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Colon adenocarcinoma (COAD) is the most common pathologic type of colon cancer. Metastasis is responsible for the high
mortality rate of patients with COAD.Te gene, metastasis-associated in colon cancer 1 (MACC1), is a biomarker predictive
of both metastatic and metastasis-free survival in patients with colon cancer and other solid tumors. However, the un-
derlying mechanism by which MACC1 afect COAD progression and metastasis remains unknown. In this study, we
analyzed the expression level and prognostic value of MACC1, as well as their correlation, in patients with various types of
cancer included in Te Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. High MACC1
expression was found to be signifcantly associated with poor prognosis in patients with COAD. Analysis of the potential
upstream miRNA of MACC1 showed that miR-642a-5p was downregulated in COAD and was negatively correlated with
MACC1 expression. Analysis of the upstream regulators of miR-642a-5p showed that the long non-coding RNA (lncRNA)
ZFAS1was the most likely upstream regulator of miR-642a-5p. In addition, the expression of MACC1 correlated positively
with tumor immune cell infltration, as well as with the levels of biomarkers of fve kinds of immune cells. In summary, these
fndings suggest that MACC1 contributes to COAD progression and immune cell infltration via the ZFAS1/miR-642a-5p/
MACC1 axis.

1. Introduction

Colon cancer is the third most common type of cancer [1]
and the second most frequent cause of cancer-related deaths
worldwide. It is estimated that more than one million people
develop colorectal cancer every year [2]. Colon adenocar-
cinoma (COAD) is the most common type of colon cancer,
accounting for approximately 90% of patients with these
tumors. Despite advances in diagnosis and treatment,
however, prognosis remains poor in patients with colon
cancer, especially those with advanced disease, who are
prone to recurrence and metastasis. Te 5-year relative
survival rate of patients with colorectal cancer has been
estimated at approximately 65%, ranging from 90% for
patients with localized disease to low as 14% for patients with
metastatic disease [3]. Te identifcation of therapeutic

targets and the development of efective therapeutic agents
to prevent the progression of early disease and to improve
survival in metastatic colon cancer are therefore urgently
needed.

Te metastasis-associated in colon cancer 1 (MACC1)
gene, which is located on chromosome 7p21.1, was frst
identifed in 2009. Genome-wide analysis of genes difer-
entially expressed in primary colon cancer, metastatic tu-
mors and normal tissues has shown that MACC1 is an
independent prognostic indicator of metastasis-free survival
[4, 5]. MACC1 plays a key role in the transition from ad-
enoma to carcinoma in mice and humans [6, 7] and has also
been identifed as a metastatic and prognostic biomarker for
other solid tumors, such as hepatocellular carcinoma, lung
cancer, and breast cancer [8–14]. In vivo, MACC1 increases
tumor cell proliferation and motility, supports cell survival,
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and regulates metabolism, thereby promoting metastasis.
MACC1 has also been shown to be involved in tumor im-
munity. For example, MACC1 was found to regulate the
expression of PDL1 and tumor immunity through the c-
Met/AKT/mTOR pathway in gastric cancer [15]. However,
the prognostic value ofMACC1 in COAD and its correlation
with immune cell infltration into tumors remain in-
completely understood.

Te present study analyzed the expression levels and
evaluated the prognostic value of MACC1 in multiple
types of human cancers fnding that MACC1 was over-
expressed in COAD, with this increased expression pre-
dictive poor clinical features and poor prognosis. Te
potential carcinogenic mechanisms of MACC1 were
assessed in COAD, as well as the correlation between
MACC1 expression level and the degree of immune cell
infltration. Te present study also analyzed the re-
lationship between MACC1 expression and biomarkers of
immune cells in COAD. Tese fndings showed that the
ZFAS1/miR-642a-5p axis is a potential upstream pathway
of MACC1 in COAD. Taken together, these results in-
dicated that MACC1 contributes to COAD progression
and immune cell infltration via the ZFAS1/miR-642a-5p/
MACC1 axis, suggesting that the ZFAS1/miR-642a-5p/
MACC1 axis may provide a novel therapeutic target and
a valuable prognostic indicator for COAD.

