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Gastric cancer (GC) is the second leading cause of tumor-associated death and the fourth most commonly seen tumor across the
world. Abnormal ncRNAs have been verified to be involved in potential metastasis via modulating epithelial-to-mesenchymal
transition progression and are vital for the progression of cancers. Tumor-infiltrating immune cells (TICs) are a vital indicator of
whether cancer patients will benefit from immunotherapy. Nonetheless, the association between ceRNAs and immune cells
remained largely unclear. We used the ceRNA network combined with TICs for the prediction of the clinical outcome of GC
patients based on TCGA datasets.*e percentage of immunocytes in GCwas speculated by the use of CIBERSORT. Via Lasso and
multivariate assays, prognostic models were established applying survival-related genes and immune cells. Nomograms were
developed, and the accuracy of the nomograms was determined using calibration curves. *e association between ceRNAs and
TICs was validated by the use of integration analysis. In this study, there were 2219 mRNAs (1308 increased and 911 decreased),
171 lncRNAs (51 decreased and 120 increased), and 123 miRNAs (55 decreased and 68 increased) differentially expressed between
tumor groups and nontumor groups. Five lncRNAs, six miRNAs, and 64 mRNAs were used for ceRNA network construction.
Eight genes including LOX, SPARC, MASTL, PI15, BMPR1B, ANKRD13B, PVT1, and miR-7-5p were applied for the devel-
opment of the prognostic model. Survival assays suggested that tumor cases with high risk exhibited a shorter overall survival. In
addition, we included T-cell CD4 memory activated, monocytes, and neutrophils for the development of a prognosis model.
Eventually, our team demonstrated the possible associations between the ceRNA prognosis model and prognostic model based on
immune cells. To sum up, the ceRNA network could be used for gene regulation and predict clinical outcomes of GC patients.

1. Introduction

Gastric cancer (GC) is one of the most commonly seen
malignancies, which has approximately one million new
cases diagnosed annually [1]. GC has an especially high
prevalence in Asia [2]. Even with recent improvements in
surgery and chemotherapy, GC remains with a very high
morbidity and mortality because most patients are diag-
nosed at an advanced stage and accompanied by malignant
proliferation and extensive lymphatic metastasis [3, 4].
Hence, it is imperative to further understand the bio-
mechanism beneath GC and identify new diagnosis/prog-
nosis markers in this regard.

Long noncoding RNAs (lncRNAs), without protein-
coding functions, have aroused more and more academic
interest in recent years [5]. *ese RNAs are vital for diverse
BP, especially various cancers [6]. *e ceRNA assumption
hypothesized that apart from the traditional functions,
miRNAs targeting RNAs, a reversed logic exists [7, 8].
Growing evidence has demonstrated that lncRNAs,
miRNAs, and mRNAs exhibited important regulatory
functions in the development and progression of various
tumors [9, 10]. Importantly, many ncRNAs have been
demonstrated to regulate tumor metastasis via the EMT
pathway. Based on the theory of ceRNA, lncRNA and
mRNA may have the identical miRNA response elements.

Hindawi
Journal of Oncology
Volume 2022, Article ID 8204818, 12 pages
https://doi.org/10.1155/2022/8204818

mailto:shenneng9527@cqu.edu.cn
https://orcid.org/0000-0001-6959-831X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8204818


*us, when miRNAs bind to miRNA response elements on
lncRNAs, the expressions of mRNAs may not be suppressed,
which could promote tumor progression [11, 12]. More and
more researchers have suggested that the exploration of
RNA interactions is very important for the improvements of
the treatments of various tumors [13, 14]. Based on the above
findings, specific lncRNA-miRNA-mRNA ceRNA networks
have been developed for many kinds of cancers [15, 16].
However, at the genome-wide scale, the studies involved in
comprehensive assays between miRNAs and lncRNAs were
rarely reported. So, this research intended to construct a
risk-assessment model for the prediction of the clinical
outcome of GC patients.

