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Objective. To identify new tumor marker genes available for early tumor screening, differentially expressed gene profiles of
multiple tumors were compared using Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and -e
Cancer Genome Atlas (TCGA) databases. As AP1M2 was highly and differentially expressed in invasive breast carcinoma, the
purpose of this study was to explore the association of AP1M2 gene with the survival, immune invasion, and tumor neoantigens of
patients on a pan-cancer basis.Methods. -e expression and distribution of AP1M2 gene in tumor tissues and the corresponding
normal control tissues were analyzed using the pan-cancer databases GTEx, CCLE, and TCGA. Kaplan-Meyer survival plots and
proportional hazards model (COX) were employed to evaluate actions of AP1M2 on the clinical prognosis of tumor patients.
Subsequently, the association of AP1M2 expression with immune invasion in different tumor types was explored. Simultaneously,
the investigation of the interrelationship of AP1M2 and tumor neoantigens of the immune system, unstable microsatellite, DNA
repair genes, and DNA methyltransferases were explored, and the mutation frequency of AP1M2 gene in diverse tumors was
studied. Several tumor types were analyzed using gene-set enrichment analysis (GSEA). Results. AP1M2was abundantly expressed
in a wide range of cancers, and its expression level was positively correlated with the outcome of tumor victims. -rough a study
on AP1M2 action on clinical prognosis and immune infiltration in tumor patients, AP1M2 expression in breast-infiltrating
carcinoma was found to be highly associated with patients’ overall survival and infiltration levels of macrophages, dendritic cells,
T cells (CD4+ and CD8+), and B cells. Also, AP1M2 expression was positively correlated with tumor immune neoantigens and
microsatellite instability in breast invasive carcinoma. -e effect of AP1M2 on tumors was analyzed by GSEA, and findings
demonstrated that AP1M2 expression levels in most tumors influenced the activation of tumor-associated pathways and immune-
associated pathways. Conclusions. -ese findings suggest that AP1M2 expression levels are significantly correlated to patients’
outcomes and levels of immune infiltration in most cancer types, including Tcells (CD8+ and CD4+), macrophages, neutrophils,
and dendritic cells (DCs), particularly in breast cancer. -e results indicate that AP1M2 may influence the tumor environment of
invasive breast cancer patients and it may be a target contributing to early screening and treatment for breast cancer, helping
improve the efficiency of early screening and overall survival rate in invasive breast cancer patients.

1. Introduction

AP1M2 belongs to the adhesive protein-associated adaptor
protein complex 1 that functions in the anti-Golgi network
(TGN) and protein sorting in the endothelium.-e adaptor-
related protein complex has been characterized bymediating

the recruitment of adhesive proteins to membranes and the
recognition of sorting signals within the cytoplasmic tail of
transmembrane cargo molecules. AP1M2 is phylogenetically
conserved and expressed in all cell types detected, from yeast
to mammals. Meanwhile, it is homologous in a variety of
eukaryotes [1].
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As little research has been made on the correlation
between AP1M2 expression levels and tumorigenesis de-
velopment, this study initiated a pan-cancer analysis of
AP1M2 using databases TCGA, GTEx, and CCLE. Several
influencing factors such as gene expression, survival status,
genetic alterations, immune infiltration, and associated
cellular pathways were analyzed. Meanwhile, the role of
AP1M2, possible molecular mechanisms of AP1M2 in dif-
ferent tumor pathogeneses, and clinical outcomes were si-
multaneously investigated. We found that AP1M2
expression could affect survival prognosis, immune infil-
tration, and tumor load, as well as methylation in tumors,
especially BRCA.

-is research currently revealed that AP1M2 expression
level in BRCA was positively associated with genetic dif-
ferences, immune system, DNA methyltransferase, tumor
mutational load, and microsatellite instability. -is gene has
the potential to be a promising target for early screening and
even BRCA treatment, which can benefit patients with ef-
ficient early screening of invasive breast cancer with im-
proved overall survival.

