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Background. To construct and validate a deep learning cluster from whole slide images (WSI) for depicting the
immunophenotypes and functional heterogeneity of the tumor microenvironment (TME) in patients with bladder cancer
(BLCA) and to explore an artificial intelligence (AI) score to explore the underlying biological pathways in the developed WSI
cluster. Methods. In this study, the WSI cluster was constructed based on a deep learning procedure. Further rerecognition of
TME features in pathological images was applied based on a neural network. Then, we integrated the TCGA cohort and
several external testing cohorts to explore and validate this novel WSI cluster and a corresponding quantitative indicator, the
AI score. Finally, correlations between the AI cluster (AI score) and classical BLCA molecular subtypes, immunophenotypes,
functional heterogeneity, and potential therapeutic method in BLCA were assessed. Results. The WSI cluster was identified
associated with clinical survival (P < 0:001) and was proved as an independent predictor (P = 0:031), which could also predict
the immunology and the clinical significance of BLCA. Rerecognition of pathological images established a robust 3-year
survival prediction model (with an average classification accuracy of 86%, AUC of 0.95) for BLCA patients combining TME
features and clinical features. In addition, an AI score was constructed to quantify the underlying logic of the WSI cluster
(AUC = 0:838). Finally, we hypothesized that high AI score shapes an immune-hot TME in BLCA. Thus, treatment options
including immune checkpoint blockade (ICB), chemotherapy, and ERBB therapy can be used for the treatment of BLCA
patients in WSI cluster1 (high AI score subtype). Conclusions. In general, we showed that deep learning can predict prognosis
and may aid in the precision medicine for BLCA directly from H&E histology, which is more economical and efficient.

1. Introduction

Bladder cancer (BLCA) is one of the worldwide most com-
mon urinary malignancies, approximately 83,730 incident
cases were reported in the USA in 2021 [1]. BLCA was
proved progress along two different pathways, which is
posing two quite different challenges for therapeutic
opportunities: nonmuscle invasive cancers, not immediately

life-threatening, but they are prone to recurrence and
require costly lifelong monitoring [2]. In contrast, muscle-
invasive bladder cancers (MIBC) tend to rapidly progress
and have a bad prognosis [3].

MIBC is defined as a heterogeneous disease at the molec-
ular level due to its genomic instability and high mutation
rate [4]. A previous study proposed several instinct BLCA
molecular subtypes based on RNA-Seq data. Subtypes with
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the most scientific consensus are MDA subtype [5] and
UNC subtype [6]; on the basis of these two subtypes, other
classification systems have identified similar groups [7, 8].
However, these methods are difficult to be implemented in
clinical setting, the main limiting factor is the requirement
of sample size for RNA-Seq data analysis, and high accuracy
analysis of RNA-Seq data relies on sufficient sample size.
Therefore, a large number of patient samples need to be col-
lected, which is difficult in clinical implementation. Thus, a
high need for a faster and more economic procedure is in
urgent [9, 10]. One possible solution is the application of
deep learning model to predict clinical-related parameters;
the advent of deep learning and thousands of hematoxylin
and eosin- (HE-) stained slides has provided new opportuni-
ties to reexamine classic methods of diagnosis and predic-
tion of patient outcomes [11–14].

Although deployed in a growing number of studies,
approaches to elucidate how deep learning algorithms make
decisions tend to lack [15]. However, this is critical because
these models will only be widely applied and supported if
there is a way to understand the underlying decision process
[16]. In our study, deep learning was used to accurately iden-
tify the BLCA subtypes from WSI of HE-stained slides
downloaded from TCGA to establish a novel molecular sub-
type of BLCA and correlated them in TME, comprehensive
genomic, immunophenotypes, and clinical outcomes [17].
In general, our study demonstrated that this novel WSI clus-
ter can provide a good classifier for full-resolution micro-
scopic pathological image learning, even if it only uses the
entire image label for training.

2. Methods

2.1. Data Retrieval and Preprocessing

2.1.1. Training Cohorts. Our data set comes from the TCGA
database, which provides an online platform for the research
community to upload, search, view, and download cancer-
related data [18]. After filtering the genomic and clinico-
pathological data, a total of 363 TCGA-BLCA samples were
selected. All the selected patients were diagnosed with
muscle-invasive bladder cancer (MIBC). Furthermore, after
removing low-quality pathological images, 435 digitized
HE stained histopathological WSI of these 363 patients were
then downloaded for molecular subtype recognition.

2.1.2. External Testing Cohorts. Two GSE cohorts
(GSE32894 and GSE13507) with detailed survival data of
389 BLCA samples were gathered from Gene Expression
Omnibus (GEO) and integrated to a GEO-metatesting
cohort for external validation. IMvigor210 cohort, with 348
BLCA samples received anti-PD-L1 immunotherapy, was
obtained in the IMvigor210CoreBiologies R package. In
addition, the E-MTAB-4321 cohort (with detailed survival
data of 476 BLCA samples) was gathered from the European
Molecular Biology Laboratory database. Besides, three
immunotherapy-related cohorts (GSE135222, GSE100797,
and Nathanson2017 pre) were gathered from the GEO
database and TIDE website.

2.2. Construction of Deep Learning Signature and WSI
Cluster. To cluster patients, we chose WSI as the clustering
sources and wanted to extract the overall image features of
them. First, we downsampled the WSI at a reduction of
0.15625x by openslide library and cropped 512 × 512 pixel
(removing the background around) for feature extraction.
Furthermore, we clustered all the patients into 2-5 groups
using different kinds of features by different common clus-
tering methods, obtaining different clustering results. The
final type of features was extracted from the last fully con-
nected layer of inception V3 model which was pretrained
by ImageNet and was of 2048 dimensions. We then selected
the number of blocks for patients empirically; too many
blocks for one patient may lead to overfitting and too few
may make the feature extraction inadequate. Therefore, the
block number were determined by multiple quantitative
experiments of prepreparation. The significance of different
clustering classes is to find the boundaries of medicine; 2-5
is the number of classes that may be meaningful in clinical.
Doctors are more likely to get valuable conclusions and valid
applications based on the class. After our ablation experi-
ment, the following three clustering methods are finally
determined to have the best experimental effect: Gaussian
mixture model clustering, mini batch K-means clustering,
and hierarchical clustering. We then clustered all the images
into several groups, from 2 to 5, using the three mentioned
methods. Results which had less than 5 images in a group
were dropped.