2. Materials and Methods

2.1. Gene Expression Analysis. Te Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/) is
a cancer genomics program designed to identify and
classify major oncogenic genomic changes to enhance our
understanding of cancer [16]. Te Genotype-Tissue Ex-
pression Project (GTEx) is a data resource and tissue bank
established by the National Institutes of Health Common
Fund that can enable determination of the relationship
between genetic variation and gene expression in a variety
of human tissues [17]. RNA-seq data for MACC1 mRNA
and relevant clinical data across 33 cancer types and
normal tissues in the TCGA and GTEx database were
downloaded from the UCSC XENA website (https://
xenabrowser.net/datapages/). Data for various tumor
cell lines were downloaded from the Cancer Cell Line
Encyclopedia (CCLE) database (https://portals.
broadinstitute.org/ccle/). RNA-seq data on gene expres-
sion in the FPKM format were converted into TPM format
and log2 transformed for further analysis. Te levels of
expression of MACC1 in tumors and corresponding
normal tissues in the data downloaded from the TCGA
and GTEx databases were analyzed, as were the associa-
tions between MACC1 expression and clinical charac-
teristics in patients with COAD. Diferences in expression
were analyzed using the Mann-Whitney U test, with
p< 0.05 defned as statistically signifcant. Results were
visualized using the R package ggplot2.

2.2. GEPIA2 Database Analysis. Gene Expression Profling
Interactive Analysis 2 (GEPIA2; https://gepia2.cancer-pku.
cn/#index) is a web-based tool for interactive analysis based
on normal and cancer samples from the TCGA and GTEx
databases. GEPIA2 ofers a series of functions such as dif-
ferential expression analysis, profle plotting, correlation
analysis, survival analysis, detection of similar genes, and
dimensionality reduction analysis, all of which may be
customized [18]. Te expression levels of MACC1 and
lncRNAs in COAD tissues from the TCGA normal and
GTEx databases as controls were analyzed using the “Ex-
pression DIY-Box Plot” module of GEPIA2 using the set-
tings, p-value cutof� 0.001, |log2FC (Fold change)|
cutof� 1, and “Match TCGA normal and GTEx data.”
Correlations between MACC1 expression and immune cell
biomarkers in COAD were analyzed in the “Correlation
Analysis” mode of GEPIA2, with correlation coefcients
calculated using Spearman analysis. Te selection criteria
were set as |R|> 0.1 and p< 0.05 for identifying statistically
signifcant.

2.3. Analysis of the CPTAC and UALCAN Databases. Te
Clinical Proteomic Tumor Analysis Consortium (CPTAC,
https://proteomics.cancer.gov/programs/cptac) is a central-
ized repository of publicly available proteomic sequence
datasets. CPATC identifes the protein composition and
characteristic proteome of each tumor sample by mass
spectrometry [19]. UALCAN (https://ualcan.path.uab.edu)
is a user-friendly interactive web-portal designed to facilitate
analysis of the correlation between gene expression in tumor
subgroups and patient survival [20]. UALCAN was used to
analyze the expression ofMACC1 total protein fromCPTAC
database, by entering “MACC1” and selecting the dataset of
colon cancer and MACC1 proteomic expression profle
based on sample types.

2.4. Analysis of Diagnostic and Prognostic Value. Te di-
agnostic value of MACC1 in COAD was determined using
receiver operating characteristic (ROC) curves. Te areas
under the ROC curves (AUCs) were between 0.5 and 1, with
AUCs >0.9 defned as being highly accurate. Te relation-
ships between MACC1 expression and indicators of patient
prognosis, including overall survival (OS), disease-specifc
survival (DSS), and progression-free interval (PFI), were
evaluated in 33 types of cancers, with the results presented as
Forest plots and Kaplan-Meier curves. A uniformly stan-
dardized pan-cancer dataset from the UCSC XENA database
(https://xenabrowser.net/datapages/), with samples from
patients followed-up for less than 30 days and those with
fewer than 10 samples in a single cancer species excluded.
Hazard ratios (HRs) with 95% confdence intervals (CIs)
were calculated by univariate regression analyses. Survival
rates in patients with diferent levels of MACC1 expression
were determined by the Kaplan-Meier method and com-
pared by log-rank tests. Te optimal cut-of value for
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MACC1 expression that diferentiated patients into sub-
groups with high and low expression was calculated by the
minimum p-value approach using the R package maxstat
(Version 0.7–25). Statistical analyses were performed using
the survival package in R software (version 3.6.3), with the
forestplot and survminer packages used for visualization. A
p value <0.05 was considered statistically signifcant.

2.5. starBasev2.0 Database Analysis. Te starBasev2.0 da-
tabase (https://starbase.sysu.edu.cn/) allows systematic
identifcation of RNA-RNA and protein-RNA interaction
networks [21], which consist of several online prediction
programs, such as PITA, RNA22, miRmap, microT, mi-
Randa, PicTar, and TargetScan. Te miRNAs acting up-
stream of MACC1 were predicted by the starBasev2.0
database in the miRNA-mRNA panels. Predicted miRNAs
appearing simultaneously in more than two programs were
considered candidate miRNAs for MACC1 and included in
subsequent analyses. Correlation analyses for miRNA and
MACC1, lncRNA and hsa-miR-642a-5p, and lncRNA and
MACC1 in COAD samples in the starBasev2.0 database were
performed in the miRNA-Target CoExpression or
RNA-RNA CoExpression panels. Te levels of expression of
hsa-miR-642a-5p in COAD and normal tissue were also
analyzed in the miRNA Diferential Expression panels, as
well as to predict candidate lncRNAs that could potentially
bind to hsa-miR-642a-5p.TemiRNA-mRNA and lncRNA-
miRNA interactions networks were visualized by Cytoscape
(version 3.8.2).