2. Materials and Methods

2.1. Transcriptional Data Acquisition. First, we detected ex-
pression levels of genes in 31 tissues using the GTEx dataset
(https://commonfund.nih.gov/GTEx/), and further, we ana-
lyzed the gene expression levels in 31 tissues from the CCLE
database (https://portals.broad.institute.org/ccle/), which was
downloaded for each tumor cell line and the expression levels
of 21 tissues were determined following tissue origin. mRNA
data in 31 tumor samples were then obtained from the TCGA
database (https://www.cancer.gov/about-nci/organization/ccg/
research/structural-genomics/tcga) [2]. Data were ultimately
obtained, and differences were compared by Kruskal–Wallis
tests.

2.2. Differential Gene Expression Analysis. Subsequently,
differences of AP1M2 gene expression in the tumor samples
and the corresponding normal control tissues were to be
determined. We downloaded TCGA Pan-Cancer and GTEx
datasets from the UCSC Xena database (https://xena.ucsc.
edu/). We obtained the expression difference of AP1M2
from the TCGA database of both tumor tissues and cor-
responding normal control tissues in 20 tumor samples.
Considering limited normal tissue samples in TCGA, we
synthesized normal tissue data from GTEx database and
TCGA tumor tissues to determine expression differences of
27 tumors. -e significance of the difference at threshold
P< 0.05 was calculated using RStudio version 1.1.456
(RStudio Inc, USA).

2.3. Survival Analysis at a Pan-Cancer Level. -is work
assessed interrelationship between AP1M2 expression level
and 33 tumor prognoses in the TCGA cohort, and univariate
COX regression analyses for disease-free interval (DFI),
overall survival (OS), progression-free interval (PFI), and
disease-specific survival (DSS) were conducted taking into

account the possible presence of nontumor mortality factors
during follow-up. -e threshold of Cox was P< 0.05. A
summary forest plot was generated utilizing R package forest
plot [3]. Tumors with significant correlations in the re-
gression analysis were selected, and the samples were
grouped into two at high or low expressions, referring to a
median AP1M2 expression level. Hypothesis testing was
performed using a log-rank test, and P< 0.05 was used as a
threshold to calculate significant differences in survival. In
addition, a correlation assessment was carried out between
AP1M2 expression levels and TNM stages.

2.4. Relationship between AP1M2 Expression Levels and
Immunity. -e existence of tumor-infiltrating lymphocytes
in the tumor microenvironment correlates with the im-
provement of outcomes and therapeutic results for different
types of cancer [4]. Further investigation on whether AP1M2
expression in diverse tumors would interact with immune
infiltration. It was, therefore, that we employed CIBERSORT
of R package to calculate the relative proportional rela-
tionship of immunocytes in multiple tumors [5]. -eir levels
of immune infiltration were assessed using ESTIMATE of R
package, including the immune and stromal scores of 33
tumor cell samples in the tumor microenvironment in the
TCGA cohort [6]. -e association between AP1M2 and the
previously described indicators was analyzed using Spear-
man correlation analysis.

A total of 47 immune checkpoint genes were collected,
and their association of expression with AP1M2 gene ex-
pression was analyzed using Spearman correlation analysis.
-e correlation heatmap was then created employing the R
package heatmap.

2.5. Relationship between AP1M2 and Immune Neoantigens,
Tumor Mutational Burden (TMB), and Microsatellite Insta-
bility (MSI). Tumor neoantigens can be recognized by
specific cells and encoded by mutated genes.-ey are mostly
generated by new abnormal proteins, such as point muta-
tion, deletion mutation, and gene fusion, and vary from
those in normal cells. -ese proteins are enzymatically
cleaved into peptide fragments and presented via DC cells to
T cells as antigens. In this process, T cells can be induced to
mature and activate, and characterized by tumor neo-
antigen-specific, thereby enabling the activated T cells to
proliferate [7]. Herein, the number of neoantigens contained
in tumor samples was calculated, and the results were an-
alyzed to investigate whether there exists a correlation be-
tween AP1M2 expression levels and immune neoantigens
using a Spearman correlation method [8].