From the above, we obtained 5 distinct classification
model and 70 specific groups, survival analysis was then
conducted using R package survminer. Among them, the
three-classification model based on mini batch K-means
clustering model was identified associated with the best
prognosis for OS among all groups (P = 0:005). Therefore,
we determined this three-classification model as WSI cluster.
Due to the survival analysis, we found that the groups clus-
tered by mini batch K-means using features extracted by the
neural network had meaningful performance. In order to
capture the image features of these clusters, we trained a
new classification model using the above clusters as labels
and then visualized the class activation maps by Grad-
CAM and summarized the interpretable features by experts.
For classification, we used the same multiplier of whole slide
images as when clustering and trained an inception V3
model by transfer learning using 6-fold cross-validation.
We did 3 independent experiments, each reaching compara-
ble conclusions. The optimizer we used was SGD with learn-
ing rate of 0.001, and the loss function was cross-entropy.

2.3. Rerecognition of Tumor Microenvironment Features by
Artificial Intelligence. The rerecognition of TME features
based on WSI is all based on the neural network. Consider-
ing the amount of data in the data set, the parameters after
ImageNet training were used as pretraining parameters for
transfer learning, only the last fully connected layer was
trained. In order to ensure the accuracy of the input features
of the prognostic prediction model, we excluded the cases
with missing clinical data and the surviving cases with less
than 3 years of follow-up, and pathologists then browsed
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the block classification results of each case and excluded the
cases with an overall block prediction accuracy of less than
80%, leaving 120 cases. Furthermore, in the ablation experi-
ment of various features, the hidden layer design is adjusted
according to the number of experimental input features, so
as to obtain the optimal model of current features and evaluate
the effectiveness of the feature for prognostic prediction, see
Supplementary Information for details (Table S1-S2).

2.4. Development of AI Score. We then developed a signature
score (AI score) to explore underlying logistic of the WSI
cluster. We followed the methods of Hu et al. [19]. First of
all, univariate Cox regression analysis and lasso regression
were conducted on the differential expressed genes (DEGs)
between WSI cohorts to identify prognostic AI gene signa-
ture. Then, principal component 1 was gathered from prin-
cipal component analysis (PCA) on those above prognostic
DEGs; this method had advantage of focusing the score on
the set with the largest block of well correlated (or anticorre-
lated) genes in the set while downweighting contributions
from genes that do not track with other set members. The
process to establish the AI score was similar to that in previ-
ous studies [20–28].

AI score =〠PC1i, ð1Þ

where i means the expression of prognostic DEGs in the
WSI cluster.

For all external testing BLCA cohorts, we, respectively,
calculated the AI score based on the prognostic AI gene
signature. Furthermore, we evaluated the AI score in pan-
cancer cohort to ensure the comparability of the analyses.

2.5. Exploration of TME Underlying WSI Cluster and AI
Cluster. From the above, we then constructed and validated
the AI cluster. Specifically, patients were classified into high
and low AI score groups based on the median AI score. The
Kaplan-Meier method was then applied to explore the prog-
nostic significance of the AI score. Based on the gene expres-
sion profile, the potential biological pathways underlying
WSI cluster and AI cluster were identified [29]. First, differ-
entially expressed genes (DEGs) between every subgroup
stratified by the WSI cluster were identified using DESeq2
R package. Furthermore, functional enrichment analysis
(GO and KEGG) were applied based on the clusterProfiler
R package [30]. Besides, immunophenoscore (IPS) was cal-
culated to evaluate the immune status [31, 32]. In addition,
ESTIMATE, CIBERSORT [33], and MCP-counter [34] R
package were used to evaluate the immune cell infiltration
populations; samples with P < 0:05 were reserved for further
analysis. Similarly, according to the previous research [35],
we constructed immune cell signatures for further assessing
the landscape of tumor microenvironment phenotypes in
WSI cluster and AI cluster. Besides, scores of each step in
cancer-immunity cycle was calculated with ssGSEA [36],
see Supplementary Information for details (Section II
Supplementary Results).

2.6. Evaluation of WSI Cluster-Associated Immune Cell
Infiltration, Clinical Features, and Classic Molecular Subtypes.
First, the association between immune cell infiltration popula-
tions and WSI cluster was evaluated using Kruskal-Wallis sta-
tistic. Next, we explore the distribution of clinical features and
molecular characteristics of the WSI cluster. Finally, multivari-
ate Cox regression analysis was used to depict the prognostic
value of WSI cluster with overall survival as the endpoint, see
Supplementary Information for details (Figure S13-S17).

Besides, R packages ConsensusMIBC and BLCAsubtyp-
ing were used to calculate multiple classic molecular subtype
characteristics in WSI cluster, including CIT, Lund, MDA,
TCGA, Baylor, UNC, and Consensus subtypes. Besides, we
classified these seven classic BLCA molecular subtypes into
two major subtypes (basal and luminal) basing on the previ-
ous study. Thereafter, ROC curves were drawn to explore
the predictive ability of AI score for these classic molecular
subtypes. The results were confirmed reproducible in the
external testing cohort.

2.7. Depiction of Classical Molecular Subtype-Specific
Signatures and Efficacy Prediction of Several Treatments. Pre-
vious researches have concluded twelve distinct molecular
subtype-specific signatures [37]. Besides, critical targeted
therapy-related signatures and radiotherapy-related signatures
were also summarized [38]. Additionally, the mutation pro-
portions of multiple critical genes (including ERBB2, ERCC2,
ATM, RB1 and FANCC, which were proved predict the
therapeutic response to neoadjuvant chemotherapy) was cal-
culated. Furthermore, Mariathasan et al. developed nineteen
gene signatures associated with the therapeutic response to
atezolizumab (an anti-PD-L1 drug) in BLCA [39].