2.6.TIMER2.0DatabaseAnalysis. TeTIMER2.0 web server
(https://timer.cistrome.org/) allows a comprehensive anal-
ysis of gene expression and tumor infltrating immune cells
in multiple cancers [22]. Te “Immune-Gene” module of
this website was used to analyze the correlations between
MACC1 expression levels and tumor infltration by immune
cells, including B cells, CD8+ T cells, CD4+ T cells, Tregs, NK
cells, macrophages, neutrophil cells, and dendritic cells, in
COAD were selected. Te p-values and Rho values were
obtained via the purity adjustment Spearman’s rank test.Te
correlations were shown as scatter plots, with p< 0.05
considered statistically signifcant.

2.7. Statistical Analysis. Statistical analyses were performed
using R software (V3.6.3), although some of the statistical
analyses were performed automatically using the online
databases described above. In all statistical analyses, p< 0.05
was considered statistically signifcant for all statistical
analyses.

3. Results

3.1. Expression of MACC1 mRNA in Human Cancers. To
investigate the potential role ofMACC1 in carcinogenesis, its
level of expression was determined in normal tissues, tumor
cell lines and various primary human cancers. Assessment of
MACC1 expression levels in 31 normal tissues from the

GTEx database showed that MACC1 was expressed at low
levels in most normal tissues, although its expression was
higher in bone marrow (Figure 1). Analysis of MACC1
expression in 21 tumor cells lines in the CCLE database
showed thatMACC1 was highly expressed in most cell lines
(Figure 1(b)). Analysis of the diferential expression of
MACC1 in primary tumors and adjacent normal tissues in
data directly obtained from the TCGA database showed that
the expression of MACC1 was signifcantly higher in eight
types of human cancer, namely bladder urothelial carcinoma
(BLCA), cholangiocarcinoma (CHOL), COAD, lung ade-
nocarcinoma (LUAD), rectum adenocarcinoma (READ),
stomach adenocarcinoma (STAD), thyroid cancer (THCA),
and uterine corpus endometrial carcinoma (UCEC), while
signifcantly lower in fve types of cancer, namely head and
neck squamous cell carcinoma (HNSC), kidney chromo-
phobe tumors (KICH), liver hepatocellular carcinoma(-
LIHC), lung squamous cell carcinoma(LUSC), and prostate
adenocarcinoma(PRAD) (Figure 1(c)). Because the TCGA
database included few normal tissue samples, data on tumor
tissues in the TCGA database were combined with data on
normal tissues in the GTEx database to analyze the difer-
ential expression of MACC1 in 33 tumors. Compared with
the corresponding normal samples, MACC1 expression was
signifcantly higher in 20 types of cancer, namely BLCA,
breast cancer (BRCA), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), CHOL, COAD,
difuse large B-cell lymphoma (DLBC), esophageal carci-
noma (ESCA), glioblastoma multiforme(GBM), kidney re-
nal papillary cell carcinoma (KIRP), lower grade glioma
(LGG), LUAD, ovarian serous cystadenocarcinoma (OV),
pancreatic adenocarcinoma (PAAD), READ, STAD, tes-
ticular germ cell tumors (TGCT), THCA, thymoma
(THYM), UCEC, and uterine carcinosarcoma (UCS). In
contrast,MACC1 expression was signifcantly lower in eight
other types of cancer, namely adrenocortical carcinoma
(ACC), HNSC, acute myeloid leukemia (LAML), LIHC,
LUSC, pheochromocytoma and paraganglioma (PCPG),
PRAD, and skin cutaneous melanoma (SKCM).Te levels of
expression of MACC1, however, did not difer signifcantly
in kidney chromophobe (KICH) and kidney renal clear cell
carcinoma (KIRC) samples (Figure 1(d)). Taken together,
these fndings suggest that MACC1 may play diferent roles
in the development of diferent tumors.