TMB refers to the total number of detected somatic
mutations (nonsynonymous mutations) occurring in an
average 1Mb base in the coding or exon region of malignant
cell genome. It is also briefly expressed as entire non-
synonymous mutations. Meanwhile, the types of TMB
mutations usually consist of single nucleotide variants
(SNVs) and small insertions or deletions (Indel) [9]. In this
research, the estimates of TMB in an individual tumor
sample were presented separately. Spearman’s rank
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correlation coefficient was ultimately adopted to analyze the
interrelationship of the AP1M2 expression level and TMB.

MSI represents Indel of a repeat unit in malignancies,
resulting in somatic alteration in the microsatellite length
when compared to normal tissues. Emerging microsatellite
alleles represent one phenomenon of heredity or biological
inheritance [10]. PreMSIm, an R package, was utilized to
predict MSI following gene expression profiles of 33 cancers,
and the interrelation analysis of both gene expressions and
MSI was analyzed utilizing Spearman rank correlation co-
efficient [11].

2.6. Mutation Patterns of AP1M2 in TCGA Database. -e
mutation details of the previously described 33 malignant
tumors were downloaded from TCGA. All changes that
AP1M2 developed in the tumor specimens were analyzed
subsequently. Maftools, an R package, was subsequently
utilized to visualize the tumors with the most AP1M2
mutations [12].

2.7. Correlation of AP1M2 Expression Levels with DNA
Methyltransferases (DNMT) and Mismatch Repair (MMR)
Genes. MMR is a mechanism of mismatch repair occurred
intracellularly; the function depletion of key genes leads to
irreparable DNA replication mistakes, which in turn results
in higher somatic mutations. -erefore, whether AP1M2
could influence five MMR genes (MLH1, MSH2, MSH6,
PMS2, and EPCAM mutations) was assessed using TCGA
expression profiles.

DNA methylation also represents a mechanism that
regulates relevant gene expression free from changing DNA
sequences. -is action mechanism enables to control of
expressions of genes, resulting in chromatin structure al-
ternation, changes in DNA conformation, and DNA sta-
bility, as well as interactions of DNA with proteins. DNA
methylation is catalyzed by the action of DNA methyl-
transferases, and methyl groups can be added at 5′ carbon
position of the cytosine ring. -us, this study elucidated the
correlation of expressions between genes and four meth-
yltransferases (DNMT1, DNMT2, DNMT3A, and
DNMT3B).

2.8. GSEA Analysis of Patients with Pancytopenia in TCGA.
To further clarify whether AP1M2 gene expression influ-
ences tumors and in light of gene expression levels, we
divided the samples into two experimental groups: a high
expression group and a low expression group. KEGG en-
richment analysis and signature pathways were performed in
both groups using GSEA [13].-e enrichment and signature
pathways of KEGG analysis were subsequently analyzed for
both of the experimental groups. -e c5 curated signatures
were collected from the MSigDB database (https://www.
gsea-msigdb.org/gsea/msigdb/collections.jsp) [9]. KEGG
and HALLMARK terms and conditions were concomitantly
defined in both high and low AP1M2 expression groups.
FDR <0.05 was utilized to determine the significance of
pathway enrichment results.

3. Results

3.1. Gene Expression Analysis Data. We analyzed differences
in gene expression between cancer and paracancer in each
cancer sample obtained from the TCGA database
(Figure 1(c)) in READ (P< 0.05), BLCA, COAD (P< 0.01),
BRCA, CHOL, LIHC, LUAD, LUSC, PRAD, STAD
(P< 0.001), THCA, and UCEC (P< 0.001), while AP1M2
expression levels in GBM, LGG (P< 0.05), KICH, KIRC, and
KIRP (P< 0.001) were elevated compared with those in the
normal control group (control tissues).-e levels were lower
than those of the relevant control normal tissues.

Evaluation of AP1M2 expression differences in LAML,
OV, ACC, CESC, TGCT, and UCS was conducted after
normal tissues from the GTEx dataset were set as control.
Figure 1(d) indicated highly expressed AP1M2 in CESC,
OV, TGCT, and UCS (P< 0.001) compared with the tissues
of the relevant control normal group, whereas AP1M2 was
poorly expressed in LAML (P< 0.001) compared with those
of the relevant control normal group. Unluckily, we failed to
discover any significant differences in AP1M2 expression
levels between ACC and its control normal.