In this study, we collected the enrichment scores of these
above signatures in BLCA [40]. Then, we identified the role
of AI score in predicting the response of these therapeutic
opportunities. Furthermore, potential BLCA-related drugs
along with corresponding drug-target genes were gathered
from the DrugBank database for further analysis [41]. Addi-
tionally, we checked for MSigDB database to explore several
biological pathways (including hallmark, oncogenic, and
KEGG pathways) [42]. To further explore the biological pro-
cesses and KEGG pathways in AI clusters, we optimize the
algorithm based on R package clusterProfiler; the new proce-
dure was as follows: [1] Differential analysis was conducted
between the high AI score subtype (n = 181) and the low
AI score (n = 181). An absolute value of log 2 ðfold changeÞ
> 1 combined with the false discovery rate (FDR) adjusted
P value < 0.05 was selected as the threshold for cutoff value
[2]. Then, 3,792 differential expressed genes (DEGs), includ-
ing 3,198 upregulated expression (UE) and 544 downregu-
lated expression (DE), were filtered out from TCGA cohort
in high AI score subtype vs. low AI score subtype [3]. Fur-
thermore, GO (including biological processes, cellular
component, and molecular function) and KEGG pathway
analyses were performed based on the DEGs separately.

2.8. Statistical Analysis. Statistical analysis was applied using
R (version 4.0.3) and R Bioconductor packages. Continuous
and ordered categorization variables were evaluated with
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Student’s t-test, Kruskal-Wallis test, and Wilcoxon test.
Pearson χ2 test or Fisher exact test were used to compare
disordered categorization variables. A permutation test was
performed to compare the mutation frequencies between
clusters. Correlation matrices are created using Pearson or
Spearman correlation. The pROC and timeROC R package
were called to plot receiver operating characteristic (ROC)
curve and to calculate time-dependent area under the ROC
curve (AUC). Kaplan-Meier method was used for survival
analysis. All tests are bidirectional, and P < 0:05 is consid-
ered significant unless otherwise noted. FDR calibration is
used for multiple tests to reduce false positives.

3. Results

3.1. Depicting the WSI Clusters. We obtained 435 digitized
H&E-stained histopathology WSI of 363 patients from
TCGA database. For these slides, in order to cluster them
with whole image features instead of detailed cell and tissue
features, we chose to use the downsampled images instead of
tiled patches. We downsampled all the slides at a reduction
of 0.15625x by openslide library and cropped 512 × 512 pixel
(removing the background around) for features extraction.
We tried three types of features, e.g., 512-dimension histo-
gram features, flatten features, and features extracted from
pretrained Inception V3 model (Figure 1(b)). Then, we used
mini batch K-means, hierarchical clustering, and Gaussian
mixture mode (GMM) to cluster patients into 2-5 groups.
After feature extraction and clustering, we use Kaplan-
Meier for survival assessment and found that the three
groups clustered by mini batch K-means using features of
the neural network got the best performance (Figure 1(c)).

Besides, to capture the image features among these three
groups, we did transfer learning with Inception V3 model to
classify them and then used Grad-CAM to visualize the
important areas. For 6-fold cross-validation, we got an average
classification accuracy of 92.38%, AUC of 0.99 (Figure 1(f)),
F1 score of 0.9167, specificity of 0.9568, sensitivity of 0.9115,
and precision of 0.9117 (Figure 1(e)). The workflow of con-
structing WSI clusters is shown in Figure 1(a).

3.2. Rerecognition of TME Features in WSI Based on
Machine Learning. The workflow of the machine learning
procedure to rerecognition of TME features in WSI was
shown in (Figure 2(a)). The WSI within TME features were
defined as pure stromal infiltration, necrosis, high immune
high stromal infiltration, high immune low stromal infiltra-
tion, low immune high stromal infiltration, and low immune
low stromal infiltration according to three pathologists for
classification (Figure 2(b)). Four neural networks were then
built overall to complete the hierarchical classification. For
the labeled 12,000 blocks, the data set was divided into the
training cohort, test cohort, and validation cohort by
8 : 1 : 1 randomly. The models were evaluated by accuracy,
AUC, specificity, and sensitivity, and the performance of
each network is shown in Table S3. In addition, the 3-year
survival prediction model was constructed based on the
overall image features, TME features, and clinical features.
The network design and experimental results of the specific

backpropagation neural network (BPNN) were shown in
Table S4. Among them, three types of features showed the
best results (AUC = 0:95, accuracy = 86:00%, specificity =
0:8353, and sensitivity = 0:8923). Collectively, in this research,
based on the machine learning for semiquantitative assessment
of TME features in WSI, we established a robust 3-year
survival prediction model that incorporates pathological image
features, TME features, and clinical features in the BLCA
cohort, which confirmed the accuracy and effectiveness of
machine learning applied to WSI.

3.3. Clinical Parameters, Molecular Characteristics, and
Prognosis of the WSI Clusters. Clinical-related parameters
and molecular characteristics, classified by WSI clusters,
was, respectively, calculated and summarized in (Table S2).
Compared with C0 and C1, the median survival age of C2
is slightly higher (Figure 1(d)). Besides, C2 revealed worse
stages among three AI subtypes. In addition, C0 showed
more luminal type and less basal type than C1 and C2 in
terms of MDA subtype, which presented with better
pathological differentiation. In addition, we found that the
WSI cluster showed a significantly prognostic value in the
BLCA cohort.

3.4. Biological Functional Analyses. To explore the underly-
ing differential biological functional procedures among
WSI clusters, GO and KEGG analyses were applied on DEGs
separately. (Figure S1). As shown in Figure 1(d), C0 and C2
revealed great difference in survival analysis, we found that
DEGs between C0 and C2 were significantly enriched in
extracellular matrix/structure organization and collagen-
containing extracellular matrix, indicating that difference
between C0 and C2 were mainly reflected in the extracellular
matrix, possibly altering cellular activities such as adhesion
and migration [43]. Besides, KEGG analysis also revealed
that PI3K-Akt pathway was significantly enriched, which
was confirmed play a critical role in control the normal
progression of cell cycle [44] and the initiation and
progression of bladder cancer [45] in previous researches.
Besides, compared with C0 and C1, GO terms of C2 were
primarily enriched in T cell activation, which is important in
localized human BLCA treatment with BCG [46]. In
addition, KEGG terms of C2 showed that inflammation and
immune-related pathways were significantly enriched as
expected, including cytokine-cytokine receptor interaction.

3.5. Immune Characterization and Mutation of WSI Cluster.
First, IPS were calculated as an immune activation indicator
among WSI subtypes. C1 showed a higher IPS z-score than
C0 and C2, suggesting its higher immunogenic [32] and a
different TME among WSI clusters. Furthermore, C1
showed higher effector cell scores (P = 0:0066) and lower
suppressor cell scores (P = 0:0017). Besides, we found that
no differences in the immune checkpoint category and anti-
gen presentation across WSI clusters. (Figure 3 (d)).

