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Background. Molecular features have been included in the categorization of gliomas because they may be excellent predictors of
tumor prognosis. Lower-grade glioma (LGGs, which comprise grade 2 and grade 3 gliomas) patients have a wide variety of
outcomes. The goal of this research is to investigate a pyroptosis-based long noncoding RNA (lncRNA) profile and see
whether it can be used to predict LGG prognosis. Methods. The Genotype-Tissue Expression (GTEx) and Cancer Genome
Atlas (TCGA) datasets were utilized to get RNA data and clinical information for this research. Six considerably related
lncRNAs (AL355574.1, AL355974.2, Z97989.1, SNAI3-AS1, LINC02593, and CYTOR) were selected using Cox regression
(univariate and multivariate) and LASSO Cox regression. A variety of statistical techniques, including ROC curves, nomogram,
and Kaplan-Meier curves, were utilized to verify the risk score’s accuracy. Following that, bioinformatics studies were carried
out to investigate the possible molecular processes that influence LGG prognosis. The variations in pathway enrichment were
investigated using GSEA. The immune microenvironment inconsistencies were investigated using CIBERSORT, ESTIMATE,
MCPcounter, TIMER algorithms, and ssGSEA. Results. We discovered six lncRNAs with distinct expression patterns that are
linked to LGG prognosis. Kaplan-Meier studies showed a signature of high-risk lncRNAs associated with a poor prognosis for
LGG. Furthermore, the AUC of the lncRNA signature was 0.763, indicating that they may be used to predict LGG prognosis.
In predicting LGG prognosis, our risk assessment approach outperformed conventional clinicopathological characteristics. In
the high-risk group of people, GSEA identified tumor-related pathways and immune-related pathways. Furthermore, T cell-
related activities such as T cell coinhibition and costimulation, check point, APC coinhibition and costimulation, CCR, and
inflammatory promoting were shown to be substantially different between the two groups in TCGA analysis. Immune
checkpoints including PD-1, CTLA4, and PD-L1 were expressed differentially in the two groups as well. Conclusion. This study
found that pyroptosis-based lncRNAs were useful in predicting LGG patients’ survival, suggesting that they may be used as a
therapeutic target in the future.

1. Introduction

Glioma is a cancerous tumor that poses a significant danger
to human health throughout the globe. Complex histological
kinds, significant variations in patient prognosis, and
restricted therapeutic choices define it. The histopathology
grade (World Health Organization) classifies glioma patients
by convention in grades 1 to 4 and is widely used by doctors
to evaluate prognosis and guided treatment [1]. The tradi-

tional TNM classification assessment findings, however, are
not completely acceptable owing to the wide variety of
patient survival within each grade. Scientists have found in
recent years that IDH 1 and 2 mutations, as well as 1p/192
codeletion, play a major influence in glioma patient progno-
ses than TNM phases, thanks to extensive molecular biology
study [2, 3]. The World Health Organization (WHO) made
a significant modification in the categorization of gliomas in
2016, including molecular features in the classification [4].
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Deep mining of gene expression data and the creation of
more effective molecular markers have subsequently become
research hotspots in the field of glioma.

Individuals between the ages of 20 and 40 are more likely
to develop low-grade gliomas (LGGs, WHO category II and
III gliomas) [5]. While LGGs are malignant and have a high
mortality rate, their effect on society, families, and people is
extraordinarily stressful, although LGG patients have a bet-
ter prognosis compared to other CNS malignancies [6–8].
Treatment such as surgery, radiation, and chemotherapy
have advanced in recent decades, and LGG patients’ survival
rate is very variable. Some patients have a one-year survival
rate, while others have a 15-year survival rate. As a result,
LGG is now confronted with two significant issues: the
newly found molecular indicators (for example, IDH muta-
tion and coding status 1p/19q) are unable to fully differenti-

ate the prognosis of LGG, and the existing therapeutic
approaches are unable to enhance the survival rate of
patients [9]. Targeted treatment for LGG has recently been
utilized in clinical trials; however, patient overall survival
(OS) has not been as excellent as anticipated. As a result, it
is critical to identify LGG’s molecular subtypes and differen-
tiate between high- and low-risk individuals, allowing for
earlier diagnosis and better prognosis.

