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The diverse pharmacological role of dihydropyrimidinone scaffold has made it to be an interesting drug target. Because of the high
incidence and mortality rate of breast cancer, there is a dire need of discovering new pharmacotherapeutic agents in managing this
disease. A series of twenty-two derivatives of 6-(chloromethyl)-4-(4-hydroxyphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-
carboxylate (3a-3k) and ethyl 6-(chloromethyl)-4-(2-hydroxyphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4a-4k)
synthesized in a previous study were evaluated for their anticancer potential against breast cancer cell line. Molecular docking
studies were performed to analyze the binding mode and interaction pattern of these compounds against nine breast cancer
target proteins. The in vitro cell proliferation assay was performed against the breast cancer cell line MCF-7. The structure
activity relationship of these compounds was further studied using QSARINS. Among nine proteins, the docking analysis
revealed efficient binding of compounds 4f, 4e, 3e, 4g, and 4h against all target proteins. The in vitro cytotoxic assay revealed
significant anticancer activity of compound 4f having IC50 of 2.15μM. The compounds 4e, 3e, 4g, and 4h also showed
anticancer activities with IC50 of 2.401, 2.41, 2.47 and 2.33μM, respectively. The standard tamoxifen showed IC50 1.88μM.
The 2D qualitative structure-activity relationship (QSAR) analysis was also carried out to identify potential breast cancer
targets through QSARINS. The final QSAR equation revealed good predictivity and statistical validation R2 and Q2 values for
the model obtained from QSARINS was 0.98 and 0.97, respectively. The active compounds showed very good anticancer
activities, and the binding analysis has revealed stable hydrogen bonding of these compounds with the target proteins.
Moreover, the QSAR analysis has predicted useful information on the structural requirement of these compounds as
anticancer agents with the importance of topological and autocorrelated descriptors in effecting the cancer activities.
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1. Introduction

Many of the pharmacologically active natural and syn-
thetic compounds are composed of the heterocyclic
nucleus. The derivatives of these agents containing nitro-
gen, oxygen, and sulphur atoms act as an important scaf-
fold in drug designing. They are also an integral part of
nucleic acid base pairs DNA and RNA such as purines
and pyrimidines [1].

Most of the alkaloids isolated from marine sources
showed significant pharmacological properties which con-
sisted of dihydropyrimidine nucleus. Batzelladine alkaloids
A and B are one of these alkaloids isolated from marine
sources and act as potent inhibitors of HIV gp-120-CD4.
This extended their application in pharmaceutical industry
after the identification of another novel cell permeable mol-
ecule, 4-(3-hydroxyphenyl)-2-thione derivative, also called
manostrol, as anticancer agent. The anticancer activity of
manostrol depends on a new mechanism of affecting cell
division by specific and reversible inhibition of mitotic kine-
sis motility without targeting tubulin [2]. The inhibitory
action has shown to be on human kinesin Eg5 which causes
mitotic arrest followed by apoptosis. This motor protein
causes mitotic spindle formation. Other possible targets of
these moieties have also been studied including centrin, cal-
cium channels, and topoisomerase I [3]. Analogs of manos-
trol such as oxomonastrol, thio, and 3,4-methylenedoxy
derivatives were developed, and their activity against HT-
29 cancer cell lines were tested. Various other synthetic ana-
logs L-771,688 and SQ 32926 have also been developed [1].

Since pyrimidine derivatives shows significant pharma-
cological activities and are essential constituents of living
nature. Biginelli compounds have gained interest since last
two decades because of their structural similarity with the
clinically active dihydropyrimidine. These compounds are
called as the esters of 6-methyl-2-oxo-4- phenyl-1,2,3,4-tetra-
hydropyrimidine-5-carboxylic acid and were first synthesized
by Pietro Biginelli by the condensation reaction of β-ketoe-
sters, aryl aldehydes, and urea under acidic condition
through one pot three component synthesis [4].

Manostrol is one of the most studied Biginelli adducts
because of its promising anticancer activities providing an
inspiration for the design of new compounds. Several man-
ostrol analogs have shown potent anticancer activities
against MCF-7 breast cancer cell lines. Globally, breast can-
cer has been diagnosed as the most commonly diagnosed
malignancy having the highest incidence rate of mortality
in women [5]. The progression of breast cancer is associated
with several factors such as age, personal history of breast
cancer, reproductive, environmental, and genetic factors.
Prognostic factors can be used to predict the course and clin-
ical outcome of breast cancer. These include ER, PR, Ki-67,
and HER-2. Other factors that can be used to predict prog-
nosis include cyclin E, cyclin D1, and cathepsin D but are
not measured routinely. The status of progesterone receptor,
estrogen receptor, and the human epidermal growth factor
receptor 2 basically determines the scheme for the treatment
of breast cancer along with the clinicopathological factors
such as tumor grade, size, and status of lymph node [6].

The synthesis of derivatives of different scaffold having
pharmacological importance has helped us in determining
the biological activities of compounds that can further be
screened for disease management [7–11].

In silico drug designing is a form of computer-based
modeling and is a rapidly developing field. The development
of in silico target identifications of drugs with the strategy of
fast speed and low cost is receiving a huge attention world-
wide because of the limitation of throughput, accuracy and
cost, experimental techniques that cannot be applied widely
[12]. Major roles of in silico approaches in drug discovery
processes include virtual screening, in silico ADME/T pre-
diction and advanced methods for determining protein-
ligand binding and quantitative structure-based drug design.

The in silico quantitative structure activity relationship
(QSAR) is another approach used to find out a statistical
correlation between the structure and function with the help
of chemometric technique. The structure represents the sub-
stituents, properties, or descriptors of the molecules and
their interaction energy fields, while the function refers to
a biological and experimental outcome [13]. The chemomet-
ric procedures in QSAR refer to MLR, PLS, PCR, PCA, GA,
etc. Several tools are available for the prediction of QSAR
models that perform specific QSAR steps such as modelling,
validation of statistics, and the descriptor generation [14].
The Open3DQSAR or PyCoMFA generates the CoMFA-
like models while CORAL, a freeware software, uses a spe-
cific set of descriptors (SMILE based) to generate the QSAR
PLS model [15, 16]. Another standalone freeware QSAR tool
is the QSAIRNS that can help in building the QSAR MLR
having the ability of model validation, data partitioning, pre-
dicting a new activity of compound, and determination of
applicability [17]. Ezqsar and camb are another R-package-
based tools that are available openly. They are basically used
for beginners that utilize a single function to do the entire
job [18].