3.2. Te Prognostic Value of MACC1 in Human Cancers.
Te prognostic value of MACC1 expression in patients with
33 types of human cancers from the TCGA database was
analyzed. Te correlations betweenMACC1 expression with
overall survival (OS), disease-specifc survival (DSS) and
progression-free interval (PFI) were determined using the R
Package survival (version 3.2–7), with forest plots were used
to evaluate the relationship betweenMACC1 expression and
patient prognosis. Higher expression ofMACC1 mRNA was
indicative of shorter OS in patients with LGG (HR� 4.05,
p � 8.4e − 13), PAAD (HR� 2.50, p � 8.2e − 4), UVM
(HR� 4.53, p � 2.0e − 4), BRCA (HR� 1.66, p � 3.2e − 3),
COAD (HR� 2.20, p � 1.6e − 3), and BLCA (HR� 1.62, p �
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1.8e − 3), but correlated with an increased OS in patients with
KIRC (HR� 0.42,p � 1.2e − 8), KIRP (HR� 0.26,p � 4.6e − 6
), SKCM (HR� 0.65, p � 1.5e − 3), KICH (HR� 0.19,
p � 8.5e − 3), CHOL (HR� 0.27, p � 0.01), PCPG
(HR � 1.4e − 9, p � 0.01), and STAD (HR� 0.72, p � 0.04)
(Figure 2). Higher levels of MACC1 mRNA expression were
associated with shorter DDS in patients with LGG (HR� 4.29,
p � 2.8e − 12), PAAD (HR� 2.61, p � 2.4e − 3), UVM
(HR� 4.71, p � 2.8e − 4), ESCA (HR� 2.01, p � 0.03), COAD
(HR� 2.29, p � 0.02), and BLCA (HR� 1.55, p � 0.02), but
were associated with a longer DDS in patients with KIRC
(HR� 0.29, p � 1.8e − 11), KIRP (HR� 0.11, p � 4.8e − 10),
SKCM (HR� 0.63, p � 1.5e − 3), HNSC (HR� 0.61,
p � 4.3e − 3), CHOL (HR� 0.23, p � 7.2e − 3), KICH
(HR� 0.15, p � 8.7e − 3), and STAD (HR� 0.59, p � 0.01)
(Figure 2(b)). Higher expression of MACC1 mRNA was also
associated with a shorter PFI in patients with LGG (HR� 2.79,
p � 1.2e − 12), PAAD (HR� 2.44, p � 3.6e − 4), UVM
(HR� 3.08, p � 3.3e − 3), DLBC (HR� 4.06, p � 0.02), GBM
(HR� 1.67, p � 0.01), COAD (HR� 2.04, p � 4.3e − 3), and
BLCA (HR� 1.43, p � 0.03), but correlated with a longer PFI in
patients with KIRC (HR� 0.36, p � 8.8e − 11), KIRP
(HR� 0.30, p � 2.1e − 6), KICH (HR� 0.23, p � 9.7e − 3),
HNSC (HR� 0.70, p � 0.02), CHOL (HR� 0.37, p � 0.03),

and SKCM (HR� 0.77, p � 0.03) (Figure 2(c)). Te levels of
MACC1 expression, however, did not correlate with survival
parameters in patients with other types of cancer. Taken to-
gether, these results suggested that the potential prognostic value
of MACC1 mRNAs difers among diferent types of cancer.
Moreover, Kaplan-Meier analyses showed that MACC1 was
signifcantly correlated with OS, DSS, and PFI in patients with
COAD, LGG, PAAD, UVM, BLCA, KIRC, KIRP, SKCM,
KICH, and CHOL, suggesting that MACC1 expression may be
a biomarker in these tumors (Figure 3).

3.3. Expression of MACC1 in Patients with COAD.
Pan-cancer analysis showed that MACC1 mRNA was
upregulated in COAD. To further understand the impor-
tance of MACC1mRNA and protein levels in COAD,
MACC1 expression data from the TCGA and CPTAC da-
tabases were analyzed. Unpaired analysis of samples from
the GEPIA2 database showed that MACC1 mRNA levels
were signifcantly higher in 275 COAD samples than in 349
normal colon tissue samples (Figure 4). Analysis of data
from CPTAC in the UALCAN database showed that
MACC1protein expression was signifcantly higher in
COAD than in normal colon tissue samples (Figure 4(b)).
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Figure 1: Expression level ofMACC1 in normal tissues andmultiple cancers. (a)MACC1 expression in 31 normal tissues based on the GTEx
database. (b)MACC1 expression in 21 tumor cell lines based on the CCLE database. (c)MACC1 expression in 18 paired tumors and adjacent
normal tissues based on TCGA database. (d)MACC1 expression in 33 TCGA tumors and normal tissues with the data of GTEx database as
controls. (ns, p≥ 0.05; ∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001).
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ROC curve analysis of the diagnostic value of MACC1 in
COAD showed that MACC1 mRNA had an AUC of 0.955
(95% CI: 0.921–0.988) in distinguishing COAD from control
samples. Te optimal MACC1 mRNA cut-of, 2.756, had
a sensitivity of 0.976, a specifcity of 0.933 and an ac-
curacy of 0.909, suggesting that MACC1 may be a po-
tential biomarker to distinguish COAD from normal
tissues (Figure 4(c)). Analysis of MACC1 expression in
COAD patients sub-grouped by clinical parameters
showed that the levels of MACC1 mRNA were higher in
COAD than in normal colon tissue samples in all patient
subgroups based on age, gender, body mass index (BMI),
race, carcinoembryonic antigen (CEA) levels, T stage, N
stage, M stage, pathologic stage, perineural invasion and
lymphatic invasion (Figure 5). Evaluation of the asso-
ciation between MACC1 mRNA levels and clinicopath-
ological characteristics of patients with COAD showed
that higher MACC1 mRNA levels were associated with
distant metastasis and high TNM stage (Table 1). Tese
fndings suggest that MACC1mRNA and protein were
both upregulated in COAD and indicate that MACC1
may play an important role in the development and
progression of COAD.