Noncoding RNAs (ncRNAs) having an intracellular
length of more than 200 nucleotides are also known as long
noncoding RNAs (lncRNAs) [10]. lncRNAs have no protein
transcription feature yet play a vital role in a number of
physiological activities, such as transcription regulation and
the structure of nuclear domains. Meanwhile, lncRNAs are
involved in a variety of cellular activities, including pyropto-
sis [11]. Results from these experiments show that lncRNAs
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Figure 1: LASSO and Cox regression analysis were used to create a signature of pyroptosis-related lncRNAs. (a, b) The predictive
pyroptosis-related lncRNA LASSO coefficient profiles. (c) Multivariate Cox regression analysis revealed that the forest plot of pyroptosis-
associated lncRNAs is substantially linked to OS in LGG patients.
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Figure 2: Continued.
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are significantly upregulated in cancer cells and, as a result,
may serve as useful diagnostic markers for LGG patients
[12]. Furthermore, recent studies have shown a link between
nonmutational gene expression regulation and treatment
resistance, with lncRNAs acting as significant modulators
of drug sensitivity to tumor cells [13, 14]. lncRNAs were

believed to have a prognostic prediction potential and offer
new treatment choices based on the very particular subtype
of tumor cells.

Pyroptosis is a cell death that is coupled with the pro-
duction and breakdown of proinflammatory mediators
[15]. Pyroptosis-mediated inflammatory alterations promote
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Figure 3: Cox analysis for pyroptosis-related lncRNAs, both univariate and multivariate. (a) Univariate analysis. (b) Multivariate analysis.
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Figure 2: TCGA-based signature for pyroptosis-related lncRNAs. (a) The outcome of the Kaplan-Meier curves. (b) AUC values for
predicting LGG survival rates at 1, 3, and 5 years. (c) The area under the curve (AUC) values of the risk variables. (d) The risk factors’
DCA. (e) Plot of risk survival status. (f) The distribution of patient risk ratings. (g) Pyroptosis-related lncRNAs heat map in high- and
low-risk groups.
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carcinogenesis in normal cells and provide favorable tumor
microenvironments for tumor growth [16, 17]. By stimulat-
ing the ERK 1/2 pathway, HMGB1 produced from pyropto-
tic epithelial cells promotes carcinogenesis of colitis-
associated colorectal cancer [18]. Recent research found that
pyroptosis induced in the tumor’s core hypoxic area acceler-
ated tumor growth and was linked to a worse survival rate
[19]. Several research investigations have indicated that
pyroptosis may be used as a biomarker to determine tumor
prognosis [20, 21], and studies in the underlying mecha-
nisms may provide new treatment options.

Several studies have shown that lncRNAs derived from
pyroptosis have an effect on solid tumor cells (such as cer-
vical cancer, digestive cancers, and breast cancer) [22–24].
The function of pyroptosis-based lncRNAs in LGG is
unknown. In this research, we hypothesized that there
are many lncRNAs associated with pyroptosis that may
aid in forecasting the LGG prognosis. By integrating both
the kinds and the molecular tumors, LGG heterogeneity
may be more effectively shown, and a theoretical founda-
tion for clinical diagnostics and prognosis can be provided.
Finally, we created a novel pyroptosis score system based

on six lncRNAs with the aim of accurately predicting
patient prognosis.

2. Materials and Methods

2.1. Data Collection. The University of California Santa Cruz
(UCSC) Xena website was used to acquire high-throughput
RNA-seq data and clinical characteristics from TCGA data-
base for 525 patients with LGG, as well as 1152 normal brain
tissue samples from the GTEx project. FPKM normalized
estimate and log2-based transformation were used to quan-
tify the gene expression patterns. Then, from previous stud-
ies, we identified 33 pyroptosis-related genes, which are
included in Table S1. Because TCGA cohort lacked normal
brain tissue data, we used GTEx (Genotype-Tissue
Expression) data to detect DEGs between normal and
malignant tissues. The GTEx database is made up of over
7,000 autopsy samples from 449 living healthy human
donors. Before comparing the two datasets, the expression
data were standardized to FPKM values. The R software
package “limma” was used to find DEGs under the
absolute value of jlog2FCj ≥ 1 and adj. P value < 0.05.
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Figure 4: Prognostic signature and clinicopathological manifestations of pyroptosis-related lncRNAs.