In view of finding new potential leads with effective che-
motherapeutic activities, about twenty two derivatives of 6-
(chloromethyl)-4-(4-hydroxyphenyl)-2-oxo-1,2,3,4-tetrahy-
dropyrimidine-5-carboxylate (3a-3k) and ethyl 6-(chloro-
methyl)-4-(2-hydroxyphenyl)-2-oxo-1,2,3,4-tetrahydropyri-
midine-5-carboxylate (4a-4k) were synthesized in a previous
study [19] (Figure 1). A neat reaction of urea, 4-choloroethy-
lacetoacetate, and substituted benzaldehyde were refluxed
for 1 h to obtain 6-chloromethyl-DHPMs. The resulting
compounds were further reacted with a series of benzyl
amine derivatives in methanol. The crystals were recrystal-
lized using ethanol. The compounds were then characterized
using FT-IR, 1H NMR, and 13C NMR. The structures of the
synthesized compounds are shown in Figure 2. The spectral
analysis of these compounds is mentioned in supplementary
Table 1. The compounds were screened for their anticancer
activities. The anticancer activities of these synthesized
compounds were evaluated against the breast cancer target
proteins identified through system biology approach [20].
The system biology approach has helped in identifying
several gene targets in better management of diseases [21].
The in silico molecular docking studies of these
synthesized compounds were performed to screen for the
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best targets for these compounds. Furthermore, the in vitro
efficacy of these compounds against breast cancer cell line
MCF-7 was also performed to understand their antitumor
effects. The in silico 2D-QSAR analysis was done to
evaluate the structure activity relationship of synthesized
compounds by QSARINS [22]. This was done to analyze
the predicitivity and stability of models and the role of
essential descriptors generated from both models.

2. Methodology

2.1. In Silico Chemoinformatics Analysis of Synthesized
Ligands. The synthesized chemical structures were drawn
in ChemBioDraw Ultra 14.0 and energy minimized using
ChemBio3D Ultra 14.0. The Molsoft tool (http://www
.molsoft.com/) was used to evaluate the basic chemical prop-
erties such as molecular weight (g/mol), hydrogen bond
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Figure 1: The general scheme used for the synthesis of dihydropyrimidinone derivatives.
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Figure 2: Structures of synthesized dihydropyrimidinones derivatives (3a-3k and 4a-4k).
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acceptor (HBA), hydrogen bond acceptor (HBA), LogP,
molecular volume (A3), polarizibility, and drug likeness.
Moreover, the ADMET properties were also evaluated using
online pkCSM tool. The tool is used to predict the pharma-
cokinetics, drug likeness, and medicinal chemistry aspect of
small molecules. The compounds having molecular weight
< 500 g/mol, hydrogen bond donor < 5, hydrogen bond
acceptor < 10, and number of rotatable bonds < 10 are drug
likable compounds. The server also helps in identifying the
absorption parameters such as the water solubility and intes-
tinal absorption as well as skin permeation. The distribution
properties such as blood brain barrier permeation and CNS
permeation were also calculated. The total renal clearance
and the toxicity profiling including Ames test, hepatotoxic-
ity, and skin sensitivity was also evaluated. The ligand and
lipophilic ligand efficiency (LE and LLE) as well as
lipophilicity-corrected ligand efficiency (LELP) values were
predicted using Data Warrior tool [23].

2.2. Molecular Docking Studies. PyRx docking software, an
open source software, was used to identify the best target
proteins for the proposed compounds [24]. Several libraries
of compounds can be screened for potential target identifica-
tion using PyRx, starting from job preparation to submission
and analysis of results. PyRx is an easy to use and a valuable
tool for Computer-Aided Drug Design and has a docking
wizard AutoDock Vina. The visual analysis of results in
PyRx is based on embedded Python Molecular Viewer
(ePMV), and the results are stored in a built-in SQLite
database.

2.3. Selection of Breast Target Proteins. The target proteins
identified through system biology approach were used in
order to study the protein-ligand interaction of these pro-
teins with the synthesized compounds [20]. The differen-
tially expressed breast cancer genes were identified through
extensive data mapping, and functional enrichment analysis
was performed to screen the differentially expressed genes
between breast tumor cells and treated tissues. Moreover,
the interactions of these genes with several other proteins
involved in breast cancer progression were studied. The
shortlisted genes showed essential role in the progression
of breast cancer. All the source proteins and the target pro-
teins were shortlisted in order to identify the best target for
these compounds. These proteins include ESR, PR, BRCA1,
BRCA2, AKR1C2, HER2, CTNNB1, PLAUR, and RHEB.

2.4. Preparation of Proteins. Protein Data Bank was used to
retrieve the atomic coordinates of proteins ESR (PDB ID
=1L2I), PR (PDB ID = 1A28), BRCA1 (PDB ID = 4IGK),
BRCA2 (PDB ID = 3EU7), AKR1C2 (PDB ID = 4JTR),
HER2 (PDB ID = 1N8Z), CTNNB1 (PDB ID = 3SL9),
PLAUR (PDB ID = 2FD6), and RHEB (PDB ID = 3T5G).
The details of all proteins are mentioned in Table 1. All
the proteins obtained from Protein Data Bank contained
water molecules and the original ligands. For the prepara-
tion of protein structures, cocrystallized ligand and any
water molecules that were present were removed using
MGL Tools-1.5.6, nonpolar hydrogen bonds merged,

AD4.2 type and Gasteiger charges were assigned, and pro-
teins were saved in .pdbqt format.

2.5. Active Site Prediction. DOGSITESCORER was used to
identify the active sites of the proteins from the 3D coordi-
nates of the receptor. DOGSITESCORER is an automated
tool for pocket prediction based on 3D structure of protein
and calculates the druggability of protein cavities [34]. For
the prediction of druggability of pockets, the supervised
machine learning technique (SVM) is utilized that predicts
the potential pocket and describes them through descriptors.
The site provides a druggability score between 0 and 1 show-
ing the higher the score, the more the pocket is druggable.
PyMOL was used to visualize the active site of target pro-
teins and the residues involved [35].

2.6. Preparation of Ligand. The structure of ligands was
drawn using ChemBioDraw Ultra 14.0, and energy was min-
imized using MM2 with the help of ChemBio3D Ultra 14.0.
The structures were saved in PDB format for AutoDock
compatibility. The ligand.pdb files were converted to
ligand.pdbqt format using MGL Tools-1.5.6 (The Scripps
Research Institute).

2.7. AutoDock Run. The protein ligand binding was analyzed
with the help of PyRx tool linked with AutoDock Vina in
order to find the correct conformation and configuration
of the ligands having the minimum energy structure. The
grid centers were positioned on the active binding sites of
both proteins, and the docked complexes were examined
on the basis of their binding affinities (kcal/mol) and inter-
action patterns.

2.8. Analysis of Binding Affinity. The boxplot function in R-
4.0.2 package was used to perform the scoring analysis of
each protein with the synthesized compounds [36]. For
interaction analysis, the Discovery Studio Visualizer Soft-
ware, Version 4.0 (http://www.accelrys.com) was used to
study the binding modes of synthesized compounds with
the target proteins.

2.9. In Vitro Breast Cancer Activities of Synthesized
Compounds. The anticancer activity of the synthesized com-
pounds was determined against human breast (MCF-7) can-
cer cell line. The MCF-7 (ATCC® HTB-22™) cell lines were
gifted by Dr Syed Shahzad ul Hussan from Lahore Univer-
sity of Management Sciences (LUMS). The cells were cryo-
preserved at -196°C. The cells were grown in RPMI
(Roswell Park Memorial Institute Medium) supplemented
with 10% fetal bovine serum (FBS) and 1% penicillin/strep-
tomycin purchased from Gibco, USA. The cultures were
maintained in 5% CO2 atmosphere and a humidified incu-
bator at 37°C. The different concentrations of synthesized
compounds were used to assess the anticancer activity. 3-
(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bro-
mide (MTT) (Sigma) assay was used as described by Mos-
mann with a slight modification of 72 h of incubation [37].
A spectrophotometer at 520 nm was used to read the assay
plates. A dose-response curve was plotted from the data gen-
erated to evaluate the concentration of tested compounds
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Table 1: List of target proteins used for docking purpose.