Furthermore, the Kruskal–Wallis test showed significant
differences in AP1M2 expression levels between organs
(Figures 1(a) and 1(b)).

3.2. Survival Analysis Data. We investigated the interrela-
tionship of AP1M2 expression levels and the survival
prognosis in several types of tumor patients. -e association
of expression levels with prognostic OS (overall survival time
in days) in 33 tumors from TCGA was identified using gene
expression profile data, one-way survival analysis, and forest
plots in 33 tumors as shown in Figure 2(a). Meanwhile,
significant tumors BRCA (P � 0.015), SARC (P � 0.0064),
and SKCM (P � 0.0067) were selected for prognostic KM
curves. Following the expression levels of AP1M2, cancer
cases were categorized into high and low expression groups,
between which their correlation between AP1M2 expression
and patient prognosis of different cancer types was studied
using databases TCGA and GEO. As presented in
Figure 2(b), highly expressed AP1M2 linked to poorer
prognosis in BRCA (P � 0.039, HR� 1, 95% CI� 1) and
SKCM (P � 0.0015, HR� 1.02, 95% CI� 1.01–1.04).

Meanwhile, considering the presence of nontumor death
factor during the follow-up period, the correlation between
the gene expression of 33 tumors and the prognostic DSS in
TCGA was initially analyzed (Figure 3(a)). -e significant
tumor SARC (P � 0.0023) was selected according to the
expression level of AP1M2, and the cancer samples were
grouped into high and low expression experimental groups
for prognostic KM curves. -e results failed to reveal any
positive correlated features between AP1M2 expression and
DSS in SARC (Figure 3(b)) (P � 0.063, HR� 1, 95% CI� 1).

Next, the same procedures were carried out to explore
whether there existed correlations between gene expressions
and prognostic DFI (Figure 4(a)) and PFI (Figure 5(a)) in 33
tumors of TCGA. -ere were significant correlation in ACC
(P � 0.048), CESC (P � 0.01), TGCT (P � 0.013) and ACC
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(P � 0.046), HNSC (P � 0.015), MESO (P � 0.036), PCPG
(P � 0.00053), and SARC (P � 0.0023), and two high and
low expression groups were divided in light of the AP1M2
levels for prognostic KM curves. As shown in Figure 4(b),
the DFI survival analysis revealed that there was an asso-
ciation of higher AP1M2 expression with poorer prognosis
in CESC (P � 0.013, HR� 1.01, 95% CI� 1–1.01) and TGCT
(P � 0.004, HR� 0.01, 95% CI� 1–1.01). As shown in
Figure 5(b), the same propensity of PFI survival analysis was
revealed as that of the previously described conditions that
highly expressed AP1M2 corresponded to poorer prognosis
in ACC (P< 0.0001, HR� 1.88, 95% CI� 1.01–3.51), HNSC
(P � 0.0011, HR� 1, 95% CI� 1–1.01), and MESO
(P � 0.035, HR� 1.01, 95% CI� 1–1.02).

3.3.Association ofGeneExpressionwith Immunity Infiltration
Levels. Tumor-infiltrating lymphocytes consist of cells in-
vading cancer tissues, and they function as independent
biomarkers for the prediction of anterior lymph node status
and efficacy of cancer treatment [14]. We investigated
whether this gene expression linked to immune invasion in

different cancer types and figured out that AP1M2 expression
levels were positively correlated with the levels of B-cell in-
filtration in 14 cancers, CD4+ Tcell infiltration in 17 cancers,
CD8+ T cells in 16 cancers, macrophages in 19 cancers,
neutrophils in 19 cancers, and dendritic cells in 19 cancers.
-e three most significantly correlated tumors BLCA, BRCA,
and COADwere selected (Figure 6). AP1M2 expression levels
in BLCA, BRCA, and COAD (all P< 0.0001) were all sig-
nificantly and negatively related to B cells, T cells (CD4+ and
CD8+), macrophages, neutrophils, and DC.

