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Peptidyl arginine deiminase 1 (PADI1) catalyzes protein citrullination and has a role in regulating immune responses. Te tumor
immunemicroenvironment has been reported to be important in colorectal cancer (CRC), which was correlated with the ability of
CRC patients to beneft from immunotherapy. However, there is a lack of molecular markers for matching CRC immunotherapy.
Previously, single-gene risk models have only considered the efect of individual genes on intrinsic tumor properties, ignoring the
role of genes and their co-expressed genes as a whole. In this study, we analyzed the diferential expression of PADI1 in colorectal
cancer (CRC). We found that PADI1 was highly expressed in CRC. Subgroup survival analysis revealed a prognostic survival
diference for PADI1 in CRC patients aged less than 65 years, male, T stage, N0, M0, and stage I-II (p< 0.05). In addition, we
analyzed the functions and signaling pathways associated with PADI1 in CRC and found that it was highly enriched in several
immune-related functions and pathways. Ten, a set of PADI1 co-expressed genes (PCGs) risk-prognosis scores was developed
with PADI1 as the core, which could accurately predict the prognosis of CRC (p< 0.05). PCGs risk score can be an independent
prognostic factor for CRC. A new set of Norman plot models were developed for clinical characteristics with age, sex, and TNM
stage, which can accurately predict CRC 1, 3, and 5 years survival, and calibration curves and decision curve analysis (DCA)
validated the accuracy of the models. Te risk score assessed the immune microenvironment of CRC and found that the immune
score was higher in the low-risk group, and CD4+ T cells, helper T cells, and eosinophils were more infltrated in the low-risk
group (p< 0.05). Immunotherapy efcacy was better in the low-risk group (p< 0.05). Te underlying mechanism may be that the
high-risk group of PCGs was enriched in some pathways that promote immune escape and immune dysfunction. In conclusion,
PCGs may better predict CRC prognosis and immunotherapeutic response.

1. Introduction

Colorectal cancer (CRC) is the second leading cause of death
from cancer worldwide, accounting for approximately 10% of
all cancer diagnoses and cancer-related deaths worldwide [1].
Its age of onset is advancing each year [2]. Colorectal cancer
can usually be cured by surgery in the early stages of the
disease, with a 5 years relative survival rate of about 90% [3].
Still, once colorectal cancer progresses to the middle and late
stages, its 5 years survival rate is less than 50%, and the key to
a good prognosis is early diagnosis [4]. Once colorectal cancer
is diagnosed, the preferred treatment is still surgical resection

and a postoperative combination of chemotherapy, radio-
therapy, antiangiogenic therapy, immunotherapy, etc., but
drug resistance still inevitably occurs [5–8]. Terefore, it is
essential to understand the mechanism of colorectal cancer,
fnd new tumor markers, and develop new targeted drugs to
detect colorectal cancer more accurately, which has important
research prospects and clinical signifcance.

PADI1, peptidyl arginine deiminase 1, is a calcium-
dependent cysteine hydrolase that can mediate the cit-
rullination of post-translational proteins [9]. It is a member
of the PADs family and its primary function is to catalyze the
conversion of arginine residues to citrulline residues in post-
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translational proteins [10]. A close association with the
progression of oral mucosal cancer, breast cancer, and
pancreatic ductal carcinoma has been reported in several
publications but not in colorectal cancer [11–13]. In the
subsequent studies, where genes regulate cellular traits in the
form of networks, single-gene studies do not reveal the
intrinsic properties of cancer more accurately, and a system
consisting of a combination of the target gene and its co-
expressed genes is required better to predict the biological
properties of tumors and survival prognosis [14, 15].

In this study, we frst investigated the expression of
PADI1 in CRC and its impact on CRC survival prognosis
and analyzed the function and enriched signaling pathways
of PADI1 in CRC. Te PADI1-relatedco-expression gene
network was mapped, and a risk-prognosis model was de-
veloped. By using this model, diferences in immune mi-
croenvironment status of CRC and diferences in the efcacy
of immunotherapy could be accurately predicted.