Protein
PDB
ID

Resolution
(Å)

Structure title Specie Ref

ESR 1L2I 1.95
Human estrogen receptor alpha ligand-binding domain in complex with (R,R)-5,11-cis-
diethyl-5,6,11,12-tetrahydrochrysene-2,8-diol and a glucocorticoid receptor-interacting

protein 1 NR box II peptide

Homo
sapiens

[25]

PR 1A28 1.80 Hormone-bound human progesterone receptor ligand-binding domain
Homo
sapiens

[26]

BRCA1 4IGK 1.75 Structure of human BRCA1 BRCT in complex with ATRIP peptide
Homo
sapiens

[27]

BRCA2 3EU7 2.20 Crystal structure of a PALB2/BRCA2 complex
Homo
sapiens

[28]

AKR1C2 4JTR 1.30 AKR1C2 complex with ibuprofen
Homo
sapiens

[29]

HER2 1N8Z 2.52 Crystal structure of extracellular domain of human HER2 complexed with Herceptin Fab
Homo
sapiens

[30]

CTNNB1 3SL9 2.20 X-ray structure of beta catenin in complex with Bcl9
Homo
sapiens

[31]

PLAUR 2FD6 1.90
Structure of human urokinase plasminogen activator in complex with urokinase receptor

and an anti-upar antibody at 1.9 A
Homo
sapiens

[32]

RHEB 3T5G 1.70 Structure of fully modified farnesylated Rheb in complex with PDE6D
Homo
sapiens

[33]

Table 2: Cheminformatic properties of compounds (3a-4k).

Properties
Mol.

weight (g/
mol)

No.
HBA

No.
HBD

Mol.
LogP

Mol.
PSA
(A2)

Stereo
centers

Mol.
Vol
(A3)

Molar
refractivity

(cm3)

Surface
tension

(dyne/cm)

Density
(g/cm3)

Polarizability
(cm3)

Lipinski
Rule

3a 335.13 3 3 1.41 70.35 1 234.3 93.56 77.4 1.43 37.09 Yes

3b 357.21 3 3 3.365 70.60 1 399.41 99.87 57.4 1.24 39.59 Yes

3c 369.09 6 3 2.00 81.67 1 363.31 98.39 79.5 1.51 39.0 Yes

3d 353.12 3 3 1.47 70.35 1 352.04 93.67 74.8 1.48 37.13 Yes

3e 415.05 3 4 3.01 78.73 1 363.19 95.26 84.2 1.74 37.76 Yes

3f 355.13 3 4 2.24 78.73 1 347.25 87.67 75.2 1.53 34.74 Yes

3g 363.13 3 4 0.75 89.55 3 397.93 96.82 101.3 1.62 38.38 Yes

3h 366.10 5 3 1.58 103.2 1 361.92 93.57 89.6 1.60 37.06 Yes

3i 351.12 9 3 1.49 77.24 1 364.27 93.90 75.3 1.47 37.22 Yes

3j 351.12 4 3 1.60 77.45 1 366.49 93.90 75.3 1.47 37.22 Yes

3k 351.12 4 3 1.74 77.45 1 366.56 93.90 75.3 1.47 37.22 Yes

4a 335.13 3 3 1.86 69.28 1 348.41 93.56 77.4 1.43 37.09 Yes

4b 357.21 3 3 3.97 69.53 1 401.7 99.87 57.4 1.24 39.59 Yes

4c 369.09 3 3 2.45 69.28 1 365.60 98.39 79.5 1.51 39.0 Yes

4d 353.12 3 3 1.92 69.28 1 354.32 93.67 74.8 1.48 37.13 Yes

4e 399.02 3 3 2.93 68.84 1 358.78 95.26 84.2 1.74 37.76 Yes

4f 339.10 3 3 2.16 68.84 1 342.84 87.67 75.2 1.53 34.74 Yes

4g 363.13 5 4 1.20 88.48 3 400.23 96.82 101.3 1.62 38.38 Yes

4h 366.10 5 3 2.02 102.2 1 361.92 93.57 89.6 1.60 37.06 Yes

4i 351.12 4 3 1.93 76.17 1 366.55 93.90 75.3 1.47 37.22 Yes

4j 351.12 4 3 2.18 76.38 1 368.85 93.90 75.3 1.47 37.22 Yes

4k 351.12 4 3 2.05 76.38 1 368.77 93.90 75.3 1.47 37.22 Yes
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required to kill 50% of cell population (IC50). The com-
pounds having % inhibition less than 50% are considered
inactive.

2.10. QSAR Studies. The QSARINS software was used to
generate models according to OECD standards (Worth
et al. 2007).

2.11. Molecular Descriptor Generations. The PaDEL descrip-
tor software was used to generate the quantum molecular
descriptors and to calculate the additional energy, where a
total of 1875 descriptors were calculated. The use of all the
available descriptors would be, however, difficult to calculate
the models; hence, few descriptors per model were used to
reduce the computation time and to explore all the combina-
tions with the help of all subset technique. The model gener-
ation was run for up to 8 variables to see the effect of
addition of new descriptor on the quality of model.

2.12. Data Division. The datasets were divided in a 4 : 1 ratio
having both training sets and test sets. The training set con-
stituted of 70% while the test set is 30% of the data according
to the Kennard-Stone algorithm method.

2.13. Model Building and Validation. The genetic algorithm
(GA) technique was employed in which the most appropri-
ate descriptors were selected to develop models based on

large number of descriptors. The MLR model was obtained
by the ordinary least squares (OLS) algorithm [22]. Twenty
models were generated using up to 8 different descriptors,
and the best model was shortlisted according to the lowest
lack of fit (LOF) value.

2.14. Internal Validation. The validation of model was done
by OECD principle which states that the model should have
a definite endpoint, a clear applicability domain, an ambigu-
ous algorithm, appropriate measure of robustness and pre-
dictivity, and a systematic explanation [38].

2.15. Cross Validation. For cross validation (CV), the Q2
LOO

criteria were employed by iteratively removing from the
dataset one compound while calculating the model with
the rest of the compounds. The following parameters were
considered to assess the quality of model:

R2: highest value corresponds to the quality of the model,
Q2

LOO: highest values should be equal to R2, R2-Q2
LOO:

lower value indicates the stability of model, RMSE: value is
low and close to training dataset, and other prediction
methods.

Another method was used for cross validation, i.e., Leav-
ing Many Out (LMO) allowing the study of compounds by
excluding a large number of compounds. The stability of
model was based on calculated values of R2 and Q2

Table 3: ADMET properties of synthesized compounds.