Numerous researchers have demonstrated that the tu-
mor immune microenvironment determines the occurrence
and development of a wide variety of tumors [15]. Following
the visualization of the interrelationships between gene
expression and scores of the immune system, stromal, and
ESTIMATE in the 33 reported tumors, we selected three
tumors with the most significant relationship in each score
(Figure 7). AP1M2 levels were more significant in PAAD
(RS� −0.556, PS< 0.0001, RI� -0.517, PI< 0.001) and BRCA
(RS� −0.341, PS� 2.89e− 31, RI� −0.385, PI� 3.24e− 40).
PRAD (RS� −0.46, PS� 2.28e− 27, RI� −0.401,
PI� 1.24e− 20) was negatively correlated between the
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Figure 1: AP1M2 expression level in 31 normal tissues across (a) GTEx dataset and (b) CCLE database. -e differences in gene expression
between cancer and paracancerous in individual tumor samples obtained from the (c) TCGA database and (d) GTEx datasets.
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expression levels in PRAD (RS� −0.46, PS� 2.28e− 27,
RI� −0.401, PI� 1.24e− 20) and the stromal and immune
scores. However, as for LUAD (R� −0.374, P< 0.0001),
PAAD (R� −0.564, P< 0.0001), and BRCA (R� −0.409,
P � 1.41e − 45), AP1M2 gene expression level had a negative
correlation with composite scores.

Under normal conditions, immune cells can recognize
tumor cells and remove them from the tumor microenvi-
ronment [16]. Tumor immunotherapy has been recognized

in medicine by reactivating and maintaining the tumor
immune cycle to suppress and eliminate immune cells as a
way to repair the body’s normal antitumor immune re-
sponse. -e current widely applied immune checkpoints are
inhibitors of monoclonal antibody-based immune check-
points and small molecules, antibody therapeutics, and
cancer treatment vaccines, as well as cytotherapy [17]. As
shown in Figure 8, the horizontal coordinate indicates the 33
selected tumors and the vertical coordinate indicates the
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Figure 2: -e relationship between expression and OS (overall survival time in days) in 33 tumors of TCGA. (a) -e results of univariate
COX regression analysis was presented via forest plot. (b) Alog-rank test was used to calculate the significance of survival differences with a
threshold of P< 0.05, and the results were presented via Kaplan–Meier survival curves comparing survival rates of low and high expressions
of AP1M2 in tumors.
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relevant immune checkpoints, where ∗indicates correlation
(P< 0.05), ∗∗indicates high correlation (P< 0.01), and
∗∗∗indicates significant correlation (P< 0.001). Higher
AP1M2 expression indicated poorer prognosis of tumor
patients by the survival analysis of BRCA, while AP1M2
expression levels were negatively correlated with B cells,
T cells (CD4+ and CD8+), macrophages, neutrophils, DC
infiltration, and scores of the immune system, stromal, and

composites via immune analysis. -ese results suggested a
specific role of AP1M2 in the prognostic analysis and im-
mune infiltration in BRCA. According to Figure 6, the
immune checkpoint genes were positively associated with
BRCA immunity including BTLA, CD200, NRP1, LAIR1,
TNFSF4, CD244, LAG3, ICOS, CD40LG, CTLA4, CD48,
CD28, CD200R1, HAVCR2, CD80, LGALS9, CD160,
TNFSF14, TMIGD2, PDCD1LG2, HHLA2, TNFSF18,
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Figure 3:-e relationship between expression and DFS (disease-specific survival) in 33 tumors of TCGA. (a)-e results of univariate COX
regression analysis were presented via forest plot. (b) A log-rank test was used to calculate the significance of survival differences with a
threshold of P< 0.05, and the results were presented via Kaplan–Meier survival curves comparing the survival rates of low and high
expression of AP1M2.
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CD70, TNFSF9, TNFRSF8, CD27, VSIR, TNFRSF4, CD40,
TNFRSF18, TIGIT, CD274, CD86, and TNFRSF9.

