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Acute myeloid leukemia (AML) is a malignant hematological malignancy with a poor prognosis. Risk stratifcation of patients
with AML is mainly based on the characteristics of cytogenetics and molecular genetics; however, patients with favorable genetics
may have a poor prognosis. Here, we focused on the activity changes of immunologic and hallmark gene sets in the AML
population. Based on the enrichment score of gene sets by gene set variation analysis (GSVA), we identifed three AML subtypes
by the nonnegative matrix factorization (NMF) algorithm in the TCGA cohort. AML patients in subgroup 1 had worse overall
survival (OS) than subgroups 2 and 3 (P< 0.001). Te median overall survival (mOS) of subgroups 1–3 was 0.4, 2.2, and 1.7 years,
respectively. Clinical characteristics, including age and FAB classifcation, were signifcantly diferent among each subgroup.
Using the least absolute shrinkage and selection operator (LASSO) regression method, we discovered three prognostic gene sets
and established the fnal prognostic model based on them. Patients in the high-risk group had signifcantly shorter OS than those
in the low-risk group in the TCGA cohort (P< 0.001) with mOS of 2.2 and 0.7 years in the low- and high-risk groups, respectively.
Te results were further validated in the GSE146173 and GSE12417 cohorts. We further identifed the key genes of prognostic gene
sets using a protein-protein interaction network. In conclusion, the study established and validated a novel prognostic model for
risk stratifcation in AML, which provides a new perspective for accurate prognosis assessment.

1. Introduction

Acute myeloid leukemia is a heterogeneous myeloid neo-
plasm, characterized by uncontrolled proliferation and
impaired diferentiation of myeloid blasts. Despite the de-
velopment of novel antileukemic drugs, the prognosis of
AML has remained poor, with a 5-year overall survival rate
of less than 30% [1].Tus, it is of great importance to identify
prognostic biomarkers to predict prognosis and better un-
derstand the pathogenesis of AML. Te European Leuke-
miaNet (ELN) recommended that patients should be
stratifed according to their cytogenetics and molecular
genetics, which are the main basis of risk stratifcation for

AML, and treated with chemotherapy or allogeneic stem cell
transplantation, respectively [2]. However, patients with
favorable genetics may have a poor prognosis [3], which
necessitates new methods to improve the prognosis as-
sessment system.

Previous studies on prognosis assessment in AML have
mainly focused on a single gene or a group of genes related to
specifc biological processes [4–6], instead of comprehen-
sively integrating multiple pathways in AML expression
gene sets. For example, autophagy-related signatures [7],
ferroptosis-related genes [8], and immune-related signatures
[9] were reported to be related to the prognosis of AML,
respectively. Here, we applied gene set variation analysis
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(GSVA) to detect subtle changes in the pathway within an
entire gene expression set [10], and then the patients were
classifed according to the enrichment score (ES) of gene sets
in an unsupervised manner.

To our knowledge, subtypes based on the activity
changes of gene sets in AML have not been determined. In
the present study, we identifed three subtypes of AML based
on the activity changes of hallmark and immunologic gene
sets in AML and established a prognostic model using
TCGA gene expression data. Subsequently, the prognostic
model was further validated in GEO cohorts. Our study
provides a novel perspective for the prognostic model of
AML by identifying the activity changes of gene sets in the
AML population instead of focusing on changes in
a single gene.

2. Materials and Methods

2.1. Data Collection and Processing. One hundred and
twenty-fve patients were used as the training cohort (pa-
tients with AMLM3were excluded), and their fragments per
kilobase per million mapped reads (FPKM)-normalized
RNA-Seq data and clinical information were downloaded
from the TCGA database via the GDC data portal (https://
portal.gdc.cancer.gov/repository). Two gene expression
profles of AML, GSE146173 (n� 246) and GSE12417
(n� 242), and the corresponding probe annotation platform
fles (GPL18460 and GPL96) were downloaded from the
GEO (https://www.ncbi.nlm.nih.gov/geo/). Data normali-
zation and log2 transformations were performed on all gene
expression datasets.

2.2. Gene Set Variation Analysis. A total of 4922 Immune-
SigDB gene subsets of C7 and hallmark gene sets were
downloaded from MSigDB (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp) for single sample gene set variation
analysis (ssGSVA) with the GSVA R package. We used
GSVA to evaluate the changes in pathway activity over the
TCGA cohort and ES to reveal the activation degree [10].
Accordingly, the gene expression matrix from TCGA and
GEO cohorts was transformed into the pathway ES matrix,
which was uploaded as Supplementary Tables 1 and 2.