Absorption Distribution Excretion Toxicity
WS IS SP BBBP CNSP CYP3A4 TC AMES toxicity Max tolerated dose HT SS

3a -3.57 94.724 -2.738 -0.854 -2.369 No 0.181 Yes -0.238 Yes No

3b -3.395 93.057 -2.739 -1.09 -2.689 No 1.147 No -0.781 Yes No

3c -3.639 93.342 -2.739 -1.038 -2.258 No 0.055 No -0.293 Yes No

3d -3.571 94.41 -2.738 -1.076 -2.418 No 0.067 No -0.35 Yes No

3e -3.738 93.138 -2.769 -0.904 -2.176 No -0.102 No -0.492 Yes No

3f -3.533 94.3 -2.797 -0.922 -2.363 No -0.136 No -0.542 Yes No

3g -2.987 82.281 -2.735 -1.014 -2.54 No 0.998 Yes 0.221 Yes No

3h -3.935 82.358 -2.802 -0.82 -2.455 No -0.112 Yes -0.781 Yes No

3i -3.77 93.634 -2.996 -.8360 -2.468 No 0.061 No -0.428 Yes No

3j -3.757 93.437 -3.007 -0.833 -2.457 No -0.009 No -0.44 Yes No

3k -3.748 93.182 -3.01 -0.823 -2.466 No -0.042 No -0.463 Yes No

4a -3.79 91.409 -3.044 -0.688 -2.391 No 0.211 No -0.092 Yes No

4b -4.184 93.036 -2.912 -0.971 -2.711 No 1.071 No -0.781 Yes No

4c -4.213 90 -3.02 -0.875 -2.282 No 0.172 No -0.079 Yes No

4d -3.963 91.069 -3.101 -0.914 -2.445 No 0.097 No -0.014 Yes No

4e -4.271 89.694 -3.344 -0.824 -2.149 No 0.02 No -0.104 Yes No

4f -3.843 90.829 -3.386 -0.842 -2.335 No -0.072 No -0.03 Yes No

4g -2.785 73.392 -2.735 -0.675 -2.774 No 0.656 No 0.409 Yes No

4h -4.066 82.551 -2.807 -0.828 -2.454 No -0.044 Yes -0.579 Yes No

4i -3.76 94.307 -3.176 -0.961 -2.512 No 0.105 No -0.472 Yes No

4j -3.754 94.11 -3.213 -0.958 -2.501 No 0.035 No -0.488 Yes No

4k -3.723 93.819 -3.243 -0.946 -2.513 No 0.002 No -0.53 Yes No

Abbreviations: WS: water solubility (Log mol/L); ISA: intestinal solubility (%abs); SP: skin permeability (LogKp); BBBP: blood brain barrier permeability
(LogBB); CNSP: CNS permeability (LogPS); TC: total clearance (log ml/min/kg); ORAT: Oral Rat Acute Toxicity; HT: hepatotoxicity; SS: skin sensitization.
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(LMO), and their averages are close to R2 and Q2
LOO values

of the model.

2.16. y-Scrambling. The y-scrambling procedure was applied
to validate that the generated model was not as a result of
chance correlation. The responses were scuffled as to there
be no correlation with the descriptors causing the perfor-
mance of the models to decay drastically. For a good quality
model, the R2 and Q2 values and their averages should be
less than the values of the model.

2.17. External Validation. The generated model was then
assessed for its performance by different measures such as
RMSE external, Q2-F1, Q2-F2, Q2-F3, r2M, Δr2m, and CCC.

2.18. Applicability Domain. The domain of applicability was
evaluated to confirm the consistency of the model within the
chemical space it was developed [39]. The leverage approach
was used, and the William’s plot was generated between the
standardized residuals and leverages.

3. Results

3.1. Pharmacokinetic Analysis

3.1.1. Drug-Likeness Properties. The drug-likeness properties
were validated by evaluating the chemical properties of syn-
thesized compounds and analyzing the Lipinski Rule. For
drug absorption, the polar surface area (PSA) parameter is

a significant tool and the molecular lipophilicity and molar
refractivity values relate to protein binding and bioavailabil-
ity. For compounds to be drug like the molar refractivity
should be 40-130 cm, PSA < 89Å, and molecular weight
160-480 g/mol. Table 2 shows the drug-likeness properties
of synthesized compounds justifying a strong correlation
with the standard values.

3.2. ADMET Studies of Synthesized Compounds. The phar-
macokinetic ADMET properties were evaluated to assess
the effectiveness of the synthesized compounds. The com-
pounds having good pharmacokinetic properties and better
activities are considered in the drug discovery and develop-
ment. To evaluate the pharmacokinetic properties, the
pkCSM tool was used. The water and intestinal solubility
(log mol/L, % absorbed) and the skin permeability (LogKp)
predicted values revealed efficient absorption of these com-
pounds as well as efficient skin permeability as compared
to standard value (>30% abs and -2.5 LogKp). Effective
absorption of compound leads to effective potency due to
passive penetration to reach the target molecule. All the
compounds showed poor permeability to the blood brain
barrier when compared to standard value (>0.3 to <-1),
and the compounds having <-1 are considered poorly dis-
tributed in the brain. However, all the compounds showed
good penetration to the CNS having LogPS > −2 when com-
pared to standard value (>-2 to <-3 LogPS). The compounds
having LogPS < −3 are impossible to cross in the CNS. The

Table 4: Ligand efficacy prediction value.

Ligands cLogP cLogS LE LLE LELP Mutagenic Tumorigenic Irritant

3a 1.65 -2.722 0.4819 7.1314 3.4256 None None None

3b 3.3655 -3.319 0.4707 5.1075 7.5279 None None None

3c 2.2568 -3.458 0.4562 6.389 4.9469 None None None

3d 1.7517 -3.036 0.46204 7.0048 3.7913 None None None

3e 2.456 -4.078 0.4724 6.1571 5.1921 None None None

3f 1.828 -3.558 0.47949 6.909 3.814 None None None

3g 1.6971 -3.726 0.44562 7.0732 3.8084 None None None

3h 0.8064 -3.704 0.46204 8.287 1.7453 None None None

3i 1.658 -3.262 0.4633 7.1224 3.5787 None None None

3j 1.658 -3.262 0.4633 7.1224 3.5787 None None None

3k 1.658 -3.262 0.4633 7.1224 3.5787 None None None

4a 1.6509 -2.722 0.4819 7.1314 3.4256 None None None

4b 3.3655 -3.319 0.44707 5.1075 7.5279 None None None

4c 2.2569 -3.458 0.4562 6.3896 4.9469 None None None

4d 1.7517 -3.036 0.46204 7.0048 3.7913 None None None

4e 2.4532 -4.078 0.47249 6.1571 5.1921 None None None

4f 1.8288 -3.558 0.47949 6.909 5.1921 None None None

4g 1.6971 -3.726 0.47949 6.909 3.814 None None None

4h 0.8064 -3.704 0.44562 7.0732 3.8084 None None None

4i 1.658 -3.262 0.46204 8.287 1.7453 None None None

4j 1.658 -3.262 0.4633 70122 3.5787 None None None

4k 1.658 -3.262 0.4633 70122 3.5787 None None None
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Figure 3: Boxplot for docking scores generated by RStudio 4.0. (a) 6-(Chloromethyl)-4-(4-hydroxyphenyl)-2-oxo-1,2,3,4-
tetrahydropyrimidine-5-carboxylate derivatives (3a-3k). (b) Ethyl 6-(chloromethyl)-4-(2-hydroxyphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-
5-carboxylate derivatives (4a-4k). The y-axis represents the docking scores while the x-axis shows the synthesized compounds. ProtA:
CTNNB1; ProtB: BRCA1; ProtC: BRCA2; ProtD: AKR1C2; ProtE: ESR; ProtF: HER2; ProtG: PLAUR; ProtH: PR; ProtI: RHEB.