2. Materials and Methods

2.1. Data Collection and Processing. *e stomach adeno-
carcinoma (STAD) transcriptomic data of HTseq-count
were acquired on July 4, 2021, from TCGA database, in-
volving mRNA, lncRNA, and miRNA expression patterns of
375 STAD tissues and 32 noncancerous tissues. Corre-
sponding clinical information including sex, age, survival
time, and survival status was downloaded from TCGA on
the same day. *e abundance data of tumor immune in-
filtration were obtained from the CIBERSORT database,
containing 22 types of immunocytes. Genetic expression
information of STAD sufferers and tumor immune infil-
tration abundance data were combined for obtaining the
immune cell infiltration abundance of STAD patients.

2.2. Differentially Expressed RNAs’ Screening and ceRNA
NetworkConstruction. After pooling unmatched probes and
calculating the average value when the same RNA was
detected multiply, 35668 RNAs including 19064 mRNAs,
14086 lncRNAs, and 2518 miRNAs were used for further
analysis.*en, 35668 RNAs, including 19064mRNAs, 14086
lncRNAs, and 2518 miRNAs, were used for further analysis.
“Deseq2” package was used to screen differentially expressed
RNAs [17]. |Log2 FCs|> 1 and modified p< 0.05 had sig-
nificance on statistics. *e visualization of these RNA dif-
ferential expressions was realized by “pheatmap” package
and used for constructing the ceRNA network. *e ceRNA
network, showing the interactions between lncRNA-miRNA
andmiRNA-mRNA, was established via GDC RNAKits and
visualized by Cytoscape software 3.8.0 [18].

2.3. Prognostic Model of Survival-Associated Genes in the
ceRNA Network. Univariate assays were applied to screen
survival-associated genes within the ceRNA network,
aiming to prevent the model from overfitting. *ereafter,
the Lasso regressive analysis was completed. A prognostic
model, via multivariate Cox regressive analyses, was con-
structed to forecast the survival rate of STAD patients.
According to the RS computed by the prognosis model,
sufferers were separated into the riskhigh group and risklow
group to explore the survival difference.*e accuracy of the
model was tested by ROC and the correction curves in the
“survival” R package.

2.4. Estimation of Immune Cell Infiltration. *e 22 types of
immunocyte classes in STAD were evaluated by the
CIBERSORT algorithm. *e specimens with CIBERSORT
results of p< 0.05 were utilized for analyses. *e relative
abundance of immunocytes in STAD sufferers was calcu-
lated. *e correlations of immune cells were estimated. To
compare the diverse ICI in tumor and normal samples, the
Wilcoxon rank-sum test was used.

2.5. Survival Analyses and Prognostic Model of Prognosis-
Associated Tumor Immune Cells. K-M analyses were per-
formed for every kind of immune cells to find survival-
associated immune cells. Immunocytes with p< 0.05 were
used for further analyses. Prognosis-associated infiltration
immunocyte classes were subjected to selection via uni-
variable Cox regressive analyses. Lasso regressive analyses
were utilized to ensure the most proper immune cell types
for model construction. A model was established via the
regressive coefficients of multivariable Cox regressive ana-
lyses. *e risk scores separated sufferers into the riskhigh
group and risklow group to explore the survival difference.
*e ROC and the correction curves were used to identify the
nomogram’s accurateness.

3. Statistical Analysis

All analyses were conducted by Perl 5.30.1 (Holland, MI,
USA) and R 3.6.2 (R Core Team, Boston, USA).

4. Results

4.1. Identification of Differentially Expressed Genes and
Construction of the ceRNA Network. *ere were 2219
mRNAs (1308 downregulated and 911 upregulated)
(Figures 1(a) and 1(b)), 171 lncRNAs (51 downregulated and
120 upregulated) (Figures 1(c) and 1(d)), and 123 miRNAs
(55 downregulated and 68 upregulated) differentially
expressed between experiment and control groups
(Figures 1(e) and 1(f)). *en, the relationships between
miRNA-mRNA and lncRNA-miRNA were calculated, and
RNAs without regulation relationships were excluded. Fi-
nally, 5 lncRNAs, 6 miRNAs, and 64 mRNAs were used for
ceRNA network construction. Eventually, we identified 74
edges and 75 nodal points within the network (Figure 2).