2.3. Nonnegative Matrix Factorization (NMF) Algorithm and
Supervised Hierarchical Clustering. In the training cohort,
Cox regression analysis was used to flter the gene sets re-
lated to prognosis (R package CancerSubtypes) with
P< 0.001. Subsequently, patients were divided into three
types (C1-3) by NMF based on the ESs. According to the
clustering results of the training set (TCGA), the 100 most
signifcantly upregulated gene sets in each cluster (if less
than 100, all gene sets were selected) were selected as
subgroup features. Accordingly, patients from the
GSE146173 dataset were used as an independent validation
cohort for supervised hierarchical clustering. Te relevant
fles generated during the calculation were uploaded as
Supplementary Tables 3–5.

2.4. Prognostic Model Construction and Validation.
Diferential gene sets of each two cluster were analyzed with
R package limma, fltered by P< 0.05 and |logFC|> 0.02, and
intersected subsequently. A univariate Cox regression
analysis was used to screen gene sets associated with survival,
fltered by P< 0.05 (R package survival). Te least absolute
shrinkage and selection operator (LASSO) regression
method was performed to further screen prognostic gene
sets and obtain their corresponding coefcients (R package
glmnet).Te “maxit” was set to 1000.Te fnal risk score was
calculated as follows: risk score =􏽐

n
i Coefi ×Xi. “Coef”

represents the regression coefcient of each gene set, “X”
represents the ES of gene sets in the prognostic model, “n”
represents the total number of gene sets in the prognostic
model, and “i” represents the gene set that comprises the
model. Te patients were classifed as high- and low-risk
groups according to the median risk score. Te relevant fles
generated during the calculation were uploaded as Sup-
plementary Tables 6–11.

2.5. Statistical andBioinformaticAnalyses. Data analysis and
graphical visualization were performed using R software
(version 4.0.3, https://www.r-project.org) and GraphPad
Prism (version 8.0). Heatmaps were used to show the ESs of
gene sets of patients in various clusters and risk classifca-
tions. Te hub genes were identifed by constructing
a protein-protein interaction (PPI) network in the STRING
database.

Te violin map is drawn by GraphPad Prism to show the
gene expression diferences of diferent groups. Kaplan-
Meier survival curves and the log-rank test were used to
perform survival analysis of patients in diferent groups (R
package survival and survminer). Te chi-square test and
Fisher’s exact test were used to analyze the diferences in
clinical features of patients in diferent groups. P< 0.05 was
considered statistically signifcant, and all tests were two-
tailed.

3. Results

3.1. Identifcation of Subtypes of AMLUsing Immunologic and
Hallmark Gene Sets. To investigate the diference in the
activity of immunologic and hallmark gene sets in AML
patients, the hallmark and C7 gene sets were downloaded
from the MsigDB database.Te study fowchart is illustrated
in Figure 1. Hallmark gene sets are coherently expressed
signatures that represent well-defned biological states or
processes. C7 gene sets are immunologic signature gene sets,
defned by microarray gene expression data from immu-
nologic research.

Firstly, we obtained ES of immunologic and hallmark
gene sets in the TCGA cohort (n� 125) with the GSVA
method. Cox regression analysis was used for feature fltering
through the R package CancerSubtype. Te optimal number
of clusters (K) was generated (K� 3, Figures 2(a) and 2(b))
using the factoextra package. AML patients are divided into
three diferent subtypes (Figure 2(c)) by the NMF method,
which is an efective dimension reduction method for cancer
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subtype identifcation. Te silhouette width value was 0.92 in
the silhouette width plots (Figure 2(d)), suggesting a fne
match between anAML sample and its identifed subtype.Te
patients with AML in subgroup 1 had worse overall survival
than subgroups 2 and 3 (P< 0.001, Figure 2(e)), whose im-
munity was shown as a state of overall activation by heatmap
(Figure 3). Te median overall survival (mOS) of subgroups
1–3 was 0.4, 2.2, and 1.7 years, respectively. Moreover, age
classifcation was signifcantly diferent among each subgroup
(P � 0.0012, Figure 3 and Table 1). In addition, the number of
patients with M5 and M1 FAB classifcations (37.5% and
29.17%, P � 0.0044) was found to be more abundant in
subtype 1 than in the other two subtypes.