8 Journal of Oncology



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Continued.

9Journal of Oncology



(i) (j)

(k) (l)

(m) (n)

(o) (p)

Figure 4: Continued.

10 Journal of Oncology



toxicity profiling revealed all the compounds are nonmuta-
genic and nontoxic except for compounds 3a, 3g, 3h, and
4h. All the compounds also showed hepatotoxicity but no
skin sensitization was revealed (Table 3).

3.3. Lead Optimization. Further drug-likeness properties of
all compounds such as ligand efficiency (LE), lipophilic
ligand efficiency (LLE), and lipophilic-corrected ligand effi-
ciency (LELP) values were predicted. The lipophilicity is
considered to be a basic parameter to enhance structure effi-
ciency making it from lead to drug candidate. ThecLogP, LE,
LLE, and LELP of all compounds showed comparable results
with that of standard values forLE > 0:30 kcal/mol/
HA,LLE > 0:5 kcal/mol,LELP − 10 < to <10, andcLogP < 3.
All the synthetic compounds showed to have none muta-
genic and irritant behavior (Table 4).

3.4. Molecular Docking. The molecular docking studies of
synthesized compounds against nine target proteins were
performed to analyze the best target for these compounds
based on docking scores. The boxplot was generated to pres-
ent the docking scores of all target proteins. Figure 3 shows
the boxplot of all synthesized compounds on the basis of
their interactions with all target proteins.

In case of protein A (CTNNB1) according to the median
value, the compound 4f is having the lowest median score of
-11.7 with 80% of data in lower quartile and 20% in upper
quartile. The compounds 4h and 4e showed the lowest
median score of -10.4 and -10.3, respectively, with equal dis-

tribution of data. The compound 4k showed the median
score of -10.3 with 75% of data in lower quartile and 25%
in upper quartile. The compounds 3e and 3f showed the
median score of -10.1 and -9.8 with 60% of data in lower
quartile and 40% in upper quartile. The compounds 4g, 4i,
3g, 4j, and 4h showed median score in the range of -9.8 to
-9 kcal/mol. In protein B (BRCA1), the compound 4h
showed the median score of -9.3 with 90% of data in upper
quartile, 4e showed -8.5 median score with equal distribu-
tion, and 4f showed median score of -9.2 with 90% of data
in upper quartile; 4k and 3e showed -8.8 with equal distribu-
tion and -8.6 with 90% in upper quartile, 3f had median
score of -8.5 with 80% in lower quartile and 20% in upper
quartile, 4g showed -9.8, and 4i had a score of -8.4 with
90% in upper quartile. The protein C (BRCA2) also showed
a similar pattern but with the median score in the range of
-8.9 to -6.6. The compound 4f showed the lowest median
score of -8.3 with 80% of data in lower quartile, 4e showed
-8.7, and 4h showed -8.9. Similarly, the compounds 3f and
3g had the lowest median score of -8.4 and 3e -8.3 with equal
distribution.

The protein D (AKR1C2) showed the median score in
the range of -8.5 to -5.8 with low range and varying distribu-
tion. The binding affinities for AKR1C2 were less when
compared to proteins A, B, and C. The protein E (IGFR1)
had the median score ranging between -9.2 and 7 with bind-
ing affinities better than protein D and high range. In pro-
tein G (RHEB), all the compounds had median score in
the range of -7.8 to -6 kcal/mol with varying distribution

(q) (r)

(s) (t)

Figure 4: Protein-ligand interactions of target proteins with active compounds 4e, 4f, 4g, and 4h. (a–e) CTNNB1, (f–j) BRCA1, (k–o)
BRCA2, and (p–t) AKR1C2.
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and high range. Similarly, the protein F (HER2) showed the
lowest median score in the range of -8.8 to -6.6 with varying
distribution. The protein H (PLAUR) showed the median
score of -9.2 to -6.8 kcal/mol. A highest median range was
observed in protein H with varying distribution. Moreover,
the protein I (PR) showed the median score of -7.8 to
-5.1 kcal/mol with low median range and varying distribu-
tion of data. In all the proteins, the compounds 4f and 4h
showed the lowest binding scores. The docking of ligands
into the active binding site of CTNNB1 showed the lowest
binding scores.

3.5. Interaction Analysis with Target Proteins. The protein
ligand interaction analysis was performed to study the interac-
tion patterns of ligands with different proteins in order to find
the common binding sites in proteins subjecting to new func-
tional roles. Figure 4 shows the binding mode of active com-
pounds 4e, 4f, 4g, and 4h and standard against target
proteins CTNNB1 (Figures 4(a)–4(e)), BRCA1 (Figures 4(f)–
4(j)), BRCA2 (Figures 4(k)–4(o)), and AKR1C2
(Figures 4(p)–4(t)). Similarly, Figure 5 shows the binding
mode of active compounds against target proteins ESR
(Figures 5(a)–5(e)), HER-2 (Figures 5(f)–5(j)), RHEB
(Figures 5(k)–5(o)), PLAUR (Figures 5(p)–5(t)), and PR
(Figures 5(u)–5(y)).

Figure 4 shows the residue interactions of active com-
pounds 4e, 4f, 4g, and 4h with the protein CTNNB1 (ProtA).
These compounds showed the lowest binding scores of
-10.3, -11.7, -9.8, and -10.4 kcal/mol, respectively. The inter-
action analysis revealed stable hydrogen bond interactions of
compound 4i with ASP199, while compound 4j showed two
stable hydrogen bond interactions with LEU177 and
GLU176. The standard tamoxifen showed pi-alkyl with
PRO100, ALA138, LEU137, LYS199, and ALA134 and
amide-pi stacked interactions with VAL197 (Figures 4(a)–
4(e)).

In protein BRCA1 (ProtB), stable conventional hydrogen
bonding was observed in compounds 4f and 4g with
CYS1847 and 4e with amino acid TYR1845, SER 1755,
ARG 1758, and ILE 1760. In compound 4h, no hydrogen
bonds were observed; however, pi-alkyl interactions were
seen with ARG1762. The standard tamoxifen showed no
hydrogen bonds, and pi-alkyl interactions were observed
with LEU1764, LEU1850, and CYS1847 (Figures 4(f)–4(j)).
In BRCA2 (ProtC), the compounds 4e and 4f revealed
hydrogen bond interaction with ASP1122, HIS1061, and
PHE1016 and 4g and 4h with ALA874. The standard tamox-
ifen showed hydrogen bonding with VAL925 (Figures 4(k)–
4(o)). The interaction analysis of protein D (AKR1C2)
showed that the compound 4e showed hydrogen bonding

(y)

Figure 5: Protein-ligand interactions of target proteins with active compounds 4e, 4f, 4g, and 4h. (a–e) ESR, (f–j) HER-2, (k–o) RHEB, (p–t)
PLAUR, and (u–y) PR.