Then, ESTIMATE method was applied in WSI clusters
to explore their stromal and immune cell infiltration. C0
revealed a lower immune score and the lowest stromal score.
In contrast, C1 showed more abundance of stromal scores
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(P < 0:001) and immune scores (P = 0:0091), in agreement
with the IPS results (Figure S2A).

To further elucidate this issue in immune cells infiltra-
tion, Xcell method was also used to evaluate the association
between WSI cluster and immune phenotypes (Figure S2B
and C). First, the highest abundance of resting and
activated CD4+ T memory cells, memory B cells and Treg
cells was confirmed in C0 (P < 0:001). However, the least
abundance of Th1 and Th2 cells, M1 and M2 macrophages
presented in C0, which is related to the lowest expression
of macrophages and mast cells. In comparison, C1
exhibited the highest density of Th1 and Th2 cells, M1 and
M2 macrophages, and the lowest density of memory B
cells, Treg cells, and dendritic cells. The lymphocytes and
mast cell expression of C1 were in the middle among the
three WSI clusters (Figures 3(b) and 3(c)). Interestingly,
the highest abundance of mast cells was confirmed in C2
compared with C0 and C1 (Figure 3(f)), accompanied by
the lowest abundance of lymphocytes.

Then, we collected the 13 most significantly mutated genes
basing on previous research [4]. As shown in (Figure S2D), the
C0 group was significantly enrich in KDM6A (35%), ARID1A
(31%), and FGFR3 mutations (21%). These tumor-associated
FGFR3 activation signatures suggest that C0 may respond to
FGFR inhibitors [47]. C1 was mainly characterized by
enrichment of PIK3CA (25%) and RB1 mutations (21%),
PIK3CA mutation test helps to distinguish between tumors
(indeed supported by PI3K activation) and cancers
characterized by participation in other signaling pathways,
while PIK3CA inhibitors show satisfactory activity in breast
cancer [48]. In additional, C2 shows higher STAG2 mutant
rates, which is reportedly correlated with poor prognosis in
BLCA [49]; STAG2 has also been shown to regulate the cell

cycle progression of bladder cancer cells [50], suggesting that
the C2 group may respond to chemotherapy. Besides, in this
study, we observed that p53/cell cycle regulation (mutations
occurred in 66.13% of cases in C0, 71.26% in C1, and 67.84%
in C2) and PI(3)K signal transduction (mutations occurred in
64.52% of cases in C0, 57.47% in C1, and 53.91% in C2) were
significantly altered in the WSI clusters; other signaling
pathways, including RTK, TP53, Notch, Myc, Hippo, Nrf2
and TGFβ pathways, did not change significantly among
these three subtypes (P > 0:05), which is consistent with
previous research [7].

3.6. C1 Is More Suitable for ICB Therapy. Analysis of the
clinical characteristics showed that the C0 group had lower
T stage and pathological grade, which was associated with
its higher OS (Table S1). Besides, pathway and functional
enrichment analysis showed significant differences in
inflammatory and immune-related pathways between C1
and C2 subtypes (Figure S1). Therefore, we suggest that
there are differences in reactivity to immune checkpoint
inhibitors between these two subtypes. In our cohort, C1
shows a significantly higher infiltration of CD8 effector T
cells, along with the presence of elevated pan-fibroblast
TGF-β response signature (Pan-F-TBRS), which may
indicate the better OS of this subtype relate to its effect on
stromal cells [21] (Figure 3(f)).

Biomarkers of T cell–inflamed tumor microenvironment
mainly include tumor inflammation signature (TIS) [16, 18]
and the expression of multiple inhibitory receptors (IR),
including PDCD1. In this study, TIS (P = 0:018) was
observed higher abundance in C1 subtype; besides, expres-
sion of PDCD1 was identified upregulated in C1 compared
with the other subtypes, suggesting that anti-PD1 treatments
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Figure 1: Overview of the deep learning model. (a) The overall flow chart of developing WSI cluster. (b) The model training for WSI cluster
at tie level. (c) Whole slide images of patients with each WSI subtype in TCGA cohort. (d) Survival analysis of WSI cluster (e) The
performance of 6-fold cross validation. (f) The average ROC curve of 6-fold cross-validation.
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in C1 may response (Figure 3(f)). These results indicated
that patients in C1 may exhibit a stronger response to
checkpoint blockade immunotherapy than patients in other
subtypes. Besides, C1 also showed higher EMT scores
(P < 0:001), which was proved valuable in predicting
patients who may suitable for ICB therapy and antiangio-
genesis drugs.

3.7. Depiction of AI Signature, AI Score, AI Cluster, and Their
Functional Analyses. Furthermore, to depict the molecular
differences between WSI clusters, we developed an AI score
to quantify WSI cluster. Figure S3 displays the AI score
algorithm. First, 1,369 DEGs were identified between each
two WSI clusters as mentioned above (Figure S1). Within
the DEGs, 802 DEGs had prognostic value. To avoid
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stromal cell-related pathways between WSI subgroups.
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overfitting, lasso regression analysis was conducted to
identify 28 optimal genes with minimal lambda (0.0741) in
WSI cluster (Figure S12). Next, PCA was performed on the
selected prognostic DEGs to calculate the AI score. Finally,
we divided the WSI cluster into a high AI score subtype
(n = 181) and a low AI score subtype (n = 181), K-M
survival analysis shows that low AI score subtype had a
better prognosis than high AI score subtype (Figure 4(f)).
Interestingly, we found that most of these genes are
enriched in the high AI score group. Besides, we observed
that AI score could quantify the characteristics of WSI
clusters effectively (Figures 4(g) and 4(h)).