3.4. Predicted Upstream Potential miRNAs of MACC1.
Non-coding RNAs (ncRNAs) are an important class of gene
regulators responsible for regulating the expression of many
key genes at the transcriptional and post-transcriptional
levels. miRNAs are mainly involved in the negative regu-
lation of gene expression. To assess whether MACC1 is
modulated by miRNAs, starBase2.0 was used to predict
miRNAs acting upstream ofMACC1.Tis analysis identifed
33 upstream miRNAs that could potentially bind toMACC1
(Supplementary Table S1). To improve visualization,
Cytoscape software was used to establish a miRNA-MACC1
regulatory network (Figure 6). Because miRNAs usually act
by negatively regulating target gene expression, miRNAs
were expected to negatively regulate MACC1. Evaluation of

the correlation between miRNA and MACC1 expression
showed that MACC1 mRNA negatively correlated with the
levels of hsa-miR-141-3p, hsa-miR-142-5p, hsa-miR-126-5p,
hsa-miR-186-5p, hsa-miR-155-5p, and hsa-miR-642a-5p in
COAD (Figure 6(b), Supplementary Table S1). Further
determination of the levels of expression of these six
miRNAs in COAD showed that hsa-miR-642a-5p was
markedly downregulated in COAD (Figure 6(c)) and that
lower expression of hsa-miR-642a-5p was associated with
poorer OS in patients with COAD (Figure 6(d)). Tese
fndings suggest that hsa-miR-642a-5p may regulate
MACC1 mRNA in COAD.

3.5. Predicted Upstream Potential lncRNAs of hsa-miR-642a-
5p. Te starBase database predicted that 113 possible lncRNAs
acted upstream of hsa-miR-642a-5p. Cytoscape software was
used to improve visualization by constructing a lncRNA-hsa-
miR-642a-5p regulatory network (Figure 7). According to the
hypothesis of competing endogenous RNA (ceRNA), these
lncRNAs should be oncogenes in COAD, with the competitive
binding of these lncRNAs to shared miRNAs enhancing the
expression of MACC1 mRNA. Tus, the levels of these
lncRNAs should correlate negatively with the levels of miRNA,
but positively with the levels ofMACC1mRNA.Determination
byGEPIA2 of the levels of expression of the predicted lncRNAs
in COAD and corresponding normal tissues showed that, of
the 113 possible lncRNAs, only four, MIR4435-2HG,
LINC00511, MAFG-AS1, and ZFAS1, were expressed at sig-
nifcantly higher levels inCOAD than in corresponding normal
tissue samples (Figures 7(b)–7(e)). Te correlations of these
four lncRNAs (MIR4435-2HG, LINC00511, MAFG-AS1, and
ZFAS1) with the levels of hsa-miR-642a-5p and MACC1
mRNA in COAD were confrmed using the starBase database.
ZFAS1 was negatively correlated with hsa-miR-642a-5p, but
positively correlated with MACC1 mRNA (Table 2,
Figures 7(f)–7(m)), suggesting that ZFAS1 might be the up-
stream lncRNA of the hsa-miR-642a-5p/MACC1 axis
in COAD.
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TCGA-COAD (N=278) 1.60E-03 2.20 (1.33, 3.61)
TCGA-UCEC (N=166) 0.12 1.77 (0.86,3.66)
TCGA-ESCA (N=175) 0.07 1.54 (0.96,2.45)
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TCGA-KICH (N=64) 8.50E-03 0.19 (0.05,0.76)
TCGA-HNSC (N=509) 0.03 0.74 (0.56,0.97)
TCGA-LUAD (N=490) 0.05 0.73 (0.54,1.00)
TCGA-THCA (N=501) 0.22 0.52 (0.18,1.51)
TCGA-UCS (N=55) 0.08 0.46 (0.19,1.13)
TCGA-STAD (N=372) 0.05 0.72 (0.52,1.00)
TCGA-READ (N=90) 0.16 0.49 (0.18,1.34)
TCGA-ACC (N=77) 0.42 0.73 (0.34,1.57)
TCGA-TGCT (N=128) 0.71 0.62 (0.05,7.41)
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TCGA-HNSC (N=485) 4.30E-03 0.61 (0.43,0.86)
TCGA-CHOL (N=32) 7.20E-03 0.23 (0.07,0.74)
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Figure 2: Prognostic value of MACC1 in multiple cancers. Forest plot of the relationship of MACC1 expression with (a) overall survival
(OS), (b) disease-specifc survival (DSS) and (c) progression-free interval (PFI) across 33 types of tumors based on TCGA database.
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3.6. Correlation between MACC1 Expression with Immune
Cell Infltration and Biomarkers of Immune Cells in COAD.
Since MACC1 has been reported to be involved in tumor
immunity, the correlation between MACC1 mRNA ex-
pression and immune cell infltration level was evaluated.
MACC1 mRNA expression was found to be positively and