4.2. Identification of Prognosis-Associated Genes within the
ceRNA Network and Establishment of a Prognosis Model.
After combining the survival data (status and time) and the
gene expression data, we performed univariable Cox re-
gressive analyses and found 19 genes related to survival. To
avoid overfitting, we performed Lasso regression analysis
(Figures 3(a) and 3(b)). Eight genes (LOX, SPARC, MASTL,
PI15, BMPR1B, ANKRD13B, PVT1, and hsa-miR-7-5p)
were involved in a Cox proportion risk model used to assess
prognosis results (Figure 3(c)). *e sufferers were separated
into the riskhigh group and risklow group on the foundation
of the model. *e survival analyses revealed that the riskhigh
sufferers displayed poorer OS (p< 0.001) (Figure 3(d)). *e
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Figure 1: *ermographs and volcano plots of RNA differential expression. (a, b) mRNAs, (c, d) lncRNAs, and (e, f ) miRNAs. Red dots
represented RNAs with an increased expression, and green dots represented RNAs with a decreased expression.
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ROC curve revealed that the AUC of 1-year survival reg-
istered 0.669, AUC of 3-year survival registered 0.665, and
AUC of 5-year survival registered 0.691, suggesting an ac-
ceptable accuracy of this model (Figure 3(e)). A nomograph
was drawn to forecast the 1-year, 2-year, and 3-year OS
potential of STAD sufferers on the foundation of this model
(Figure 4(a)). *e calibration curve also showed an ac-
ceptable accuracy of this nomogram (Figure 4(b)).

4.3. Tumor Immune Infiltration. *e relative percentage of
cancer-infiltrating immunocytes in STAD patients was
evaluated via CIBERSORT arithmetic (Figure 5(a)). *e
correlations of immune cells were calculated (Figure 5(b)).
Compared with normal tissues, B-cell naı̈ve, T-cell CD4
memory stimulated, Tfh, macrophages M0, macrophages
M1, and macrophages M2 were highly expressed in STAD
tissues significantly. Meanwhile, B-cell memory, plasmic
cells, T-cell CD8, monocytes, and mast cells resting were
lower expressed in STAD tissues significantly
(Figure 5(c)).

4.4. Determination of Prognosis-Associated Immune Infil-
tration Cells and Construction of a Prognosis Model.
*rough K-M assays, our group observed that patients with
higher proportions of T-cell CD4 memory stimulated, Tfh,
and Tregs had better survival (Figures 6(a)–6(c)). Lasso
regression and univariable Cox regressive analysis were
completed to determine prognosis-associated infiltrating
immune cells.*e results suggested that T-cell CD4memory
stimulated, monocytes, and neutrophils had better abilities
in forecasting prognoses (Figures 6(d)–6(f )). Afterwards, a
prognostic model was developed by the use of multivariate
assays. On the foundation of the model, sufferers were
separated into riskhigh and risklow groups. Compared with
the low-risk group, riskhigh sufferers displayed shorter
survival (p � 0.009) (Figure 7(a)). *e model accurateness
was identified by the ROC curves (Figure 7(b)). On the
foundation of the model, we constructed a nomograph to
forecast the 1-year survival, 2-year survival, and 3-year
survival of STAD sufferers (Figure 7(c)). Our team found
satisfactory accurateness of such a nomograph was realized
through the calibration curve (Figure 7(d)).

Figure 2: Competing endogenous RNA (ceRNA) network was established by Cytoscape for differentially expressed lncRNA-miRNA-
mRNA.
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Figure 3:*e results of Lasso regression and themodel constructed bymultivariate assays. (a) Lasso coefficient profiles of the 8 genes related
to prognoses from the key members of the ceRNA network. (b) *e Lasso regression model for partial likelihood deviance of variables.
(c) Multivariate assays of 8 prognosis-associated genes for the development of the prognosis model. (d) Survival assays of patients in the
riskhigh group and risklow group based on the model. (e) ROC curve was employed to verify the model accuracy.

Journal of Oncology 5



4.5. Association between Genes and Immunocytes for
Prognosis. A correlation test was conducted to investigate
the relationship between the 8 genes and 3 infiltration
immunocytes used for constructing prognostic models
(Figure 8(a)). We found that neutrophils were positively
associated with PI15, indicating that patients with higher
PI15 expression would have more neutrophil infiltration in
tumors (Figure 8(b)). For STAD patients, PI15 expression
and neutrophil infiltration may be effective prognostic
biomarkers.