Table 5: Some common amino acid residues involved in interaction with target proteins.

Protein Common residues involved

CTNNB1 Arg360, ASP361, PRO368, PHE367, MET365

BRCA1 THR1802, CYS1847, HIS1805, ARG1762, ARG1758, ILE1760, LEU1764, ARG1762

BRCA2 PRO924, ASP1122, HIS1061, CYS1060, LEU970, CYS1060, VAL969, ALA1017, GLU1018, ALA874, CYS1060, PHE1016

AKR1C2 LYS270, HIS222, SER217, TRP227, VAL54

ESR ALA340, VAL534, PRO535, TYR537, SER329, LEU327, GLU330, ALA350, PHE404, LEU391

HER-2 PRO278, ASP8, THR7, THR281, ARG81, LEU414, THR5, SER288

RHEB ARG7, GLU88, SER179, PRO2, ASN79, MET179

PLAUR ARG166, LEU181, PRO130, CYS182, ARG230, LEU162, HIS165, SER214

PR ILE699, ARG766, VAL698, PRO696, MET759, PHE718
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with SER217 and HIS117. 4f showed hydrogen bonding with
TYR24 and ASN167. About four hydrogen bonding were
observed in compound 4h with amino acid TYR272, ARG
276, LEU219, and SER221. The compound 4i showed hydro-
gen bonding with GLN190 and 2k with GLN224
(Figures 4(p)–4(t)).

In protein E (ESR), compound 4e showed 3 hydrogen
bonding with SER329, TYR328, and ARG352. Similarly,
compound 4f showed hydrogen bonding with GLY521 while
4g showed four hydrogen bonding with THR347, TYR537,
GLY344, and GLU330, and compound 4h showed stable
interactions with ASP538 and LEU539 (Figures 5(a)–5(e)).
The interaction patterns of protein F (HER2) showed stable
interactions of compounds 4e, 4f, 4g, and 4h with ASP8,
GLY270, and THR7 along with some van der Waal interac-
tions (Figures 5(f)–5(j)). In protein G (RHEB), the com-
pounds 4e, 4f, and 4g showed three hydrogen bond
interactions with ARG7, SER179, ASN79, and GLU88. The
compound 4h showed ARG7, ASN79, and MET 170
(Figures 5(k)–5(o)). In protein H (PLAUR), the compound
4e showed hydrogen bonding with ASP697 and LYS769
and in 4f with LYS769, SER728, and GLU695. 4h showed
hydrogen bonding with ILE699 and ARG766
(Figures 5(p)–5(t)). The interaction analysis of protein I
(PR) is shown in Figure 5. The compound 4e showed con-
ventional hydrogen bonding with ASP697, LYS769, and

LEU755. In compound 4f, the interaction between fluorine
and nitrogen group of dihydropyrimidinone was observed
with amino acid SER726, GLU695, and LYS769. 4g showed
hydrogen bonding with ILE699 and ARG766
(Figures 5(u)–5(y)). Table 5 highlights the important com-
mon residues involved in interactions with the active
compounds.

3.6. Anticancer Activity. In this study, the in vitro anticancer
activity of 22 derivatives of synthesized compounds was
determined against the human breast (MCF-7) cancer cell
lines with the help of MTT assay (Table 6). The results
revealed that the compounds having p-hydroxyl group of
benzaldehyde (2) showed excellent anticancer activities
when compared to standard against the breast cancer cell
line. The compounds that showed more than 50% of inhibi-
tion were considered active. The compound 4f showed 85%
inhibition of cells with an IC50 of 2.19 at 200μM concentra-
tion. The standard tamoxifen showed IC50 of 1.88μM. The
compounds 4e and 4 g showed 82% inhibition with an IC50
of 2.401 and 2.47, respectively. The compound 4h also
showed 80% inhibition of cells with IC50 of 2.33. The % inhi-
bition of compounds 3e and 3f was 79.4 and 77.2% with IC50
of 2.41μM. The compounds 4k, 4i, and 4j showed up to 75%
inhibition with IC50 of 2.40, 2.699, and 2.88, respectively.
The compounds 3h, 3i, 3j, and 3k showed approximately
55% inhibition at the same concentration, while the com-
pounds 3a, 3b, 3c, 3d, 4a, 4b, 4c, and 4d showed less than
50% of inhibition (Figure 6).

Table 6: The percentage inhibition of breast cancer cells using
MTT assay by the tested compounds at 72 h.

Compounds
% inhibition (μM) IC5025 50 100 200

3a 0.98 15 23.2 48 4.38

3b 5.2 12.6 19.5 39 5.35

3c 6.5 13.6 21.2 32.2 6.23

3d 2.1 9.8 18.5 29.3 6.38

3e 25.6 36.8 54.8 79.4 2.41

3f 28.9 39.6 59.6 77.2 2.41

3g 22.5 33.6 49.9 71.1 2.88

3h 19.9 28.5 46.6 69.3 3.03

3i 11.5 25.3 33.6 58.3 3.69

3j 8.6 19.9 29.6 54.4 3.98

3k 9.7 15.6 27.5 55.9 4.01

4a 0.85 16.5 19.8 32.2 5.85

4b 11.2 21.3 31.5 51.1 4.13

4c 5.5 16.6 28.9 49.2 4.23

4d 6.7 14.9 23.2 35 5.72

4e 21 38.7 66.5 82.2 2.401

4f 28.9 41 69.5 85 2.19

4g 22.6 37.4 59.8 82.3 2.47

4h 24 47.1 61.2 80.01 2.33

4i 19.8 32.5 56.8 75.6 2.699

4j 15.5 28.9 53.6 72.3 2.88

4k 21.3 41.1 66.5 78.9 2.401

Tamoxifen 29.1 55.2 75.4 91.2 1.88
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Figure 6: The antiproliferative effects of synthesized compounds in
breast cancer cell lines (MCF-7) after 72 h treatment. The cell
viability was measured by MTT assay.
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3.7. QSAR Studies. The dataset consisting of 22 compounds
was divided into training set of 15 compounds and test set
of 6 compounds, where training set was used to develop
the model while test set to evaluate the predictive ability of
the model. Using the PaDEL software, 1872 descriptors were
calculated which were then filtered using the QSARINS soft-
ware. The descriptors having 80% constant values and 90%
correlation were eliminated. About 1058 variables were
excluded from the study based on all subset method. Several
models were developed having good correlation with the
response and a low multicollinearity between descriptors.
The genetic algorithm–multiple linear regression (GA-
MLR) method provided 4 descriptors which were then used
for calculating the anticancer activities of the compounds.
The average values of R2 and Q2

LOO (with their standard
deviation) were plotted to evaluate the model performances
versus the size of the developed models. It also revealed
whether any overfitting in the models exists (Figure 7).
The plot showed that by adding a new descriptor, the values
of R2 and Q2

LOO increased. The model with four variables
was selected based on the lowest LOF value to predict the
anticancer activities.

