncRNAs between different groups were relatively scattered
(Figures 4(a)–4(c)), while the distributions of 3 irlncRNAs in
the signature between different groups had different dis-
tributions (Figure 4(d)).

3.4. Exploration of Functional Enrichment. We used GO and
KEGG enrichment analyses to study the underlying mo-
lecular processes of the irlncRNAs model. Immune cell
activation, proliferation, and adhesion, as well as MHC
binding, were all shown to be involved in the GO enrichment
analysis, p< 0.05 (Figure 5(a) and Supplementary Table 3).
Immunological system illnesses, immune responses, and
immune cell differentiation were all shown to be involved in
the KEGG enrichment analysis, p< 0.05 (Figure 5(b) and
Supplementary Table 4).

3.5. Explorationof ImmunologicalAtlas. In terms of immune
cell infiltration, the high-risk group had more CD4+ T cells,
CD8+ Tcells, NK cells, M1 macrophages, M2 macrophages,
myeloid dendritic cells, and fibroblasts, whereas the low-risk
group had more mast cells (Figure 6). CTLA-4 (p 0.01),
PDCD1 (p 0.001), LAG3 (p 0.001), TIGIT (p 0.001), and
BTLA (p 0.01), among other genes, were found to be
substantially different between different groups
(Figure 7(a)). Apart from APC co-inhibition and type II IFN
response, the bulk of immune activities were statistically
distinct between different groups (Figure 7(b)). TIDE scores
were higher in the high-risk group than in the low-risk group
(p 0.05), indicating that the high-risk group was more likely
to respond to immunotherapy (Figure 7(c)).

3.6. Recognized Potential Compounds. Along with immu-
notherapy, we searched for potential compounds that target
our signature for treating UM patients. Finally, we dis-
covered that various agents (AMG.706, bicalutamide,
BX.795, etc.) were identified for significant differences in the
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estimated IC50 between high- and low-risk groups (Figure 8
and Supplementary Figure S3).

4. Discussion

Currently, research for the UM model on the basis of
lncRNAs is still scarce. Chen et al. recognized six autophagy-
associated lncRNAs and constructed a signature, which can
predict the prognosis of UM patients [15]. Liao et al.
established an eight prognostic microenvironment-related
lncRNAs signature and identified potential small molecule
drugs [16]. In summary, we established for the first time a risk
assessment model on the basis of irlncRNAs that can predict
the prognosis and immunotherapy response in UM patients.

While immunotherapy has significantly improved the
therapeutic regimens to cutaneous melanoma, its efficacy in
UM has not been as dramatic. %e eye is associated with
many positive immunosuppressive mechanisms compared
to other parts of the tissue [17–19]. Based on previous
studies, lncRNAs and immune-related genes have been
frequently used for model construction and subtype iden-
tification, and promising results have been observed
[20–22]. We were motivated by the function of immune-
related genes and lncRNAs in UM and tried to construct
a prognostic risk model on the basis of irlncRNAs.

In the research, 2,216 irlncRNAs were identified to in-
vestigate the prognostic function of irlncRNAs. %en, 409
irlncRNAs were associated with prognosis, 6 candidate
irlncRNAs (ELFN1-AS1, AF131216.4, AP005121.1,
AC079089.1, AC104117.3, and SOX1-OT) were filtered out by
LASSO, and 3 prognostic irlncRNAs were applied to construct
amodel. Among these 6 candidate irlncRNAs, ELFN1-AS1was
considered as an oncogene in a variety of cancers, AC079089.1,

AC104117.3, and SOX1-OT have been shown to have
a function in the progression of various diseases, and other
lncRNAs were first identified [23–28]. %e Kaplan–Meier
analysis, ROC analysis, Cox regression analysis, C-index, DCA,
PCA analysis, and nomogram were applied to assess the val-
idity and accuracy of the risk model. %e results of GO and
KEGG enrichment analyses indicated that the model is sig-
nificantly related to immune-related pathways and molecules.