signifcantly associated with the levels of NK cells, macro-
phages, and neutrophils, but not with the levels of B cells,
CD8+ T cells, CD4+ T cells, Tregs, and dendritic cells in
COAD (Figure 8). Te potential role of MACC1 in tumor
immunity was further assessed by evaluating the correlation
between MACC1 mRNA expression and biomarkers of
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immune cells in COAD using the GEPIA2 database.MACC1
mRNA expression was positively correlated with biomarkers
of NK cells (CD56),M1 macrophages (TLR2 and IRF5),M2
macrophages (CD206, CD115, and Dectin-1), neutrophils
(CD11b, CEACAM8, ITGAM andMPO), and dendritic cells
(NRP1, ITGAX and CD83) in COAD (Table 3). Tese
fndings suggest that MACC1 is involved in the immune
regulation of COAD by regulating immune cell infltration.

4. Discussion

Although MACC1 was shown to be a critical regulator
and biomarker for progression and metastasis in over 20
types of cancer, including colon cancer, HCC, bladder
cancer, and esophageal cancers [23–26], the mechanisms
by which MACC1 is involved in the development and
progression of COAD remain unclear. Te present study
analyzed the expression of MACC1 in 33 types of cancer

using data from the TCGA and GTEx databases and
found that MACC1 mRNA was more highly expressed in
COAD than in corresponding normal colon tissues. Te
expression ofMACC1 mRNA in COAD was subsequently
validated by analyses of the GEPIA2 and CPTAC data-
bases. Survival analysis indicated that high MACC1
mRNA expression in patients with COAD was associated
with poor prognosis, which was consistent with previous
fndings [27]. MACC1 knockdown was also found to
markedly inhibit cell proliferation, migration, invasion,
colony formation, and tumorigenesis, both in vitro and
in vivo, and to induce apoptosis in colorectal cancer
(CRC) cells [28]. Tese fndings suggested that MACC1
has an important role in CRC carcinogenesis and pro-
gression through the β-catenin signaling pathway and
mesenchymal-epithelial transition [28]. Combined with
the results of the present study, these fndings demon-
strate that MACC1 plays a carcinogenic role in COAD.

Table 1: Clinical characteristics of the COAD patients (TCGA).

Characteristic Low expression of
MACC1 (n� 239)

High expression of
MACC1 (n� 239) p value

T stage, n (%) 0.485
T1 8 (1.7%) 3 (0.6%)
T2 40 (8.4%) 43 (9%)
T3 161 (33.8%) 162 (34%)

N stage, n (%) 0.081
N0 154 (32.2%) 130 (27.2%)
N1 48 (10%) 60 (12.6%)
N2 37 (7.7%) 49 (10.3%)

M stage, n (%) 0.038∗
M0 184 (44.3%) 165 (39.8%)
M1 25 (6%) 41 (9.9%)

Pathologic stage, n (%) 0.019∗
Stage I 43 (9.2%) 38 (8.1%)
Stage II 108 (23.1%) 79 (16.9%)
Stage III 60 (12.8%) 73 (15.6%)
Stage IV 25 (5.4%) 41 (8.8%)

Gender, n (%) 0.410
Female 118 (24.7%) 108 (22.6%)
Male 121 (25.3%) 131 (27.4%)

Age, n (%) 0.780
≤65 99 (20.7%) 95 (19.9%)
>65 140 (29.3%) 144 (30.1%)

Age, median (IQR) 69 (59, 79) 69 (58, 76.5) 0.479
CEA level, n (%) 0.188
≤5 103 (34%) 93 (30.7%)
>5 47 (15.5%) 60 (19.8%)