Next, we summarized the differences between the AI
clusters in mutation landscape and biological pathways. To
explore the potential biological pathways regarding AI score,
we, respectively, performed GSVA in the high AI score
group and low AI score group. Results showed that between
these two AI groups, several immune-related biological
pathways (including proliferation-relevant, DDR-relevant,
and cell component-relevant pathways) were enriched
higher in the high AI score subtype. Along with the biolog-
ical pathways, a majority of immune-related hallmark
(Figure S4A) pathways were also highly enriched in the
high AI score subtype. Furthermore, Figure S5 performed
the biological functional analyses based on the expression
of DEGs in the high AI score subtype; as expected, PI3K-
Akt pathway was significantly enriched in the high AI

score subtype, while the Notch pathway was negative
correlated with the high AI score subtype. These results
revalidated the previous GSVA analysis, indicating that
high AI score subtype may benefit more from the ICB
therapy. TP53 and RB1 mutations were proved lead to the
instability of genomic and benefit the response of ICB
therapy in previous study [51]. In our cohort, TP53 (52%
vs. 44%) and RB1 (25% vs. 12%) mutation rates were
observed significantly abundance in the high AI score
subtype (Figure S4C and D). Besides, several oncogenic
pathways were also highly enriched in the high AI score
subtype (Figure S4B). These results demonstrated that high
AI score subtype (WSI cluster C1) may have a better
prognosis during ICB therapy.

3.8. High AI Score Shaped an Immune-Hot Tumor in BLCA.
In our cohort, AI score was found to be positively correlated
with a majority of immunomodulators (Figure 5(a)). MHC-
related molecules were significantly upregulated in high AI
score subtype, indicating that high AI score subtype shows
higher ability in antigen presentation and processing.
Besides, critical chemokine ligand family members (includ-
ing CXCL1, CXCL2, CXCL5, CXCL8, and CXCL11), which
involved in tumor growth regulation and metastasis and
mediated the enrichment of CD8+ T cells into the TME,
were upregulated in the high AI score subtype. In addition,
AI score was found positively correlated with a majority of
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Figure 3: The WSI cluster correlated with immune phenotypes in the TCGA-BLCA cohort. (a) The proportion of major classes of immune
cells (from CIBERSORT) within the leukocyte compartment for different WSI subgroups. (b) Key characteristics of WSI subtypes. (c) Values
of key immune characteristics by WSI subtype. (d) Differences in activities of the cancer immunity cycles between WSI subgroups. (e) The
differences in the expression of cancer immune cycle effector genes between WSI subgroups. (f) The differences in the enrichment scores of
positive ICB response-related signatures between WSI cluster.
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critical steps of the cancer immunity cycle (Figure 5(b)). As a
result, AI score was positively correlated with a majority of
anticancer TIICs and their corresponding effector genes,
which were validated using six independent algorithms
(Figure 5(f)). It is reported that expression of immune
checkpoint inhibitors was high in inflamed TME; consis-
tently, in our cohort, AI score was found significantly posi-
tively correlated with several ICB-related genes including
PD-L1, CTLA4, and PD-1 (Figure 6(a)).

Besides, these results were validated in external testing
cohorts. For example, AI score was identified higher in
inflamed phenotypes, and the TC2 and IC2 groups in the
IMvigor210 cohort (Figures 6(g)–6(i)). Besides, AI score was
proved positively associated withmultiple immunomodulators,
TIIC effector genes, and ICB-related genes in GSE32894,
GSE13507, and E-MTAB-4321 cohort (Figure S9A-E,
Figure S10A-E). In addition, the pan-cancer analyses of the
AI score also confirmed the prognostic value of the AI score
in 33 types of cancers (Figure S11A-D).

Collectively, AI score strongly correlated with the devel-
opment of an immune-hot tumor in BLCA. Multivariate
Cox analysis also showed that AI score was an independent
prognostic factor in BLCA.

3.9. AI Score Predicted Immunotherapy Response and
Hyperprogression of ICB in BLCA. As mentioned above, high
AI score defines an inflamed TME, patients in high AI score
subtype should have a higher response to ICB. As expected,
we found that AI score was positively associated with the
enrichment scores of most immunotherapy-related signatures
(Figure 6(b)), which was validated in three external cohorts
(Figure S9E, Figure S10E). Besides, we also assessed the

association between AI score and several immune signature
in three external cohorts. Results of the validation cohort also
demonstrated that higher AI score showed higher immune
signatures and predicted a higher therapeutic response to
immunotherapy (Figure S9B and C, Figure S10B and C). In
addition, expression of ICB-associated hyperprogression is
lower in high AI score subtype. (Figure 6(j)).

Besides, we compared the correlationships between AI
scores and ICB therapeutic response predictors. Most of
the ICB predictors were upregulated in high AI score sub-
type (Figure 6(a)). On the other hand, the signature scores
of potential ICB response-related predictors and the TIS
scores were significantly higher in high AI score subtype
than low AI score subtype (Figure 7(e)). Therefore, high AI
score subtype may be more sensitive to ICB.

In summary, patients in the high AI score cohort may
benefit more from ICB therapy as they showed higher effec-
tive responsive to ICB and lower hyperprogression.

3.10. AI Score Predicted Classic Molecular Subtypes and
Therapeutic Opportunities. Previous research demonstrated
that basal-type BLCA tend to show the highest infiltration
abundance of immune cell and the best therapeutic response
to pembrolizumab [52]. In our cohort, BLCA with higher AI
score was more likely to be categorized as the basal-subtype
among the classic molecular subtypes. Additionally, the sig-
nature scores of luminal differentiation, myofibroblasts, and
smooth muscle were higher in the low AI score subtype. On
the other hand, the signature scores of basal, urothelial, and
EMT differentiation are higher in high AI score subtype
(Figure 7(a)). These results revalidated that AI score was
positively associated with the response to ICB therapy.

0.0

0.0

0.2

0.2

0.4

0.4
Se

ns
iti

vi
ty 0.6

0.6
1-specificity

0.8

0.8

1.0

1.0

AUC at 1 years: 0.838
AUC at 2 years: 0.817
AUC at 3 years: 0.847

(h)

Figure 4: Developing the AI gene signature, AI score and their functional analyses in the TCGA-BLCA cohort. (a) The flow chart of the AI
score algorithm. (b) The heatmap shows the expression of 28 optimal genes (AI signature) between AI clusters. (c) The volcano plot shows
the 28 optimal genes, and the correlation between these genes. (d) Gene Ontology (GO) analysis of the AI gene signature. (e) Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis of the AI gene signature. (f) Survival analysis of the AI score cluster. (g) The
differences in the AI score between the AI subgroups. (h) ROC curve showed the accuracy of the AI score in predicting prognosis in the
TCGA-BLCA cohort.
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Besides, to enhance the differences and correlations between
AI clusters and seven classical molecular subtypes, we fur-
ther applied correlation analysis based on the R package
GGally. The coincident and exclusive associations across
the signature scores of seven classical molecular subtypes
and AI scores from the high and low AI score subtype were
analyzed, respectively, in which red represents the high AI
score subtype while blue represents the low AI score sub-
type. As expected, the signature score of EMT differential
(P < 0:05, corr = 0:067) and basal differential (P < 0:05,
corr = 0:079) were positively correlated with AI score, while

the signature score of Luminal differential (P < 0:001, corr =
−0:412), myofibroblasts (P < 0:001, corr = −0:476), and
smooth muscle differential (P < 0:05, corr = 0:079) were nega-
tively correlated with AI score (P < 0:001, corr = −0:276),
which is consistent with the differential analysis. These results
revalidated the previous results, indicating that AI score was
positively associated with the response to ICB therapy
(Figure 7(a)). Additionally, these outcomes were validated
using three external cohorts (Figure S7A and D).