5Journal of Oncology



2.2. The Uncovering of Pyroptosis-Related lncRNAs and the
Development of a Prognostic Model. To find pyroptosis-
related lncRNAs, researchers used Pearson correlation anal-
ysis. The association between lncRNAs and pyroptosis genes
was determined using their expression values. jR2j > 0:6 and
P < 0:001 were our selection criteria. To create the
pyroptosis-related lncRNA signature, we utilized LASSO
Cox regression and univariate and multivariate Cox regres-
sion. Following that, we identified six pyroptosis-related
lncRNAs as potential targets. Finally, using a prior method,

the predictive model was built using six pyroptosis-related
lncRNAs:

risk score = 〠
n

i=1
expi ∗ βi, ð1Þ

where exp ðiÞ and βðiÞ are the expression value of each
lncRNAs linked to pyroptosis and the calculated regression
coefficient in the formula.
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Figure 5: A nomogram for both clinicopathological and prognostic lncRNAs associated with pyroptosis.
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2.3. Evaluating and Verifying the Adequacy of the Prognostic
Signature. To discover the survival differences between the
high- and low-risk groups, the Kaplan-Meier survival analy-
sis was employed. In the current study, the gene expression
and prognosis of different groups were examined using heat
map and scatter plot. We evaluated the ROC curve’s predic-
tive abilities in order to determine the prediction’s accuracy.
Correlation analysis was used to establish relationships
between the risk score and the patients’ clinicopathological
variables. To validate the independent prediction model,
we have utilized univariate and multivariate Cox regression
analyses.

2.4. Creating a Predicted Nomogram. A nomogram based on
risk score and other clinicopathological characteristics was
created to offer a reliable clinical prediction tool for LGG
patients in terms of 1-, 3-, and 5-year survival. The calibra-
tion curves were then utilized for assessing the concordance
between patients anticipated and observed.

2.5. Gene Set Enrichment Analysis. To identify differentially
expressed functional phenotypes between the high-risk and
low-risk groups, we utilized GSEA. The GSEA was used to
categorize differentially expressed genes into two risk catego-
ries based on their expression profiles. The enriched gene
sets were discovered using a P value < 0.05 and an FDR <
0:25. High- and low-risk groups were then analyzed using
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway method, which allowed a more detailed investiga-
tion of the pathways involved.

2.6. The Coexpression Network Created to Study lncRNA-
mRNA Interactions. The links between pyroptosis-related

lncRNAs and their target mRNAs were investigated using
lncRNA-mRNA coexpression network constructed using
Cytoscape, as well as the possible roles of the LGG six
pyroptosis-related lncRNAs.

2.7. Analyses of Immunity and Gene Expression. Based on the
lncRNA-related pyroptosis-related signature, the evaluation
of the cellular components or cell-reacting immunological
responses among high-risk and low-risk groups was con-
ducted using CIBERSORT, ESTIMATE, MCP counter,
and single-sample gene set enrichment analysis (ssGSEA).
Using a heat map, different immune response differences
were shown under various algorithms. The ssGSEA algo-
rithm was used to conduct these additional comparisons
and to evaluate the immunological activity of the tumor-
infiltrating immune cell subgroups. We obtained immune
checkpoint-related genes from the literature for analysis.

2.8. Statistical Analysis. For statistical analyses, R software
version 4.0.2 and other R packages were utilized, with a 2-
tailed P value < 0.05 signifying statistical significance. We
used “survival” package to conduct univariate and multivar-
iate Cox analysis. The “glmnet” package was used to conduct
the LASSO Cox regression analysis, and 10 times cross-
validation was utilized to find the optimum penalty parame-
ter lambda. Kaplan-Meier analysis and survival curves were
generated using “survival” package. The nomogram and cal-
ibration curve were created using the “rms” package. The
“timeROC” package was used to analyze time-dependent
ROC curves. Based on FDR, the Benjamini-Hochberg tech-
nique was utilized to determine the differentially expressed
lncRNAs. The LGG DEGs were normalized using ssGSEA
and compared to a genome using “GSVA” (R package).
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Figure 7: (a) The novel lncRNA’s connection to mRNA expression. (b) Sankey diagram of the LGG lncRNA network.
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3. Results