Perineural invasion, n (%) 0.842
No 60 (33.1%) 75 (41.4%)
Yes 19 (10.5%) 27 (14.9%)

Lymphatic invasion, n (%) 0.972
No 136 (31.3%) 130 (30%)
Yes 87 (20%) 81 (18.7%)

OS event, n (%) 0.266
Alive 193 (40.4%) 182 (38.1%)
Dead 46 (9.6%) 57 (11.9%)

DSS event, n (%) 0.432
Alive 205 (44.4%) 193 (41.8%)
Dead 29 (6.3%) 35 (7.6%)

∗p< 0.05.
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Non-coding RNAs (ncRNAs), including small micro-
RNAs (miRNAs), lncRNAs, and circular RNAs (circRNAs),
were shown to be involved inmultiple biological processes in
various types of cancer by directly or indirectly interfering
with gene expression by inter-communication through the
ceRNA mechanism [29–33]. Tus, upstream regulatory
miRNAs of MACC1 could be predicted using the program
starBasev2.0, which includes PITA, RNA22, miRmap,
microT, miRanda, PicTar, and TargetScan[34]. Of the 33
miRNAs identifed, most were found to be tumor sup-
pressive in various types of cancers. For example, hsa-miR-
18a-5p signifcantly reduced the hazard of dying in patients
with CRC, regardless of tumor site [35], and low expression
of miR-642a-5p was associated with a poor prognosis in
patients with CRC. Moreover, miR-642a-5p was found to
inhibit colon cancer cell migration, invasion, and EMT by

targeting COL1A1 [36]. Overexpression of Neural Cell
Adhesion Molecule 1 signifcantly inhibited the migration of
ameloblastoma cells and was regulated by miR-141-3p [37].
In CRC, miR-186-5p acts as a cell cycle suppressor to inhibit
tumor progression. Over-expression of miR-186-5p was
found to signifcantly down-regulate the expression of
SMAD6/7, resulting in decreased expression of CyclinD1
and c-Myc. Furthermore, over-expression of miR-186-5p
promoted CRC cell apoptosis and inhibited their viability,
proliferation, and migration [38]. Expression and correla-
tion analyses showed that hsa-miR-642a-5p was the most
likely tumor-suppressive miRNA targeting MACC1. No
study to date, however, has assessed the role of hsa-miR-
642a-5p targeting of MACC1 in CRC.

Based on the ceRNA hypothesis [39], the levels of ex-
pression of lncRNA and mRNA should correlate with each
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other. Tus, the potential lncRNAs associated with the
hsa-miR-642a-5p/MACC1 axis in COAD should be highly
expressed. Analysis using starBase v2.0 software predicted
113 lncRNAs that could be associated with the hsa-miR-
642a-5p/MACC1 axis. Expression and correlation ana-
lyses identifed ZFAS1 as the most likely upstream
lncRNA. ZFAS1 lncRNA is a major protein regulator
involved in various human cancers, including COAD.
ZFAS1 has been shown to promote the proliferation,

migration, and invasion of esophageal squamous cell
carcinoma (ESCC) cells, and to inhibit their apoptosis by
upregulating STAT3 and downregulating miR-124 [40].
ZFAS1 was also more highly expressed in glioma tissues
and cells than in normal brain tissues and normal as-
trocyte HA cells. Moreover, high ZFAS1 expression was
associated with poor prognosis among patients with
glioma. Downregulation of ZFAS1 or upregulation of
miR-1271-5p was found to inhibit the progression of

M
A
FG

-A
S1

hsa-miR-642a-5p

(h)

ZF
A
S1

hsa-miR-642a-5p

(i)

M
AC

C1

MIR4435-2HG

(j)

M
AC

C1

LINC00511

(k)

M
AC

C1

MAFG-AS1

(l)

M
AC

C1

ZFAS1

(m)

Figure 7: Identifcation of upstream potential lncRNAs of hsa-miR-642a-5p in COAD determined by starBase database. (a) Te lncRNAs-
hsa-miR-642a-5p network constructed by cytoscape. (b)–(e) Te expression of MIR4435-2HG (b), LINC00511 (c), MAFG-AS1 (d), and
ZFAS1 (e) in COAD compared with “TCGA and GTEx normal” data. (f )–(i) Te expression correlation between MIR4435-2HG,
LINC00511, MAFG-AS1, ZFAS1 and hsa-miR-642a-5p. (j)–(m) Te expression correlation between MIR4435-2HG, LINC00511, MAFG-
AS1, ZFAS1 and MACC1. ∗∗∗p< 0.001.