3.4. Relationship between Gene Expression and Immune
Neoantigens, TMB, and MSI. Neoantigen vaccines can be
designed and synthesized using strong immunogenicity and
heterogeneity of tumor neoantigens according to the tumor
cell mutations, which will benefit patients with a satisfactory
therapeutic effect after immunization [18]. By counting the
neoantigen quantity of every sample tumor, we subsequently

studied whether there was any association with AP1M2
expression. As shown in Figure 9, the expression levels of
AP1M2 in UCEC (R� 0.131, P< 0.0404), PRAD (R� 0.123,
P< 0.0476), HNSC (R� 0.17, P< 0.0045), and STAD
(R� 0.316, P � 6.08e − 07) showed a link to the number of
neoantigens.

As TMB predicts favorable responses to immune
checkpoint inhibitors, mutated cell count can be calculated
from the tumors applying Spearman rank correlation co-
efficient. Meanwhile, its association with gene expression
was also analyzed, as shown in Figure 10(a). -e results were
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Figure 4: -e relationship between expression and DFI (disease-free interval) in 33 tumors of TCGA. (a) -e results of univariate COX
regression analysis were presented via forest plot. (b) A log-rank test was used to calculate the significance of survival differences with a
threshold of P< 0.05, and the results were presented via Kaplan–Meier survival curves comparing the survival rates of low and high
expression of AP1M2 in tumors.
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Figure 5:-e relationship between expression and PFI (progression-free interval) in 33 tumors of TCGA. (a)-e results of univariate COX
regression analysis were presented via forest plot. (b) A log-rank test was used to calculate the significance of survival differences with a
threshold of P< 0.05, and the results were presented via Kaplan–Meier survival curves comparing the survival rates of low and high
expression of AP1M2 in tumors.
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as follows: the AP1M2 gene expression level in BRCA
(P � 9.5e − 05) was significantly and negatively correlated
with TMB, whereas those expression levels revealed in BLCA
(P � 0.015), ESCA (P � 1.4e − 06), HNSC (P � 3.2e − 05),
LIHC (P � 0.03), PAAD (P � 5.5e − 07), STAD
(P � 4.8e − 10), THYM (P � 0.0017), and UCEC (0.0022)
were positively correlated with TMB. Among them, AP1M2
levels in STAD, PAAD, and ESCA were most significantly
related to TMB.

Whether gene expression and MSI had a connection was
subsequently verified applying Spearman rank correlation
coefficient (Figure 10(b)). -e results indicated that the
AP1M2 gene expression levels in DLBC (P � 0.012), ESCA
(P � 0.0065), GBM (P � 0.012), HNSC (P � 0.00012),

STAD (P � 6.7e − 05), and TGCT (P � 0.0023) were posi-
tively correlated with MSI, whereas those in the UCS
(P � 0.0034) and READ (P � 0.00012) were negatively
correlated with MSI.

3.5. Mutation Patterns of Genes in TCGA Tumor Samples.
Mutated AP1M2 was further analyzed following data
collection of the 33 tumors through the TCGA database. As
shown in Figure 11, mutations of AP1M2 only occurred in
BLCA, BRCA, CESC, COAD, GBM, LUAD, LUSC, OV,
SARC, SKCM, and UCEC after observation. Among them,
the top three tumors with the highest AP1M2 mutation
rates were UCEC (3.77%), COAD (1.5%), and SKCM
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Figure 6: We used the CIBERSORTmethod in the R package to calculate the relative proportional relationship of immune cells in multiple
tumors. -e three most significantly correlated tumors BLCA, BRCA, and COAD were selected.
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(1.07%), indicating that AP1M2 was rarely mutated in most
tumors.

3.6. Gene Expression TCGA Tumor Samples concerning DNA
MMR and Methyltransferases. In light of the TCGA ex-
pression profile data, we subsequently assessed the inter-
relationship between mutations of the five MMR genes

MLH1, MSH2, MSH6, PMS2, and EPCAM and gene ex-
pressions (Figure 12(a)). -e results revealed that AP1M2
expression levels were significantly correlated with the five
MMR genes in CESC, HNSC, LUAD, PRAD, SKCM, and
THCA.