3.2. IdentifcationandValidationofDistinctGeneSets ofTree
Subgroups. According to the clustering results (Subtype1-3) of
the training set (TCGA), the 100 most upregulated gene sets in
each cluster (all gene sets were selected if they were less than
100) were used to conduct supervised hierarchical clustering in
another gene expression profling data (GSE146173) (the ES of
immunologic and hallmark gene sets in the GEO cohort was
displayed in Supplementary Table 4). As shown in Figure 4(a),
patients with subtypes 2 and 3 had a more favorable prognosis
than subtype 1 (P � 0.014). Te heatmap displayed the ES of
gene sets in each subtype in the GSE146173 cohort
(Figure 4(b)). Similar to the TCGA cohort, the heatmap
showed that most of the immune pathways of subtype 1 in the
GSE146173 cohort tended to be “hot,” suggesting the activation
state of overall immunity.

3.3. Construction and Validation of the Prognostic Model.
To identify the representative gene sets that distinguish the
three subgroups, we obtained the diferential gene sets between
each of the two subgroups and intersected them. One hundred
and twenty-fve representative gene sets were obtained
(Figure 5(a) and Supplementary Table 6). As shown in
Figure 5(b), ESs of 125 gene sets in the three subgroups were
diferent. Univariate Cox regression was used to select the gene
sets related to survival, and 62 gene sets remained for further
analysis (Supplementary Table 7). Ten we investigated
prognostic gene sets with TCGA data by the LASSO regression
method.Temodel with theminimum λ (0.06081) was selected
as the bestmodel, where the gene sets were reduced from 62 to 3
(Figures 6(a) and 6(b)). Tus, the gene sets of the fnal prog-
nostic model and their corresponding coefcients were ob-
tained (Supplementary Table 8). Te risk score is defned as
follows: risk score=ES of GSE36891_U
NSTIM_VS_PAM_TLR2_STIM_PERITONEAL_MACROP-
HAGE_DN× 6.63193270349141+ES of GSE35543
_IN_VITRO_ITREG_VS_CONVERTED_EX_ITREG_DN×-
9.1162940208133+ES of HALLMARK_CHOLESTEROL
_HOMEOSTASIS× 7.78597962602926.

Te patients were divided into high- and low-risk
groups, with the median score as the cutof value. Pa-
tients in the high-risk group had a poorer prognosis than
those in the low-risk group in the TCGA cohort (P< 0.001,
Figure 6(c)). Te mOS of low- and high-group was 2.2 and
0.7 years, respectively. Subsequently, the prognostic model
was further validated in GSE146173 (P � 0.046, Figure 6(d))
and GSE12417 (P � 0.034, Figure 6(e)).TemOS of the low-

Identification of subtypes of AML

Constrction and validation of the prognostic model

Patients with AML M3 were excluded

TCGA LAML data Hallmark gene sets, Immunologic
gene sets from MSigDB
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(GSE 146173)

supervised
hierarchy clustering
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Figure 1: Research design and process diagram.
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and high-group was 3.2 and 1.2 years, respectively, in the
GSE146173 cohort; in the GSE12417 cohort, the mOS of the
low- and high-group was 1.7 and 0.8 years, respectively. Te

clinical characteristics of two risk groups in three cohorts
were analyzed (Supplementary Tables 12–14). We further
investigated the prognostic value of each gene set.Te results
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Figure 2: Identifcation of relevant subtypes of AML using immunologic and hallmark gene sets. (a)Te optimal number of clusters (k) was
determined with the factoextra package. (b) Visualization of cluster results, with k being 3. (c) Te nonnegative matrix factorization (NMF)
method was used to cluster AML samples. (d) Te silhouette width plots displayed the clustering efect. Te values of the silhouette range
[−1, 1], where a high value indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters. (e)
Survival analysis among diferent subtypes.
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Figure 3: Te heatmap displayed the correlation between the ES of gene sets and clinical characteristics (P< 0.001 “∗∗∗”; P< 0.01 “∗∗”;
P< 0.05 “∗”).
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showed that a high ES of HALLMARK_CHOLESTER-
OL_HOMEOSTASIS (Figures 6(i)–6(k)) was correlated
with short overall survival in the TCGA, GSE146173, and

GSE12417 cohorts. Patients with high ES of GSE35543_ IN_
VITRO_ ITREG_ VS_ CONVERTED_ EX_ ITREG_ DN
(Figure 6(f)) had a poor prognosis in the TCGA and

Table 1: Analysis of clinical characteristics in three subtypes.