3.1. Prognosis of LGG Patient Tissue Samples with
Pyroptosis-Associated lncRNAs. The following study com-
prised a total of 525 LGG patients. Table S2 contains the
full clinical features of the patients. We identified 4 DEGs
linked to pyroptosis (2 downregulated and 2 upregulated;

Table S3). In addition, the Pearson correlation between the
lncRNA and the associated genes was carried out for 859
pyroptosis-related lncRNAs with selection criterion of jR2j
> 0:6 and P < 0:001 (Table S4). 77 lncRNAs were shown
to be substantially associated with the survival time of
LGG patients (P < 0:001; Table S5) in a univariate Cox
regression analysis incorporating clinical survival data. For
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the predictive signature, LASSO regression and multivariate
Cox regression filtered 6 lncRNAs (AL355574.1, AL355974.2,
Z97989.1, SNAI3-AS1, LINC02593, and CYTOR) (Figure 1).
AL355974.2 and CYTOR were the only lncRNAs with
HR > 1, whereas AL355574.1, Z97989.1, SNAI3-AS1, and
LINC02593 had HR < 1.

3.2. Validates the Predictive Signature of Six Pyroptosis-
Related lncRNAs. Based on their respective median cut-off
values, LGG patients were classified into two groups: high
risk and low risk. The low-risk patients lived much longer
and had a significantly better prognosis than the high-risk
patients, according to a Kaplan-Meier survival curve study
(Figure 2(a)). The ROC curve showed that using risk scores
to predict LGG patient prognosis in 1-, 3-, and 5-years was
reliable, with all AUC values greater than 0.7 (Figure 2(b)),
and the signature had a 5-year AUC of 0.763, indicating that
it outperformed conventional clinicopathological character-
istics in predicting LGG patient prognosis. (Figures 2(c) and
2(d)). The risk ratings based on the prognostic signature of
pyroptosis-related lncRNAs were subsequently utilized to
assess LGG patients (Figure 2(e)). The survival rates of
LGG patients were shown to be correlated with their risk
score in a scatter dot plot; patients with a higher risk score
had a shorter survival time. (Figure 2(f)). The heat map
showed differential expression of lncRNAs associated with
prognostic signatures in the low- and high-risk groups.

Patients with increased risk had increased levels of risk fac-
tors (AL355974.2, CYTOR), while patients at reduced risk
had increased levels of protective factors (AL355574.1,
Z97989.1, SNAI3-AS1, and LINC02593) (Figure 2(g)).

3.3. Assess the Ability to Predict lncRNA Risk Signature
Linked to Pyroptosis. Next, we used a cox regression analysis
to investigate if the pyroptosis-related lncRNA prediction
signature in LGG patients was an independent prognostic
factor. With the exception of gender (P = 0:444), age
(P < 0:001), grade (P < 0:001), histological type (P = 0:005),
and pyroptosis-related lncRNA prediction risk score
(P < 0:001) were all significantly linked with survival time
in univariate analysis (Figure 3(a)). Age (P < 0:001), grade
(P < 0:001), and the predictive risk score for pyroptosis-
related lncRNAs (P < 0:001) were all shown to be signifi-
cantly linked with survival time in multivariate analysis
(Figure 3(b)). The heat map for the predictive signature of
pyroptosis-related lncRNAs and clinicopathological symp-
toms was also examined (Figure 4). All these data indicate
that the risk score associated with pyroptosis lncRNAs inde-
pendently predicts prognosis in LGG patients.