5. Discussion

GC is still a primary public health concern as the 4th most
commonly seen tumor and the 2nd leading cause of tumor
mortality across the globe [19]. *e latest development in
genomic, proteomic, and metabolomic techniques has dis-
covered pivotal molecule events in the course of GC car-
cinogenesis [20]. *e findings give rise to the identification
of new GC markers, such as gene and epigenesis variations,
mRNA, ncRNA, posttranslation protein modification, and
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Figure 4: Nomogram constructed as per the model. (a) Nomograph was developed for the prediction of cases’ survivals. (b) Calibration
curve of the nomogram.
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Figure 5: TIICs in the tumor tissues. (a) *e relative percentage of 22 TIICs in STAD patients. (b) *e correlation of 22 types of TIICs in
STAD sufferers. (c) Diversity in the percentage of 22 TIICs between cancer specimens and nontumor specimens.

p=0.006

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

T cells CD4 memory activated
High
Low

128 86 40 19 7 6 4 2 2 2 1

129 72 22 12 8 4 2 1 1 1 0Low

High

0 1 2 3 4 5 6 7 8 9 10

Time (years)

T 
ce

lls
 C

D
4

m
em

or
y 

ac
tiv

at
ed

(a)

p=0.049

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

T cells follicular helper
High
Low

128 84 34 14 6 4 2 0 0 0 0

129 74 28 17 9 6 4 3 3 3 1Low

High

0 1 2 3 4 5 6 7 8 9 10

Time (years)

T 
ce

lls
 fo

lli
cu

la
r

he
lp

er

(b)

p=0.034

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

T cells regulatory (Tregs)
High
Low

128 82 33 13 6 5 2 0 0 0 0

129 76 29 18 9 5 4 3 3 3 1Low

High

0 1 2 3 4 5 6 7 8 9 10

Time (years)

T 
ce

lls
 re

gu
la

to
ry

(T
re

gs
)

(c)

−6.0 −5.5 −5.0 −4.5 −4.0 −3.5 −3.0 −2.5

−5

0

5

10

Log Lambda

Co
effi

ci
en

ts

3 3 3 3

1

2

3

(d)

Figure 6: Continued.

8 Journal of Oncology



−6.0 −5.5 −5.0 −4.5 −4.0 −3.5 −3.0 −2.5

11.0

11.1

11.2

11.3

11.4

Log (λ)

Pa
rt

ia
l L

ik
el

ih
oo

d 
D

ev
ia

nc
e

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 0

(e)

Neutrophils

Monocytes

T cells CD4
memory
activated

(N=257)

(N=257)

(N=257)

2.6e+02
(5.0e−01 − 1.3e+05)

1.9e+04
(5.3e+00 − 6.8e+07)

2.2e−03
(2.0e−06 − 2.3e+00)

0.081

0.018 *

0.084

# Events: 105; Global p−value
(Log−Rank): 0.0063316 
AIC: 1004.08; Concordance Index: 0.6

1e−06 0.001 1 1000 1e+06 1e+09

Hazard ratio

(f )

Figure 6: Identification of survival-associated infiltration immunocytes and construction of a prognosis model. (a–c) Survival assays of
patients with different proportions of T-cell CD4memory stimulated, Tfh, and Tregs via Kaplan–Meier analysis. (d) Lasso coefficient profiles
of the 22 TIICs. (e) *e Lasso regression model for partial likelihood deviance of variables. (f ) Multivariate assays of infiltrating immune
cells.

p=0.009

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Risk
High risk
Low risk

128 73 24 15 7 4 2 2 2 2 1
129 85 38 16 8 6 4 1 1 1 0Low risk

High risk

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Ri
sk

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1−specificity

Se
ns

iti
vi

ty

AUC at 1 years: 0.597
AUC at 3 years: 0.605
AUC at 5 years: 0.601

(b)

Points

T cells CD4 memory
activated

Monocytes

Neutrophils

Total Points

1−year survival

2−year survival

3−year survival

0 10 20 30 40 50 60 70 80 90 100

0.3 0.25 0.2 0.15 0.1 0.05 0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