2. Materials and Methods

2.1. Pan-Cancer Expression and Survival Analysis of PADI1.
TIMER is a web tool created by Harvard University’s
Professor of Immunoinformatics, TIMER (Tumor Immune
Estimation Resource), at https://cistrome.shinyapps.io/
timer/. UALCAN is a comprehensive, user-friendly, and
interactive web resource for analyzing cancer OMICS data.
We entered the gene name “PADI1” in UACALN and se-
lected “COAD” and “READ” for tumor type to observe the
expression of PADI1 in colorectal cancer. Te diference in
PADI1 expression in colorectal cancer was observed.

2.2. Analysis of Gene Ontology and Kyoto Encyclopedia of
Genes and Gene Sets. We performed the diferential analysis
of the PADI1 high and low expression groups defned in the
previous PADI1 survival analysis by selecting |logFC|
> 0.585, p< 0.05, to obtain diferential genes, including 69
upregulated genes and 128 downregulated genes. Te mo-
lecular function (MF), biological process (BP), and cyto-
logical components (CC) of the diferential genes were
analyzed using the “clusterProfler” in the R package.
Components (CC) and KEGG pathway analysis.

2.3. Gene Co-Expression Analysis. Enter the search term
“PADI1” in “Protein Name” on the STRING website, and
select “Homo sapiens” for “Organization.” A total of 200
proteins interacting with PADI1 were identifed. By using
Cytoscape software, we analyzed the protein interactions
with diferent color lines and formed a visual graph.

2.4. Construction and Validation of PCGs Risk Model.
Tree independent co-expressed genes were integrated,
resulting in 237 co-expressed genes. After univariate Cox
regression analysis, we used the R package “caret” to open
a prognostic model for colorectal cancer with ten gene
signatures by least absolute shrinkage and selection operator
(LASSO) regression, and the formula of the risk score model

was established as follows: risk score� 􏽐(βi ∗ Expi). i index
represented the signifcant prognostic genes analyzed by
Lasso regression. βi represents the beta coefcient of
these genes.

2.5. Plotting of Norman Diagrams. Cox univariate and
multivariate regression analysis of PCGs was performedwith
the “survival” R package. Age, sex, PCGs, and clinical stage
were included as variables, and the prognostic model was
constructed by using the R package “rms.”

2.6. Te Relationship between the Construction of the CRC
Immune Landscape and Risk Scores. Bioinformatics analysis
based on transcriptomic data, several reliable algorithms have
been established to quantify the relative proportions of im-
mune swelling cells in individual samples, including ESTI-
MATE and cell classifcation methods [16]. In the present
study, we calculated and compared the content of immune
swelling cells between the high-risk and low-risk groups.
Briefy, estimation allowed us to calculate the immune score
and estimated score for each patient. We also assessed the
correlation between risk score and immune swelling cells
using Spearman’s correlation analysis. Finally, we measured
the CIBERSORT to measure 22 immune cells in tissues, in-
cluding seven T cell types, naive B cells and memory B cells,
plasma cells, NK cells, and myeloid subpopulations [17].

2.7.TeRelationship between Risk Score and Immunotherapy.
TeTCIA database was developed mainly based on the next-
generation sequencing data from TCGA. Each patient is
analyzed separately. ID, disease, gender, and age in-
formation, we focus on the information in the IPS column.
Te IPS (immunophenoscore) column has four items with
diferent attributes that can be good predictors of CTLA-4
and PD-1 responsiveness [18]. Te tumor immune dys-
function and exclusion (TIDE) algorithm models other
tumor immune escape mechanisms, including tumor-
infltrating cytotoxic T lymphocyte (CTL) dysfunction
and immunosuppressive factor exclusion of CTL [19]. A
higher TIDE score indicates that tumor cells are more likely
to induce immune escape, thus indicating a lower response
rate to ICI therapy.