We found that CD4+ Tcells, CD8+ Tcells, NK cells, M1
macrophages, M2 macrophages, myeloid dendritic cells, and
fibroblasts were more abundant in the high-risk group.
Significantly, high lymphocytic infiltration in um is asso-
ciated with poor prognosis, in agreement with our results
[23–29]. We also found that the expression of most ICIs-
related molecules and the scores of most immune functions
were higher in the high-risk group than low-risk group.
Also, TIDE scores were higher in the high-risk group than in
the low-risk group. TIDE is a computational platform for
immunotherapy prediction, and its predictive capabilities
have been demonstrated in many cancers with great success
[30–33]. %ese results suggest that patients in the high-risk
group have a higher response rate to immunotherapy.
%erefore, we believe that patients in the high-risk group
might be more appropriate to receive immunotherapy. We
also discovered that various drugs (AMG.706, Bicalutamide,
BX.795, etc.) were identified for significant differences in the
IC50 between different groups. Currently, the immune
pathogenesis of UM related to immune cells, cytokines, etc.,
has been further understood, but they are still unclear, and no
definite and effective immunotherapeutic drug has been
developed so far. %e immune cells and cytokines associated
with UM are still unclear.Although immunotherapy with
anti-CTLA4 and anti-PD-l/PD-Ll reagents has significantly
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improved the treatment of metastatic cutaneous melanoma,
the application in UM has not been satisfactory [34]. In
addition, how to better increase Ml-type TAM, promote DC
maturation, and how to suppress NKT cells and activate NK
cells, improve DC vaccine, etc., also need to be studied. With
the increasing research in basic immunology and ophthal-
mology, NK cell activation, DC vaccine, and T cell relay
therapy have been improved. %e immunopathogenesis of
UM and the related disciplines such as basic immunology and
ophthalmology are developing rapidly. We believed that the
research on the immunopathogenesis and immunotherapy of
UM will make new breakthroughs in the future.

4.1. Limitations. Naturally, this study has some drawbacks
and limitations. On the one hand, the UM samples extracted
from the TCGA consisted of only 80 tumor samples and no
normal samples, which was small and did not allow for
differential expression analysis. On the other hand, the model
developed in this study lacks validation by cellular experi-
ments, animal experiments, or clinical samples. In subsequent
studies, we will further expand the tumor samples, collect as
many normal samples as possible, and conduct relevant
experiments to follow-up our experimental findings.

5. Conclusions

Taken together, we constructed a new model on the basis of
irlncRNAs that can precisely predict prognosis and response
on immunotherapy of UM patients, which may provide
worthwhile clinical applications in antitumor
immunotherapy.

Data Availability

%e original contributions presented in the study are pub-
licly available. %ese data can be found at https://portal.gdc.
cancer.gov (TCGA-UM).

Ethical Approval

All data of this study were public and required no ethical
approval.

Conflicts of Interest

%e authors declare that they have no conflicts of interest.

Authors’ Contributions

Wei Chen, Liying Yan, and Bo Long wrote the manuscript,
performed data extraction, and did statistical analysis. Wei
Chen, Liying Yan, and Bo Long contributed equally to this
work and are the co-first authors. Li Lin designed the re-
search. All authors approved the final manuscript.

Acknowledgments

%is work was funded by the Research Project of Suining
Central Hospital (grant number: 2019y41).

Supplementary Materials

Figure S1: (a) Kaplan–Meier survival curve, the expression of
the 3 prognostic irlncRNAs, patterns of survival outcome,
and distribution of risk score for patients between different
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one-, three-, and five-year AUC values, respectively, were
0.967, 0.886, and 0.964 in the testing set and 0.974, 0.924, and
0.939 in the training set. (c) %e calibration plot of the
nomogram predicting the probability of the one-, three-, and
five-year prognosis. Figure S3: identification of potential
drugs targeting the model (P< 0.05). Table S1: identified 409
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