Subgroup 1 Subgroup 2 Subgroup 3 P
Age (years), n (%)
≤65 12 (50) 33 (91.67) 42 (64.62) 0.0012
>65 12 (50) 3 (8.33) 23 (35.38)

Gender, n (%)
Female 9 (37.5) 17 (47.22) 29 (44.62) 0.7508
Male 15 (62.5) 19 (52.78) 36 (55.38)

Race, n (%)
Asian 0 (0.0) 0 (0.0) 1 (1.54) 0.5978
Black or African American 1 (4.17) 1 (2.86) 6 (9.23)
White 23 (95.83) 34 (97.14) 58 (89.23)

Cytogenetics, n (%)
Favorable 1 (4.17) 5 (13.89) 11 (17.19)
Intermediate 16 (66.67) 22 (61.11) 37 (57.81)
Poor 6 (25) 9 (25) 16 (25)
Unknown 1 (4.17) 0 (0.0) 0 (0.0) 0.3639

Leukocyte (×10̂9/L), n (%)
≤25 11 (45.83) 18 (50) 37 (56.92) 0.5993
>25 13 (54.17) 18 (50) 28 (43.08)

FAB subtype, n (%)
M0 0 (0) 7 (19.44) 7 (10.77) 0.0044
M1 7 (29.17) 8 (22.22) 15 (23.08)
M2 4 (16.67) 13 (36.11) 17 (26.15)
M4 3 (12.5) 6 (16.67) 19 (29.23)
M5 9 (37.5) 1 (2.78) 5 (7.69)
M6 1 (4.17) 0 (0) 1 (1.54)
M7 0 (0) 0 (0) 1 (1.54)
Not classifed 0 (0) 1 (2.78) 0 (0)

FAB, French-American-British.
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GSE146173 cohort but not in the GSE12417 cohort.Te high
ES of GSE36891_UNSTIM_VS_PAM_TLR2_STIM_PER-
ITONEAL_MACROPHAGE_DN was only associated with
poor prognosis in the TCGA cohort (Supplementary
Figures 1(a)–1(c)).

3.4. Exploration ofKeyGenes of PrognosticGene Sets. Te PPI
networks of GSE35543_IN_VITRO_ITREG_VS_CON
VERTED_EX_ITREG_DN (Figure 7(a)) and HALL-
MARK_CHOLESTEROL_HOMEOSTASIS (Figure 7(b))
were built through the String website, and the results were

imported into Cytoscape for further analysis. Te top 50
genes were selected based on the ranking of gene-connecting
nodes (Figures 7(c) and 7(d) and Supplementary Table 15).
To further identify the key genes that have an infuence on
the prognosis, we intersected the diferentially expressed
genes (DEGs) between the high- and low-risk groups in the
TCGA cohort (P< 0.05 and |log FC|> 1, Supplementary
Table 16) with the 50 candidate genes from gene sets
GSE35543_IN_VITRO_ITREG_VS_CONVERTED_EX_I-
TREG_DN (Figure 7(e)) and HALLMARK_CHOLESTER-
OL_HOMEOSTASIS (Figure 7(f )), respectively. For the
gene set GSE35543_IN_VITRO_ITREG_VS_CONVE
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Figure 5:Te representative gene sets in three subtypes. (a)Te diferential gene sets between each of the two subgroups were identifed and
intersected. (b) Te heatmap showed the correlation between gene sets in the three subtypes and clinical characteristics.
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Figure 6: Continued.
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RTED_EX_ITREG_DN, three intersection genes were ob-
tained, including TIMP1, ZFP36, and LGALS3. For gene set
HALLMARK_CHOLESTEROL_HOMEOSTASIS, four in-
tersection genes were obtained, which were LDLR, LGALS3,
S100A11, and ANXA5. Amongst these genes, TIMP1 and
LDLR have the largest number of nodes in the two gene sets.
As shown in Figures 7(g)–7(j), TIMP1 and LDLR were
signifcantly increased in the high-risk groups in the two
GEO cohorts (P< 0.0001), which further confrms the ability
of the prognostic model to distinguish patients between
diferent risks and provides clues for further research.

4. Discussion

AML is a malignant myeloid neoplasm with a signifcant
amount of heterogeneity in tumor biology and poor clinical
outcomes. Traditional analysis strategies have focused on
comparing the diferential gene expression between two
groups of interested populations. However, some pathways
may be signifcantly regulated without a signifcant change
in single gene expression. To meet this challenge, we applied
GSVA to display the activity changes of each pathway in
immunologic and hallmark gene sets in AML samples.
According to the ESs of immunologic and hallmark gene sets
in TCGA samples, AML patients were clustered into three
subtypes with the NMF algorithm. Patients with subtypes 2
and 3 had a more favorable prognosis than patients with
subtype 1, which was validated in the GSE146173 cohort.
Subsequently, one hundred and twenty-fve diferential gene
sets were further screened using univariate Cox regression
and LASSO regression methods, and 3 prognostic gene sets
were identifed. Based on these three gene sets, we con-
structed the fnal prognosis model and divided the patients
into high-risk and low-risk groups in TCGA, GSE146173,
and GSE12417 cohorts.