0 0.02 0.06 0.1 0.14 0.18

0 20 40 60 80 100 120 140 160 180 200 220

0.9 0.8 0.7 0.5 0.3

0.9 0.8 0.7 0.5 0.3 0.1

0.9 0.8 0.7 0.5 0.3 0.1 0.01

(c)

0.35 0.40 0.45 0.50 0.55

0.3

0.4

0.5

0.6

0.7

Nomogram−Predicted Probability of 3−Year OS

A
ct

ua
l 3

−Y
ea

r O
S 

(p
ro

po
rt

io
n)

(d)

Figure 7: Results of the TIIC prognostic model. (a) Survival assays of patients in the riskhigh group and risklow group. (b) ROC curve was
employed to identify the model accuracy. (c) Nomogram was employed to forecast sufferers’ survival time. (d) Correction curve of the
nomograph.

Journal of Oncology 9



metabolin [21, 22]. ceRNA modulatory networks have be-
come hotspots in tumor studies. Previously, several studies
have reported the potential of a prognostic model based on
the ceRNA network in several types of tumors [23, 24]. In
this study, we analyzed TGCA datasets and screened dys-
regulated lncRNA, miRNA, andmRNA.*en, we developed
the ceRNA network of differentially expressed RNAs. Based
on the above results, we acquired a prognosis model on the
foundation of eight genes (LOX, SPARC, MASTL, PI15,
BMPR1B, ANKRD13B, PVT1, and miR-7-5p). Survival
assays confirmed that riskhigh sufferers exhibited undesirable
prognoses. ROC assays further confirmed the prognosis
significance of our model in GC sufferers, highlighting the
potential of our model used as a novel prognostic system.

Previously, the function of the eight genes has been
reported in GC. For instance, the expression of miR-7-5p
was reported to be low in GC stem cells, and its over-
expression distinctly suppressed the growth and invasion of
GC stem cells via increasing Smo and Hes1 [25]. SPARC
belongs to the matricellular family of secreted proteins.
Previous several studies reported that SPARC expression
was distinctly increased in gastric cancer, and its knockdown
suppressed the metastasis and EMT progress of GC cells
[26]. In addition, PVT1, an overexpressed lncRNA in GC,
was demonstrated to promote the proliferation and the
development of multidrug resistance [27]. *eir findings
suggested the above genes acted as tumor promotors or
suppressors in GC progression, which explained the reason
that patients with high risk showed a shorter overall survival.
*en, to further forecast the prognoses of GC sufferers at
diverse years posterior to diagnoses, our team established a
novel nomograph on the foundation of genetic expression.
*e greater the overall scoring of the sufferer, the poorer the
prognostic result.

Substantial research studies have recorded an association
between the immunity infiltration in some mankind tumor
types and prognoses and responses to treatments [28, 29].
Infiltration immunocytes are utilized as markers for the
immune therapy reaction in multiple tumors [30]. Never-
theless, the role of each infiltration immunocyte type in
tumor progression and the potential causal link remain
elusive. Herein, our team established a prognosis model on
the foundation of T-cell CD4 memory stimulated, mono-
cytes, and neutrophils. *e three immunocytes were related
to OS of GC sufferers. In addition, survival assays confirmed
that riskhigh GC sufferers showed a shorter OS in contrast to
risklow sufferers, which was further confirmed by ROC as-
says. Finally, our team identified the association between the
ceRNA prognosis model and the infiltration immunocyte
prognosis model. Neutrophils were associated with PI15 in a
positive way, which might reveal that the greater the ex-
pressions of such a gene, the greater the ICI level. Previously,
PI15 was discovered to be dysregulated in several types of
tumors, and its diagnostic and prognostic value was fre-
quently reported [31–33]. However, the possible regulatory
function between PI15 and immunity remained unknown,
which needed further study. In addition, the potential of
PI15 used as a biomarker for the depth of neutrophil in-
filtration needed to be further demonstrated in other
experiments.

6. Conclusion

Overall, the two models can be used as reliable prognostic
biomarkers for GC and can provide guidance for person-
alized therapy. More studies are needed for the demon-
stration of our findings using clinical experiments and in
vitro and in vivo assays.
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Figure 8: Correlation between the ceRNA prognosis model and infiltration immunocyte prognosis model. (a) *e correlation matrix of
these models. (b) *e association between neutrophils and PI15.
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