Furthermore, the ROC curves showed the high accuracy
of AI score (ranging from 0.67 to 0.74) in predicting classical
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Figure 5: AI score shapes an inflamed TME in BLCA. (a) Differences in the expression of 122 immunomodulators (chemokines, receptors,
MHC, and immunostimulators) between AI clusters in BLCA. (b) Differences in the various steps of the cancer immunity cycle between AI
clusters. (c) Correlation between AI score and the infiltration levels of five types of TIICs (CD8+ T cells, NK cells, macrophages, Th1 cells,
and dendritic cells), which were calculated using six independent algorithms. (d, e) The differences in infiltration levels of TIICs between AI
clusters in the TIMER and MCP-counter algorithms. The asterisks indicate a statistically significant p value calculated using the Mann–
Whitney U or t-test (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001). (f) The differences in the expression of effector genes of several anticancer
TIICs (including CD8+ T cells, NK cells, macrophages, Th1 cells, and dendritic cells) between AI subtypes.
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molecular subtypes (Figure 7(d)). These results were
validated in external testing cohorts (Figure S7C and D).
Besides, we also explored the role of AI score in identifying
different classic molecular subtypes, in line with the results
mentioned above, basal-subtype showed the highest AI
score, while luminal subtypes showed the lowest AI score
(Figure S6B). Collectively, AI score could reflect the
potential biological characteristics of the rare molecular
subtypes, which cover the shortage of the binary molecular
subtype system.

Molecular subtype of BLCA can also predict the thera-
peutic response of multiple treatment opportunities, includ-
ing chemotherapy and radiotherapy [53]. Basal-subtype
tumors were considered benefit more from neoadjuvant che-
motherapy. As expected, basal-subtype signatures (including
mutation rates of RB1, ERBB2, and FANCC) were signifi-
cantly higher in the high AI score (Figure 7(e)). Besides, high
AI score subtype indicated a significantly higher response to

several therapeutic opportunities basing on the results from
the DrugBank database (Figure 7(c)). For example, high AI
score subtype showed more sensitive reaction to chemothera-
peutic drugs, including cisplatin, paclitaxel, gemcitabine, doce-
taxel, etoposide, camptothecin, and bleomycin (Figure 7(d)).
In general, treatment options including ERBB therapy, ICB
therapy, and chemotherapy (neoadjuvant or adjuvant) can
be used for the patients in the high AI score subtype.

In contrast, low AI score subtype showed more similarity
with the luminal-subtype (Figure 7(a)). As a reason, ICB ther-
apy, radiotherapy, and chemotherapy may all unsuitable for
patients in low AI score subtype. As mentioned above, low AI
score shapes an immune-cold tumor in BLCA; therefore, tar-
geted therapy blocking immunosuppressive oncogenic path-
ways can be used for the treatment of patients in low AI score
subtype (Figure S8A-D). On the other hand, we demonstrated
that patients in low AI score subtype may benefit more from
antiangiogenic therapy (Figure S8C, Figure S8B, and D).
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Figure 7: AI clusters predicted classical molecular subtypes and therapeutic opportunities in the TCGA-BLCA cohort. (a, b) The
correlations between AI clusters and seven classical molecular subtype classifications. (c) The correlations between the AI cluster and the
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4. Discussion

We developed a deep learning procedure to integrate infor-
mation from both WSI and genomic characteristics into a
single framework to predict outcomes. The prognostic accu-
racy of our approach was systematically evaluated based on
gene expression, functional enrichment analysis, molecular
characteristics, TME, and clinical parameters. Remarkably,
we were able to achieve almost a 1.0 AUC for detecting the
classification of MIBC molecular subtypes. In addition, rere-
cognition of WSI based on machine learning confirmed the
predictive ability of WSI subtypes. Further analysis demon-
strated thatWSI subtype was characterized by distinctive muta-
tions, mRNA expression profiles, tumor microenvironment,
composition of tumor-infiltrating immune cells, and cancer-
immunity cycle. These findings suggest that molecular-
targeted therapy with cytokine and/or chemokine antagonists
works well in patients in C0. Besides, combined therapeutic
opportunities of antiangiogenic therapy and ICB therapy may
improve outcomes of patients in C1, while patients in subtype
C2 may benefit more from chemotherapy.

Then, we further developed an AI score to quantify the
WSI clusters. First, we confirmed that high AI score shaped
an immune-hot tumor in BLCA basing on the positive cor-
relation between AI score and immunological status of
tumor microenvironment. On the other hand, we demon-
strated that AI score could predict the therapeutic response
of ICB, chemotherapy, radiotherapy, and targeted therapy.

A rapidly growing number of works are now trying to
obtain clinically information, such as molecular characteris-
tics or tumor microenvironment information, from tradi-
tional histopathological morphology using complex deep
learning algorithms [11, 13, 23]. However, although results
are encouraging, there are still some vital discussion points,
including that performance measurement reports are often
incomplete and lack a method to elucidate how deep learn-
ing algorithms reach their decisions. So far, the accuracy of
BLCA molecular subtypes has not attained a satisfactory
level for further clinical application, even though in binary
classification models [54]. In this study, two deep learning
methods were applied including neural networks and convo-
lutional, combining these two techniques to establish a
model that is applicable to different size images and may
suitable for the digital pathology workflow assessment of
BLCA tumor samples. In addition, combining recent deep
learning algorithm with transfer learning-based approaches
achieves an AUC of almost 1.0. Lastly, we built CAM and
“reverse-engineered” the histomorphological criteria most
related to our deep learning model to construct specific
BLCA molecular subtypes [55]. Collectively, we confirmed
specific histomorphological characteristics responsible for
different BLCA subtypes.