We simultaneously analyzed the visualization of ex-
pression correlation between AP1M2 and the previously
described four methyltransferases (DNMT1: red, DNMT2:
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Figure 7: Correlation of AP1M2 expression with the immune score, ESTIMATE score, and stromal score in PAAD, BRCA, PRAD, and
LUAD.
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blue, DNMT3A: green, and DNMT3B: purple)
(Figure 12(b)). -e results indicated that expression levels of
UCEC, BRCA, CESC, COAD, KIRC, LGG, LUAD, PRAD,
TGCT, THCA, and PCPG, AP1M2 were substantially
correlated with the four genes, with AP1M2 expression levels
in TGCT (R� 0.38, P � 3.3e − 06) being the most signifi-
cantly correlated.

3.7. GSEA Analysis. We employed two groups of tumor
specimens to verify actions of gene expression on tumors: a
high and a low expression groups in accordance with gene
expression. GSEA was employed for KEGG enrichment and
HALLMARK pathway analysis in both expression groups.
Subsequently, three pathways were selected, which pre-
sented the most significant GSEA results (Figure 13). KEGG
pathway analysis in Figure 13 exhibited that high expression

of AP1M2 mainly activated PEROXISOME (ES� −0.58,
NES� −2, P � 0.0019, FDR� 0.072), ARGININE_AND_-
PROLINE_METABOLISM (ES� −0.56, NES� −2,
P< 0.001, FDR� 0.039), and PYR-
IMIDINE_METABOLISM (ES� −0.58, NES� −2, P< 0.001,
FDR� 0.036), while poorly expressed AP1M2 mainly acti-
vated AUTOIMMUNE_THYROID_DISEASE (ES� 0.68,
NES� 1.9, P � 0.0098, FDR� 0.031), HEMA-
TOPOIETIC_CELL_LINEAGE (ES� 0.61, NES� 1.9,
P � 0.0097, FDR� 0.029), INTESTINAL_IMMUNE_-
NETWORK_FOR_IGA_PRODUCTION (ES� 0.74,
NES� 2, P � 0.0019, FDR� 0.03), and CYTOKINE_CY-
TOKINE_RECEPTOR_INTERACTION (ES� 0.54,
NES� 2, P � 0.004, FDR� 0.026). In the HALLMARK
pathway, the highly expressed AP1M2 mainly activated
PEROXISOME (ES� −0.57, NES� −2.2, P � 0,
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(ES� −0.57, NES� −2, P � 0.002, FDR� 0.013), and FAT-
TY_ACID_METABOLISM (ES� −0.54, NES� −2,
P � 0.0021, FDR� 0.011), whereas poorly expressed AP1M2
mainly activated IL6_JAK_STAT3_SIGNALING (ES� 0.49,
NES� 1.6, P � 0.069, FDR� 0.12), KRAS_SIGNALING_UP
(ES� 0.43, NES� 1.7, P � 0.02, FDR� 0.066), INFLAM-
MATORY_RESPONS (ES� 0.5, NES� 1.8, P � 0.027,
FDR� 0.059), and ALLOGRAFT_REJECTION (ES� 0.62,
NES� 2, P � 0.015, FDR� 0.028).

4. Discussion

Being one of the most densely populated countries, China
has achieved remarkable progress in the improvement of
people’s health over the last several decades. As the pop-
ulation ages, China’s burden of cancer expenses keeps
growing [19]. Meanwhile, since the outbreak of the novel
coronavirus pandemic in 2019, several studies have dem-
onstrated that individuals under a high risk of COVID-19
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Figure 9: Correlation of AP1M2 expression with neoantigens.
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Figure 10: Correlation between AP1M2 and TMB (a) and microsatellite instability (b).
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include cancer patients who are immunosuppressed
throughout the body [20].

-rough literature retrieval, little literature on AP1M2
pan-cancer analysis of the overall tumor has been found.
-erefore, based on data from TCGA, CCLE, UCSC Xena,
and GTEx databases, as well as gene expression, gene var-
iants, methylation, immune infiltration, and enrichment
analysis, a comprehensive exploration was conducted on
AP1M2 gene from the 33 different tumor types in the TCGA
cohort. -e findings indicated that the AP1M2 expression
level exhibited a positive link to the prognosis and immune
aspects of several different tumors, especially breast-infil-
trating carcinomas. Hence, AP1M2 may be applied as a
screening indicator and therapeutic target for multiple tu-
mors in the future.