3.4. Quantification of Clinical Indicators Using Nomograms
and Evaluation of the Predictive Accuracy of Risk Scores.
The nomogram based on clinicopathological characteristics
and the prognostic signature of pyroptosis-related lncRNAs
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Figure 9: TCGA-based GSEA of pyroptosis-related lncRNAs.
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was used to generate the score for assessing the precision of
the model in this section. To correctly predict the 1-, 3-, and
5-year survival time in LGG patients, we created a nomo-
gram (Figure 5) that included various clinicopathological
parameters such as age, gender, histological type, grade,
and pyroptosis-related lncRNAs risk score. The calibration
curve study revealed the agreement between LGG patients’
anticipated and observed 1-, 3-, and 5-year OS (Figure 6).

3.5. Building and Analyzing a lncRNA-mRNA Expression
Network. To investigate the possible roles of the six
pyroptosis-related lncRNAs in LGG, we built a lncRNA-
mRNA coexpression network in Cytoscape. We found 15
connections between six lncRNAs and nine associated
mRNAs (Figure 7(a)). The Sankey diagram showed the con-

nection between the nine mRNAs and the six long noncod-
ing RNAs (risk/protective) (Figure 7(b)). Six lncRNAs were
shown to have a substantial correlation with the prognostic
signature’s nine mRNAs. Meanwhile, BP was shown to be
involved in pyroptosis, execution phase of apoptosis, and
positive regulation of IL-1β production according to GO
and KEGG analyses. CC was involved in inflammasome
complex, cAMP-dependent protein kinase complex, and
membrane raft. KEGG was enriched in the NOD-like recep-
tor signaling pathway, apoptosis, and lipid and atherosclero-
sis (Figure 8).

3.6. Gene Set Enrichment Analyses. In order to show the pos-
sible route and functions of the pyroptosis-related signature
of the LGG, we used GSEA to compare the high-risk and
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Figure 10: A heat map of immunological responses between high- and low-risk groups using the CIBERSORT, ESTIMATE, MCP counter,
ssGSEA, and TIMER algorithms.
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low-risk groups. The results showed that the pyroptosis-
related signature lncRNAs in the high-risk group were sig-
nificantly enriched by a signaling pathway of a B cell recep-
tor, cytokine receptor, a cytosolic DNA sensing path, natural
killer cell-mediated cytotoxicity, a cancer pathway, and a sig-
nal pathway of a T cell receptor (Figure 9). Our findings will
help researchers discover novel personalized therapies and
execute full-process management of LGG patients with dif-
ferent risk categories in the future.

3.7. Gene Expression and Immunity. Figure 10 displays the
heat map on the basis of CIBERSORT, ESTIMATE, the
MCP counter, enrichment analyses (ssGSEA), and TIMER
of the immunological reactions. The ssGSEA of TCGA-
KIRC data revealed that APC coinhibition and costimula-
tion, CCR, check-point, cytolytic activity, HLA, inflamma-
tion-promoting, MHC class I, parainflammation, T cell
coinhibition and costimulation, and type I and II IFN
response were significantly different between the risk group
immune cell subpopulations (Figure 11). Because check-
point inhibitor-based immunotherapies are so important,
we looked into the differences in immune checkpoint
expression between the two groups further. Most immuno-
logical checkpoints, such as PD-L1, PD-1, and CTLA4,
showed a significant variation in expression (Figure 12).

4. Discussion

Low-grade gliomas are the most frequent primary tumors in
the central nervous system. They are physiologically and
clinically quite diverse. The standard LGG treatment is cur-
rently postoperative chemoradiotherapy with maximal sur-
gical resection. LGG, on the other hand, often develops
resistance to treatment and evolves to high-grade aggressive
glioma [25, 26]. Novel variables influencing LGG prognosis
are therefore urgently required.