Our results identifed three prognostic gene sets, and
they were related to macrophages, Treg, and cholesterol
homeostasis, respectively. In the past decade, increasing

evidence revealed the role of macrophages in the etiology
and progression of both solid tumors and blood malig-
nancies. Macrophages in solid tumor tissue and the bone
marrow microenvironment are referred to as tumor-
associated macrophages (TAMs) and leukemia-
associated macrophages (LAMs), respectively. Based on
their functional phenotypes, macrophages are divided
into two phenotypes, M1 and M2. In brief, M1 macro-
phages have antitumor efects, whereas M2 is believed to
promote tumor progression [11]. Yang et al. revealed that
the acquisition of M1 characteristics in leukemia-
associated macrophages (LAMs) through activation of
the IRF7-SAPK/JNK pathway was associated with pro-
longed survival in mice. Besides, the high-level expression
of CD163, which is the typical marker of M2 macro-
phages, was associated with worse overall survival in AML
patients [12].

Previous studies have shown that the cholesterol syn-
thesis of AML cells increased signifcantly after being ex-
posed to chemotherapy [13]. Inhibiting cholesterol synthesis
can kill AML cells and sensitize them to chemotherapeutic
drugs [14, 15], suggesting that AML cells require higher
levels of cholesterol to maintain survival compared with
normal cells and that the imbalance of cholesterol ho-
meostasis may lead to treatment failure. A phase 2 study of
pravastatin in combination with idarubicin and cytarabine
reported an encouraging response rate for relapsed AML
[16] and improved overall survival for patients in the low-
risk group [17]. Cholesterol homeostasis plays an important
role in the survival of AML cells and eventually afects the
prognosis of patients with AML.

Regulatory T cells (Tregs) are considered to play a key
role in immune suppression and angiogenesis via secreting
immunosuppressive cytokines and molecules, performing
cytolytic functions, disrupting metabolism, and attenuating
the capacity of dendritic cells (DCs) [18]. Patients with AML
had a higher frequency of Tregs in peripheral blood and bone
marrow than healthy participants [19, 20], while patients
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Figure 6: Prognostic model construction and validation. (a) LASSO coefcients of prognostic gene sets. (b) Tree-fold cross-validation for
the selection of prognostic gene sets in LASSO regression. Prognostic model was constructed based on LASSO regression analysis and
validated in TCGA (c), GSE146173 (d), and GSE12417 cohorts (e). Patients in TCGA (f), GSE146173 (g), and GSE12417 (h) cohorts were
divided into low- and high-risk groups according to the ES of GSE35543_IN_VITRO_ITREG_VS_CONVERTED_EX_ITREG_DN with
median ES as the cutof value. Patients in TCGA (i), GSE146173 (j), and GSE12417 (k) cohorts were divided into low- and high-risk groups
according to the ES of HALLMARK_CHOLESTEROL_HOMEOSTASIS with median ES as the cutof value.
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who achieved complete remission had a comparable fre-
quency of Tregs compared with healthy controls. Wan et al.
revealed that Tregs lead to immune escape by inhibiting the
function of CD4+CD25− T cells [19]. Tese results indicate
that Tregs are involved in the tumorigenesis of AML.

Amongst three prognostic gene sets, high ES of
HALLMARK_CHOLESTEROL_HOMEOSTASIS and
GSE35543_ IN_VITRO_ ITREG_VS_ CONVERTED_ EX_
ITREG_ DN was correlated with short overall survival in at
least two cohorts. We further investigated the key genes in
these gene sets. Te key genes of GSE35543_ IN_ VITRO_
ITREG_ VS_ CONVERTED_ EX_ ITREG_ DN included
TIMP1, ZFP36, and LGALS3. Te key genes of HALL-
MARK_CHOLESTEROL_HOMEOSTASIS included LDLR,
LGALS3, S100A11, and ANXA5. Amongst these genes,
TIMP1 and LDLR have the largest number of nodes in the
PPI network of these two gene sets. TIMP1 and LDLR have
been reported to be associated with the prognosis of AML
[21–23].

Tere were several limitations in this study. First, our
data were acquired from the TCGA database, which lacked
important clinical information, including treatment regi-
mens and event-free survival, limiting further investigation
of the prognostic model. Second, the prognostic model was
conducted using publicly accessible datasets and requires
multicenter clinical samples to assess its prognostic value.

5. Conclusion

Briefy, the study provided a full view of activity changes in
hallmark and immunologic gene sets and established a novel
prognostic model for risk stratifcation in AML, which
provides a new perspective for optimizing prognostic as-
sessment strategies in the future.
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