AP1M2 expression differences were revealed simulta-
neously among various cancers and normal control, which
indicated that AP1M2 was highly expressed and significant

in breast cancer, liver cancer, lung cancer, bile duct cancer,
prostate cancer, gastric cancer, thyroid cancer, and com-
mon genital tumors compared to normal tissues. Con-
versely, some datasets also showed that AP1M2 was poorly
expressed in kidney cancer and acute myeloid leukemia
compared to normal tissues in the control group. AP1M2,
also known as Mu-2, has been shown that Mu-2-related
death-inducing gene (MuD) is a 490-amino-acid protein
belonging to the medium subunit family of adaptin protein
(AP), which can independently induce cancer cell death in
association with adhesive protein-mediated endocytosis
found in the Mu-2 subunit of the articulation protein [21].
-erefore, AP1M2 may also possess the function of in-
ducing cancer cell death. However, such speculation is
inconsistent with gene expression analysis and survival
analysis, and more investigations remain indispensable to
reveal actions andmechanisms of AP1M2 among a range of
cancer types.
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Figure 12: -e relationship between AP1M2 expression level and (a) mismatch repair genes and (b) DNA methyltransferase. ∗P< 0.05,
∗P< 0.01; ∗ ∗ ∗P< 0.001.
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Following the analysis of AP1M2 expression levels and
immunity, we found that AP1M2 expression in BRCA was
negatively associated not only with B cells, CD4+ Tcells, CD8+
Tcells, macrophages, neutrophils, and DC (Figure 4), but also
with scores of the immune system, stromal, and composite in
ESTIMATE analysis (Figure 5).-e occurrence and progress of
a tumor are complicated, and the processes in which cancer
cells interact with microenvironment and immune system

influence tumorigenesis and progression [22]. Furthermore,
immunocytes have a pivotal secondary role in maintaining
tissue integrity and normal functions by eliminating pathogens
in different states of homeostasis, infection, and noninfectious
disturbances of the body and have an impact on the clinical
outcome of tumors [23]. In addition, it has been shown that
immune scores in RBCA at either a high or moderate level can
lead to improved disease-free survival or OS [24]. Hence, the
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Figure 13: -e result of GSEA.
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association of increased AP1M2 expression levels with poor
prognosis in BRCA patients may be related to the fact that
AP1M2 expression suppresses immunocyte infiltration into
tumor microenvironment and decreased immune score.

In BRCA, the AP1M2 expression level was significantly
and negatively related to most immune checkpoints except
TNFRSF18 (Figure 6). Immune checkpoints represent
multiple inhibitions and stimulation pathways for immu-
nocytes to maintain their immunologic tolerance and adjust
corresponding immune responses to dangerous physical
signals [25]. Immune checkpoint blockade can either retard
or suppress evasion of tumor cells and slow down tumor
growth. -rough inquiring literature, we found that high
expression levels of CTLA-4 and TIGITwere associated with
a good prognosis of BRCA [26]. Figure 6 presented that
AP1M2 levels were correlated with both CTLA-4 and TIGIT.

Several investigations have revealed that TMB is critical
for cancer development and progression, and cancer pa-
tients with high TMB levels responded more strongly to
immunotherapy than low TMB level patients, which is also
associated with cancer prognosis [27–29]. However, through
the analysis of AP1M2 expression levels and TMB (Figure 7),
AP1M2 expression levels in BRCA were significantly neg-
atively correlated with TMB. -us, increased AP1M2 ex-
pression levels may lead to lower TMB in patients, which
might be less sensitive to immunotherapy.

In addition, a positive correlation was revealed between
AP1M2 expression and MMR and DNA methyltransferases
in BRCA. Taken together, AP1M2 may be used as a prog-
nostic predictor or a therapeutic target of BRCA for im-
munotherapy in clinical settings for the improvement of
patients’ prognosis and survival rates. In future research, we
plan to use gene editing methods to overexpress or knock
out AP1M2 in tumor cells and animal models to verify the
function and molecular regulation mechanism of AP1M2.
-rough these studies, it is expected that the clinical ap-
plication potential of AP1M2 will be further explored.
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