The best MLR model equation obtained is shown below.

IC50 = −62:95 − 10:475MATS3i − 0:144VR2 Dzi
+ 986:6ASP − 5 + 3:99GGI10

ð1Þ

Table 7 shows the experimental IC50 and the results pre-
dicted by MLR model for training set. Table 8 shows the

Pearson correlation matrix which describes that a low value
in coefficient (<0.7) between each pair of descriptor shows
no significant multicollinearity among descriptors in the
developed model. The internal validation of the model that
is the scatter plot, scatter plot by LOO, scatter plot by
LMO, and y-scrambling predicted the reliability of the
model as shown in Figure 8. The applicability domain also
defined the reliability of the model (Figure 9).

4. Discussion

Breast cancer pathogenesis and progression has been studied
extensively with the discovery of several agents that have
proved potential in the management of this disease. How-
ever, till date, the incidence rate of breast cancer is still sig-
nificant and requires further strategies to combat the
mortality and morbidity rate. This study uses the computa-
tional technology to identify the breast cancer targets for
the synthesized compounds that can have potential role as
breast cancer activities.

The in silico ADMET and lead optimization studies
revealed all the compounds to be nonmutagenic and noncar-
cinogenic having drug-like properties. The results depicted
compounds may act as therapeutically active against target
proteins. All the synthesized compounds also followed the
Lipinski Rule of 5 having HBA < 10 and HBD < 5, LogP <
500 g/mol. The increase number of HBA and HBD results
in poor permeation. The molecular docking analysis was
performed to analyze the binding of synthesized compounds
with the identified target proteins. In the protein-ligand

0.999

Average R2
Average Q2

R2 and Q2 Number of variable vs. R2 and Q2

Number of variable

0.938

0.876

0.814

0.753

0.691
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Figure 7: Performance of models according to different variable obtained from QSARINS.
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Table 7: Chemical structure and corresponding observed and predicted activities obtained from QSARINS.

Compounds R R′ Experimental endpoint Predicted by model equation Predicted model equation residual

3a 4-OH 4.38 5.22 2.39

3b 4-OH 5.35 5.22 -0.12

3c 4-OH 6.23 7.16 0.93

3d 4-OH 6.38 6.57 0.192

3e 4-OH 2.41 2.39 -0.015

3f 4-OH 2.41 2.69 -0.035

3g 4-OH 2.88 1.56 -1.31

3h 4-OH 3.03 2.94 -0.08

3i 4-OH 3.69 3.54 -0.14

3j 4-OH 3.98 3.36 -0.6

3k 4-OH 4.01 2.82 -1.18

4a 2-OH 5.85 5.92 0.07

4b 2-OH 4.13 4.25 0.12

4c 2-OH 4.23 6.04 1.81

4d 2-OH 5.72 5.47 -0.24

4e 2-OH 2.40 2.55 0.155

4f 2-OH 2.19 2.188 -0.0015

4g 2-OH 2.47 2.46 -0.003
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docking analysis, when comparing the binding energies and
the interaction pattern, all the compounds showed the low-
est binding affinity towards the target protein A (CTNNB1).
The interaction analysis revealed stable hydrogen bond
interactions of compound 4i with ASP199, while compound
4j showed two stable hydrogen bond interactions with
LEU177 and GLU176. The standard tamoxifen showed pi-
alkyl with PRO100, ALA138, LEU137, LYS199, and
ALA134 and amide-pi stacked interactions with VAL197.
The energy scores revealed efficient binding of these com-
pounds with the target proteins. All the other proteins also
showed efficient binding and interaction pattern, and the
common amino acid residues involved in interaction are
mentioned in Table 5.

The breast cancer activities of all the synthesized com-
pounds were performed against the cell line MCF-7. The
MCF-7 cell line is considered estrogen receptor- (ER-) posi-
tive and progesterone receptor- (PR-) positive expressing
high level of Erα transcripts [40, 41]. The epidermal growth
factor receptor (EGFR) and the human epidermal growth
factor receptor-2 (HER2) are also present in MCF-7 cells
[40]. The MCF-7 cells are also positive for β-catenin [42].
Due to the expression of these proteins by MCF-7 cell line,
it was used to analyze the role of synthesized compounds
as cytotoxic agents. It was observed that the activities of
compounds 4f, 4h, and 4e were greater than all the com-
pounds and were due to the –F, NO2, and –Br aniline groups
with fluorine having the most potent activity due to its high

electronegative nature. By replacing the groups with benzy-
lamine (3a and 4a), –Br benzylamine (3c and 4c), and –F
benzylamine (3d and 4d), the activity dropped significantly
suggesting the more cytotoxic activities of aniline derivatives
when compared to benzylamine derivatives. The compounds
3e, 3f, and 3g also showed better activities due to the aniline
nature of compounds with –NO2 group of 3h showing the
least activity. The benzimidazole moiety of compounds 3g
and 4 g also showed effective nature of this molecule. The
compounds 4k, 4i, and 4j also showed good activities having
the anisidine moieties. The ortho anisidine showed more %
inhibition than para and meta. This study was carried due
to the existence of several evidences on the antiproliferative
activities of dihydropyrimidinones by scientists. In a similar
study, about 22 manostrol analogs were synthesized by
Matias and coworkers and studied for their antiproliferative
activities against five different cancer cell lines. Their result
also showed stronger antiproliferative activities of their com-
pounds against MCF-7 cancer cell line with compounds hav-
ing chlorine moiety displaying significant effects on the
proliferation of hepatic (HepaRG), colon (Caco-2), and
breast (MCF-7) cancer cell lines [43]. Another series of 32
novel Biginelli dihydropyrimidinones were synthesized by
Kumar and colleagues and were studied for their in vitro
antioxidant and anticancer activities. The compounds exhib-
ited significant anticancer activities against breast cancer cell
line MCF-7 at 10μg concentration [44]. The cytotoxic activ-
ities of another synthesized library of dihydropyrimidinone
benzopyran hybrids were evaluated for their cytotoxic activ-
ities against four human cancer cell lines A549 (lung carci-
noma), MCF-7 (mammary gland adenocarcinoma), HCT-
116 (colorectal carcinoma), and PANC-1 (pancreatic duct
carcinoma) and showed consistent cytotoxic activities
against these cell lines [45]. The antiproliferative activities
of dihydropyrimidinones were also studied in another study
depicting potent cytotoxic activities of dihydropyrimidinone
analogs against melanoma (UACC.62), kidney (786-0),
breast (MCF-7), ovarian (OVCAR03), and, particularly,

Table 8: Pearson correlation matrix.

MATS3i VR2_Dzi ASP-5 GGI10

MATS3i 1.0000

VR2_Dzi 0.5057 1.0000

ASP-5 -0.0805 0.2648 1.0000

GGI10 0.1194 -0.0831 0.0844 1.0000

Table 7: Continued.