TME has been proved to be associated with prognosis in
BLCA [24]. TME not only interacts with tumor cells to ben-
efit them to proliferate and keep them from metastasis and
apoptosis but also plays a crucial role in therapeutic oppor-
tunities predicting [25, 26]. In this study, the WSI clusters
and AI clusters (AI score) revealed various biological path-
ways of the TME in BLCA. Function enrichment analysis

demonstrated that DEGs between WSI clusters were signifi-
cantly enriched in immune-related pathways, such as cyto-
kine/chemokine signaling pathways. Besides, AI score was
positively associated with most of the immunomodulators,
such as CXCL1, CXCL2, and CXCR5, which were proved
vital for the TIICs infiltration. Meanwhile, the AI score was
positively correlated with the activities of several steps of
cancer immunity cycles, and multiple anticancer-related
TIICs, including CD8+ T cells and NK cells. In general, high
AI score (WSI cluster C1) indicated an immune-hot tumor
characterized by high potential anticancer immunity. A pre-
vious study has proved that an inflamed TME is more sensi-
tive to ICB [27]. Identically, in this research, we found that
the AI score was positively related to ICB-related signatures,
UCB-related genes, and TIS scores [56]. Besides, we revali-
dated these results in the IMvigor210 cohort [28]. Further-
more, we found that AI score was negatively correlated
with the incidence of ICB-related hyperprogression. Collec-
tively, AI score may be a potential predictor of ICB therapy
in BLCA.

In addition, AI score showed robust potential in predicting
multiple other therapeutic opportunities, including chemo-
therapy (neoadjuvant), targeted therapy, and radiotherapy.
High AI score subtype is more likely basal-subtype character-
ized by the higher basal differentiation. Consistently, in the
high AI score subtype, mutation rate of RB1 was significantly
higher, which indicated that the high AI score group (WSI
cluster C1) may be more sensitive to chemotherapy (neoadju-
vant). Meanwhile, the high AI score subtype (WSI cluster C1)
was demonstrated sensitive to ERBB therapy and radiother-
apy. In addition, different immune-related oncogenic path-
ways were enriched in high AI score subtype (WSI cluster
C1). Therefore, patients in high AI score subtype may benefit
more from targeting these pathways. A previous study proved
that these immune-inhibited oncogenic pathways may lead to
an inflamed TME [38]. In line with this, we found that the
high AI score shapes an immune-hot tumor and showed an
inflamed phenotype characterized by higher level of antican-
cer immunity infiltration, which indicated that high AI score
subtype (WSI cluster C1) may benefit more from ICB therapy.
In general, our deep learning model showed a robust ability to
accurately distinct classic molecular subtypes and guide preci-
sion therapy in the BLCA cohort.

Although ICB therapy is undoubtedly one of the most
effective immunotherapy strategies in BLCA potential thera-
peutic opportunities, there remain nonnegligible problems,
including growing adverse events, possible low response rate,
and inescapable acquired resistance. Researches have now
demonstrated that combination of antiangiogenesis therapy
and ICB therapy can not only reprogram the irresponsive
TME to an immune responsive microenvironment but also
enhance the anti-cancer effect [38]. Tian et al. [57] defined
good-prognosis angiogenesis (GPAGs) and poor-prognosis
angiogenesis genes (PPAGs). Among them, GPAGs are highly
relevant to cell-cell adhesion and proliferation of smoothmus-
cle cells, while PPAGs are mostly relevant to ECM decompo-
sition and hypoxia. In this study, C1 is characterized by
higher PPAGs and lower GPAGs, suggesting tumor angiogen-
esis was present in C1 (Figure 3(b)). In addition, our study on

23Journal of Oncology



angiogenesis signaling pathway demonstrated that C1 was
highly enriched in LOX MMP pathway, which partially
explained the relationship between angiogenesis and OS of
C1 (Figure 3(c)). At present, the combination between ICB
therapy and anti-VEGF antibodies (bevacizumab in combina-
tion with intravenous) [58], anti-VEGFR antibodies (ramucir-
umab in combination with pembrolizumab) [59], and VEGFR
TKI axitinib in combination with pembrolizumab) [60] tend
to show more clinical benefits than ICB therapy or antiangio-
genic therapy and homogenous combination therapy. In con-
clusion, we suggest that patients in C1 may respond better to
the use of antiangiogenic agents in combination with ICIs.

In clinical, whole-transcriptome sequencing data tend to
obtain difficultly because its higher cost. In addition, flow
cytometry is difficult to detect all infiltrated immune cells
and stromal cells in the TME, requiring complex protocols
and high-quality BLCA tissues. Therefore, we focus on
obtaining information about molecular subtypes and preci-
sion therapeutic opportunities of BLCA in a more
convenient way. We demonstrate how AI can propose a
convolutional neural network-based strategy by recognizing
features in pathological images. The development of cheaper
and more powerful techniques has made it possible to train
larger and more complex neural networks.

5. Conclusion

We developed and validated a robust pathological image-
based deep learning model to identify three reproducible
WSI subtypes of BLCA, which shows reliable generalizability
to predict the clinical outcomes of BLCA patients. Deep
learning rerecognition supports our analysis of TME. The
AI score was conducted to quantify WSI clusters, identify
distinct classic BLCA molecular subtypes, and stratify preci-
sion therapeutic opportunities in BLCA. Besides, we found
that AI score shapes an immune-hot tumor in BLCA and
is able to predict response to ICB therapy and the potential
BLCA molecular subtype.
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Supplementary Materials