Table 2: Correlation between lncRNAs and has-miR-642a-5p or lncRNAs and MACC1 in COAD determined by starBasev2.0 database.

lncRNA miRNA R value p value
MIR4435-2HG hsa-miR-642a-5p 0.011 8.19E− 01
LINC00511 hsa-miR-642a-5p −0.024 6.05E− 01
MAFG-AS1 hsa-miR-642a-5p −0.046 3.28E− 01
ZFAS1 hsa-miR-642a-5p −0.185 7.75E− 05∗∗∗

lncRNA mRNA R value p value
MIR4435-2HG MACC1 0.226 7.08E− 07∗∗∗
LINC00511 MACC1 0.137 2.95E− 03∗∗
MAFG-AS1 MACC1 −0.163 3.82E− 04∗∗∗
ZFAS1 MACC1 0.178 1.03E− 04∗∗∗
∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001.
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glioma by enhancing the apoptosis and inhibiting the
repressing proliferation, migration, and invasion of gli-
oma cells [41]. Te oncogenic activity of ZFAS1 and its
signifcant upregulation, together with the elevated ex-
pression of DDX21 and POLR1B in CRC cells and tissues,

further leads to poor clinical outcomes. Knockdown of
ZFAS1 substantially suppressed CRC cell proliferation,
invasion, and migration, and increased cell apoptosis [42].
ZFAS1 has also been shown to increase NOP58 and
SNORD12C/78 expression in CRC cells and tissues [43].
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Figure 8: Correlation ofMACC1 expression with immune cell infltration level in COAD.Te correlation ofMACC1 expression level with B
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Furthermore, ZFAS1 was found to promote the pro-
gression of CRC by competitively binding miR-150-5p,
which plays a tumor suppressor role in CRC by targeting
VEGFA [44]. Taken together, these fndings suggest that
ZFAS1 plays a carcinogenic role in various human cancers
and that the ZFAS1/hsa-miR-642a-5p/MACC1 axis con-
stitutes the potential regulatory pathway that promotes
the progression of COAD.

Immune cell infltration into tumors has been shown to
afect the efectiveness of chemotherapy, radiotherapy, and
immunotherapy, as well as the prognosis of cancer patients
[45–47]. Te present study showed that MACC1 upregu-
lation increases the infltration of various immune cells into
COADs, including NK cells, macrophages, and neutrophils.
Moreover, MACC1 expression showed signifcant positive
correlations with biomarkers of NK cells, macrophages,

Table 3: Correlation between MACC1 and biomarkers of immune cells in COAD determined by GEPIA2 database.

Immune cell Biomarker R value p value

B cell
CD19 −0.069 0.25
CD79A −0.096 0.11
CD79B −0.12 0.046∗

CD8+ T cell CD8A −0.18 0.003∗∗
CD8B −0.091 0.13

CD4+ T cell CD4 0.094 0.12

M1 macrophage

CD80 0.059 0.33
CD86 0.067 0.27
TLR2 0.17 0.0044∗∗
IRF5 0.19 0.0013∗∗
PTGS2 0.046 0.44

M2 macrophage

CD163 0.053 0.38
MS4A4A 0.059 0.33
CD206 0.14 0.017∗
CD115 0.15 0.016∗
CD301 0.019 0.75
Dectin-1 0.12 0.04∗
ARG1 0.065 0.28

Neutrophil

CD11b 0.16 0.0089∗∗
CEACAM8 0.18 0.0022∗∗
ITGAM 0.16 0.0089∗∗
MPO 0.13 0.028∗
CCR7 −0.02 0.75

Dendritic cell

HLA-DPB1 −0.058 0.34
HLA-DQB1 −0.097 0.11
HLA-DPA1 −0.042 0.49

CD1C 0.052 0.39
NRP1 0.19 0.0015∗∗
ITGAX 0.15 0.012∗
CD83 0.19 0.0015∗∗

Tese results are statistically signifcant. ∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001.
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Figure 9: Model of the ZFAS1-hsa-miR-642a-5p-MACC1 axis and its potential roles in carcinogenesis of COAD.
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neutrophils, and dendritic cells. Tese results suggest that
MACC1 is associated with immune cell invasion into
COAD. However, the present study has several limitations.
Te results of this study were based on bioinformatics
analysis from various databases but were not validated ex-
perimentally. Confrmation of these fndings requires in vivo
and in vitro experiments.

In conclusion, this study we have demonstrated that
MACC1 is overexpressed in several types of human cancers
and that MACC1 overexpression correlates with poor
prognosis and increased tumor immune cell infltration in
patients with COAD. Te present study also identifed the
ZFAS1/hsa-miR-642a-5p axis (Figure 9) as the most likely
upstream pathway of MACC1 in COAD. Tese results
suggest that MACC1 participates in tumor immunity and
progression of COAD through the ZFAS1/hsa-miR-642a-
5p/MACC1 pathway.
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