Compounds R R′ Experimental endpoint Predicted by model equation Predicted model equation residual

4h 2-OH 2.33 2.59 0.26

4i 2-OH 2.69 2.68 -0.013

4j 2-OH 2.88 2.62 -0.25

4k 2-OH 2.40 2.47 0.074
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Figure 8: The internal validation of models through different methods. (a) The scatter plot of experimental IC50 versus predicted by model
equation. (b) The scatter plot obtained by LOO method. (c) Plot comparing the original model with the LMO validations. (d) Plot
comparing the original model with the y-scrambling model.
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colon (HT-29) cancer cell lines [46]. All the evidences sup-
port the significant role of dihydropyrimidone in breast can-
cer cell line. Moreover, the significant activities of these
compounds against breast cancer cell line and optimum
binding energies of these compounds against identified tar-
get proteins support the effectiveness of these compounds
as anticancer agents.

The QSAR studies were performed by two different soft-
ware to analyze the model quality and their reliability by
both methods.

The model was generated by the QSARINS having the
following fitting criteria:

N ðnumber of compounds in the training setÞ = 15, R2 ð
coefficient of determinationÞ = 0:989, R2

adj ðadjustedR2Þ =
0:985, s ðstandard error of estimateÞ = 0:182, F ðvariance
ratioÞ = 234:487, and RMSEtr ðRootMean Square Error in
fitting of training setÞ = 0:148.

According to the fitting criteria, the R2 value is 0.989 that
is closer to 1 that shows a good quality model for anticancer
inhibition. Moreover, the lower value of LOF and the R2

adj of
0.985 depicting the convenience to add a new descriptor to
the model suggest no overfitting in the model. The model
showed to be a good model having least amount of descrip-
tors. The higher value of F (234.487) and the low value of kxx
(0.324) show minimum correlation between the descriptors.
Similarly, the Delta k (0.084) and the small error on training
sets (RMSEtr = 0:148) showed appropriate correlation
between the descriptors. The scatter plot obtained by the
model equation versus the experimental IC50 for training

set determines the availability of potential outliers
(Figure 8(a)). The scatter plot detects the grouping of the
data and the possibility of any outlier present.

4.1. Internal and External Validation of the Model. The
internal validation of the model was done to check the fitting
and stability of the models. The cross validation by Leave-
One-Out (LOO) method showed good internal prediction
as the Q2

LOO = 0:977 (variance explained by LOO) has a
comparable value with R2 = 0:989. Moreover, the small error
in prediction of RMSEcv = 0:217 shows a robust and stable
model. A plot was generated between the predicted values
by LOO versus the experimental values of IC50
(Figure 8(b)). Another method was employed for internal
validation that is Leaving-Many-Out (LMO) that leaves out
30% of the dataset to study the model behavior. The values
of Q2

LMO = 0:9721 and the calculation in each iteration of
LMO and their averages are comparable to the values of R2

and Q2
LOO of the model revealing the stability of the model.

Figure 8(c) displays the plot between the Q2
LMO and the cor-

relation between descriptors and IC50 (kxy) showing that the
model is a good fit having robustness and stability. The y-
scrambling method was employed to determine whether
the model is the result of chance correlation. For a good
model with low chance of correlation, the values of R2 and
Q2 and their averages R2

y−scr and Q2
y−scr should be lower

than the values obtained previously. Here, R2
y−scr = 0:28

and Q2
y−scr = −0:66 that are far from the values obtained
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Figure 9: William’s plot of the dataset of IC50 standardized against its descriptor space.
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for R2 and Q2 indicating the model has not been obtained by
random correlation. Figure 8(d) shows the plot between the
R2

y−scr and Q2
y−scr values against the R

2 and Q2 of the model.
The external validation of the model was also performed

to test the predictive ability of the model. The model showed
R2

ext (external determination coefficient [47]): 0.97, R2
ext:

0.6479, Q2-F1: 0.7320, Q2-F2: 0.8682, and Q2-F3 (variances
explained in external prediction [48]): 0.702. The parameters
were equivalent to the value of R2 model. The predictions of
compound in external set are shown in Figure 8(a).

The reliability of the model is based on the com-
pounds falling in the applicability domain (AD). The
leverage (h) and standardized residuals were used as
described by [49]. William’s graph was generated to
observe the compounds lying in the applicability domain
of the model (Figure 9) by plotting the standardized resid-
uals for each compound against the leverage values. In the
applicability domain, a defined domain is set up constitut-
ing all the data points within the boundary for residuals
having a leverage threshold of HAT i/i h ∗ = 1:000 [50].
Most of the compounds fall in the applicability domain
except for the compound 3f having value greater than crit-
ical leverage (h = 1:29) that can be considered as an
outlier.

4.2. Interpretation of Descriptors. In model generated by
QSARINS, 70% of the anticancer activity can be described
using four descriptors. All the variables belong to 2-
dimensional family (MATS3i, ASP-5, VR2, and GGI10).
The descriptor GGI10 belongs to the GALVEZ family
and is a topological charge index that has its origin in first
ten eigenvalues. There are two categories for the GALVEZ
class, that is, the topological charge index of order n
(GGIn) and the mean topological charge index of order
n (JGGIn). The “n” is the order of eigenvalue. The
GGI10 is the topological charge index of order 10 and
has shown positive correlations to the activity, suggesting
an increase in value of GGI10 would augment the antican-
cer activities of synthesized compounds. The descriptor
VR2_Dzi also belongs to topological distance matrix and
is defined as the normalized Randic-like eigenvalue-based
index from Barysz matrix weighted by ionization potential.
The negative correlation suggests lower value is associated
with the activity of compounds. The 2D-AUTO descriptor
(MATS3i) is the topological structure of Moran autocorre-
lation of lag 3 weighted by ionization potential. It is the
summation of different autocorrelation functions giving
different vectors based on lengths of structural fragment.
The weighted component in the descriptor is linked to
the physicochemical property suggesting the association
of topology of the structure with the selected property.
The autocorrelation vector of lag k is indicative of the
number of edges in the fragment, while the last character
of the descriptor “i” shows the physicochemical property
that is the ionization potential. The negative correlation
of MATS3i in the model suggests unfavorable conditions
associated with lag 3 weighted by ionization potential.
All the descriptors were not correlated with each other.

5. Conclusion

In this study, 22 derivatives of ethyl 6-(chloromethyl)-4-(4-
hydroxyphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-car-
boxylate were evaluated for their potential for anticancer
activities. The compounds 4e, 4f, 4g, and 4h showed good
anticancer activities against the breast cancer cell line
MCF-7 when compared to standard tamoxifen. The in silico
data also revealed best binding affinity and interaction pat-
tern of these compounds against target proteins; moreover,
the lead optimization revealed that the compounds have
drug-like properties and may act as a lead. The QSAR anal-
ysis was carried out to investigate the role of molecular
descriptors in attributing anticancer activities of synthesized
compounds. The models developed to predict the structural
features of these compounds as anticancer revealed useful
information about the structural requirement of these com-
pounds suggesting the importance of topological and auto-
correlated descriptors. Further, in vitro assays will be
carried out to confirm the role of these compounds in target-
ing these proteins.
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