Previous research has shown that lncRNAs, a key non-
coding RNA family member, play a role in the invasion
and development of LGG. Glioma cell growth and metastasis
are impeded in vitro when the lncRNA PTENP1 is overex-
pressed [27]; according to the study by Wang et al.,
PDIA3P1, a hypoxia-induced long noncoding RNA, pro-
motes mesenchymal transition in glioblastoma via sponging
miR-124-3p [28]. He et al. discovered that the lncRNA
DCGR5 suppresses tumor growth in glioma cells through
the miR-21/Smad7 and miR-23a/PTEN axis [29]. There
are also some previous LGG-related prognostic models with
good predictive efficacy [30–33]. Pyroptosis is thought to be
linked to the proliferation and migration of cancer cells.
Pyroptosis increases cancer cell inflammatory cell death
and inhibits cancer cell growth and migration. In cancer
cells, the expression of certain pyroptotic inflammasomes
has been shown to decrease. Recent research has focused
on chemicals that influence pyroptotic inflammasomes and
promote pyroptosis. These molecules include noncoding
RNAs and other types of molecules that may be used as tar-
gets for successful cancer therapy in the future. Pyroptosis
also releases inflammatory chemicals, which suppress tumor
growth. It may, however, impair the body’s immunological
response to tumor cells and promote tumor development
in certain malignancies [34–37].

The prior research used a variety of survival and prog-
nostic analytic techniques. “Gene mutations and copy num-
ber variations analyses,” according to some research, may be
utilized to determine the difference between high- and low-
risk populations [38]. We calculated the risk score in this
study using six previously unreported pyroptosis-related
lncRNAs (AL355574.1, AL355974.2, Z97989.1, SNAI3-AS1,
LINC02593, and CYTOR), then confirmed its independent
predictive ability using multivariate regression analysis with
other clinically relevant parameters and the accuracy using a
receiver operating characteristic curve. Finally, the nomo-
gram based on additional clinical factors demonstrated the
benefit of the prediction score of pyroptosis-related
lncRNAs. In high-risk patients, GSEA revealed an enrich-
ment of the cytosolic DNA sensing route, focal adhesion,
natural killer cell-mediated cytotoxicity, B cell receptor sig-
naling pathway, cancer pathways, and apoptosis. Cytosolic
DNA sensors are virtually ubiquitous, contrasting with the
TLR9, a endosomal DNA sensor, expressed from the
immune system. In glioma, integrin binding and growth fac-
tor receptor signaling can activate focal adhesion, leading to
cell cycle progression and cell invasion [39]. It is widely
assumed that lncRNAs do not directly encode proteins but
rather influence gene expression via a number of mecha-
nisms to promote carcinogenesis and tumor metastasis
[40]. The biological function and signal route of the
lncRNA-mRNA regulatory network were investigated in this
research. Numerous signaling pathways were involved in the
regulation of lncRNA-mRNA, with the usual trimolecular
regulatory network (lncRNA-miRNA-TF/gene) being well-
characterized in other malignant tumors [41, 42]. lncRNA
influenced the function of downstream target genes and slo-
wed illness progression by sharing similar miRNA-binding
sites [43]. In hepatocellular cancer, Li et al. discovered that
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the long noncoding RNA SNAI3-AS1 enhances proliferation
and metastasis mediated by PEG10 by decoying miR-27a-3p
and miR-34a-5p [44]. By interacting with NCL and Sam68,
the lncRNA CYTOR promotes colorectal cancer develop-
ment [45]. Our research identified a novel target for tumor
progression studies.

Xu et al. showed that under hypoxia, nuclear PD-L1
induces pyroptosis in cancer cells through GSDMC; more
importantly, they discovered that this leads to tumor necro-
sis, which is a marker of poor prognosis in solid tumors. Only
a few research have looked at the connection between ICI and
pyroptosis. Increasing data indicate that miRNA and lncRNA
play a key role in pyroptosis control. TLR4 stimulates the
PI3K/AKT pathway through lncRNA-F630028010Rik to
increase microglial pyroptosis after spinal cord injury [46].
Surprisingly, lncRNA has a role in pyroptosis control.

Pyroptosis is a novel kind of cell death that has the
potential to revolutionize tumor therapy. Many important
questions, such as the relationship between pyroptosis and
other cell deaths, as well as host immunogenicity, remain
unanswered. As a result, this research looked at LGG pyrop-
tosis, which may help with therapeutic options. There are
some limitations in this study; firstly, we have based our bio-
informatics analysis entirely on public databases which have
not been validated experimentally or with clinical samples.
Our results should also be used with care due to the limited
clinical evidence. The prognostic prediction model estab-
lished in this research, in general, requires further validation.

5. Conclusion

The prognosis of LGG may be predicted by certain
pyroptosis-associated lncRNAs.
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