Figure S1: differential expression analysis and functional
analysis of WSI clusters. The left parts show differential
expression analysis in WSI clusters; the middle parts show
GO analysis based on the separate DEGs between WSI clus-
ters; and the right parts show KEGG analysis based on the
separate DEGs between WSI clusters. (A) 530 DEGs was
found in C0 vs. C1. (B) 497 DEGs was found in C0 vs. C2.
(C) 342 DEGs was found in C1 vs. C2. Figure S2: immune
characterization and mutation of WSI cluster. (A) Immuno-
phenoscore (IPS) across the WSI clusters. (B, C) Immune
cell infiltration in WSI cluster using Xcell algorithm. (D)
Mutation profile of WSI cluster in BLCA main dysregulated
pathways. (E) Cox regression analysis of immune check-
points in WSI clusters. Figure S3: construction and valida-
tion of AI cluster. The workflow of constructing AI clusters
and the AI score. Figure S4: functional analyses of AI clus-
ters. (A) The differences in hallmark pathways between the
AI cluster. (B) The differences in oncogenic pathways
between the AI clusters. (C, D) The differences in mutational
profiles between AI clusters. Figure S5: the differences in GO
and KEGG pathways between AI clusters. (A) GO enrich-
ment of the DEGs between AI clusters shows the activation
status of biological pathways in different AI cluster. (B)
KEGG pathway enrichment based on the DEGs between
AI clusters. The blue bar shows the enrichment analysis
results based on down-regulated genes in high AI score sub-
type, representing the negative correlated biological pro-
cesses and KEGG pathways with the high AI scores, while
the red bar shows the enrichment analysis results based on
upregulated genes in high AI score subtype, representing
the positive correlated biological processes and KEGG path-
ways with the high AI scores. Figure S6: (A) the proportions
of every subgroup in seven classic subtype systems. (B) The
distribution of AI score among different subgroups in all
molecular subtype systems. Figure S7: AI score predicted
classical molecular subtypes in two external validation BLCA
cohorts. (A) The correlations between AI score and seven
classical molecular subtype classifications in the GEO BLCA
cohorts (GSE48075 and GSE32894). (B) ROC curves showed
the accuracy of the AI score in predicting seven classical
molecular subtypes in the GEO BLCA cohorts. (C) The cor-
relations between AI score and seven classical molecular
subtype classifications in the E-MTAB-4321 cohort. (D)
ROC curves showed the accuracy of AI score in predicting
seven classical molecular subtypes in the E-MTAB-4321
cohort. Figure S8: AI score predicted therapeutic opportuni-
ties in two external validation BLCA cohorts. (A, C) The
correlations between AI score and the BLCA-related drug-
target genes were screened from the DrugBank database;
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the upper part shows the correlation between AI score and
the E-MTAB-4321 cohort; the lower part shows the correla-
tion between AI score and the GEO BLCA cohorts
(GSE48075 and GSE32894). (B, D) The correlations between
AI score and the enrichment scores of several therapeutic
signatures, such as targeted therapy and radiotherapy, in
the E-MTAB-4321 cohort. Figure S9: AI score correlated
with immune phenotypes and ICB response in the GEO
BLCA cohorts (GSE48075, GSE32894). (A) Survival analysis
of AI score clusters. (B) The differences in 122 immunomod-
ulators between AI score clusters. (C) The differences in the
expression of effector genes of five anticancer TIICs (includ-
ing CD8+ T cells, NK cells, macrophages, Th1 cells, and
dendritic cells) between the AI score clusters. (D) The corre-
lations between AI score and TIS. (E) The lower left part
shows the correlations between AI score and the expression
of 22 immune checkpoints; the upper right part shows the
correlations between AI score and the enrichment scores of
positive ICB response-related signatures. Figure S10: AI
score correlated with immune phenotypes and ICB response
in the E-MTAB-4321 cohort. (A) Survival analysis of AI
score clusters. (B) The differences in 122 immunomodula-
tors between AI score clusters. (C) The differences in the
expression of effector genes of five anticancer TIICs
(including CD8+ T cells, NK cells, macrophages, Th1 cells,
and dendritic cells) between AI score clusters. (D) The cor-
relations between AI score and TIS. (E) The lower left part
shows the correlations between AI score and the expression
of 22 immune checkpoints; the upper right part shows the
correlations between AI score and the enrichment scores of
positive ICB response-related signatures. Figure S11: Pan-
cancer analyses of the AI score and AI gene signature. (A)
The prognostic analyses of AI score across cancers using a
univariate Cox regression model. A hazard ratio > 1 indi-
cated a risk factor, and a hazard ratio < 1 represented a
protective factor. (B) Correlations between AI score and
potential immune checkpoints. (C) The correlations
between AI score and TMB in all cancers. (G) The correla-
tions between AI score and MSI across cancers. The asterisks
indicate a significant statistical p-value calculated with
Spearman correlation analysis (∗P < 0:05, ∗∗P < 0:01, and
∗∗∗P < 0:001). Figure S12: identification of AI score candi-
date member. (A) LASSO coefficient profiles of 802 prog-
nostic DEGs between WSI clusters. The coefficient profile
plot was developed against the log (lambda) sequence. (B)
Cross-validation for turning parameter selection via mini-
mum criteria in the LASSO regression model. Two dotted
vertical lines were plotted at the optimal values using the
minimum criteria. Optimal RNAs with the best discrimina-
tive capability (28 in number) were selected for developing
the AI score. Figure S13: Survival analysis of binary classifi-
cation model identified by deep learning procedure. Mini
batch K-means, hierarchical clustering, and Gaussian mix-
ture mode (GMM) were, respectively, conducted for cluster-
ing (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001). Figure S14:
survival analysis of triple-classification model identified by
deep learning procedure. Mini batch K-means, hierarchical
clustering, and Gaussian mixture mode (GMM) were,
respectively, conducted for clustering. The model marked

by red rectangle was selected to develop WSI cluster
(∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001). Figure S15:
survival analysis of four-classification model identified by
deep learning procedure. Mini batch K-means, hierarchical
clustering, and Gaussian mixture mode (GMM) were,
respectively, conducted for clustering (∗P < 0:05, ∗∗P < 0:01,
and ∗∗∗P < 0:001). Figure S16: survival analysis of five-
classification model identified by deep learning procedure.
Mini batch K-means, hierarchical clustering, and Gaussian
mixture mode (GMM) were, respectively, conducted for clus-
tering (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001). Figure S17:
survival analysis of seven-classification model identified by
deep learning procedure. Mini batch K-means, hierarchical
clustering, and Gaussian mixture mode (GMM) were, respec-
tively, conducted for clustering (∗P < 0:05, ∗∗P < 0:01, and
∗∗∗P < 0:001). Table S1: univariable and multivariable analy-
ses for overall survival in patients with BLCA. Table S2:
clinicopathological characteristics of patients with BLCA in
TCGA. Table S3: performance of patch classification models.
Table S4: ablation experiments of 3-year prediction features.
(Supplementary Materials)
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