2.8. Gene Set Enrichment Analysis. Gene set enrichment
analysis (GSEA) was performed on risk genes to obtain this
model’s HALLMARK and KEGG pathways for MsigDB
(c2.cp.kegg.v7.5.1.symbols.GMT; h.all.v7.5.1.symbols.GMT).
Te genes expressed between the high- and low-risk cate-
gories were studied for gene set enrichment.Te alignment of
this gene set was tested 1000 times to demonstrate its ability to
sustain function.

3. Results

3.1. PADI1 Expression Levels and Survival Prognosis in CRC.
We frst observed the diference in mRNA expression levels
of PADI1 in pan-cancer, and the TIMER database showed
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that PADI1 was expressed at high and at low to medium
levels (Figure 1(a)). Next, we looked at the expression of
PADI1 in COAD and READ on the UACLAN website,
respectively. Te results showed that PADI1 expression was
higher in cancer tissues than in paraneoplastic tissues in
COAD and READ (p< 0.05, Figures 1(b)–1(c)). To further
clarify the survival prognosis diferences of PADI1 in dif-
ferent clinical features of CRC, we observed the survival
diferences of PADI1 by six clinical features, namely, age,
gender, tumor size, lymph node metastasis, distant metas-
tasis, and TNM stage, respectively (Figure 2).

3.2. GO and KEGG Analysis of PADI1. Tere were 96 dif-
ferential genes in the PADI1 high and low expression groups
(|logFC|> 0.5, p< 0.05), including 80 upregulated genes and
80 downregulated genes. GO analysis showed that difer-
ential genes were mainly enriched in BP for functions such
as epithelial cell diferentiation and keratinization, CC for
extracellular matrix remodeling and signaling receptor ac-
tivation, and MF for cell membrane fxation components
(Figure 3(a)). KEGG pathway analysis showed that the
diferential genes were enriched in several functions that
promote intercellular interactions, extracellular matrix re-
ceptor interactions, and PI3K-AKT signaling pathway
(Figure 3(b)).

3.3. Co-Expression Network Construction of PADI1. Te top
50 genes co-expressed with PADI1 were selected
(Figure 4(a)). Next, the top 20 genes that interacted most
closely with PADI1 were further mapped using Cytoscape
software (Figure 4(b)). Te GenneMANIA website further
predicted the specifc interactions of PADI1 with some genes
with physical binding, co-expression, etc., (Figure 4(c)). Fi-
nally, we used the colorectal cancer microarray in the TCGA
database to map 11 genes in which PADI1 was associated
(p< 0.05, Figure 4(d)).Te abovementioned results reveal the
core value of PADI1 in the cancer regulatory network.

3.4. Construction and Validation of a Risk Score for PADI1
Co-expression Genes. We conducted a univariate Cox re-
gression analysis using a total of 30 genes co-expressed with
CRC prognosis. Subsequently, we extracted 13 PCGs ob-
tained from Lasso regression analysis. A prognostic model of
CRC risk with PADI1-associated gene (PCGs) signature was
constructed, and the CRC cohort in TCGA was randomly
divided into two cohorts in the ratio of 7 : 3, the training
cohort and the internal validation cohort, and GSE39582
was used as the external validation cohort. In both the
training cohort and the internal validation cohort, a higher
proportion of high-risk patients died, while a higher pro-
portion of low-risk patients survived long-term (p< 0.05,
Figures 5(a)-5(b)). As shown in Figures 5(c)–5(f ). Tese
samples were risk scored and ranked to determine whether
expression levels varied systematically with a risk score. Te
results of the ROC curves are shown in Figures 5(f)-5(g),
with prognostic predicted AUC of 0.726, 0.719, and 0.765 for
the training cohort at 1, 3, and 5 years, respectively; and

predicted AUCs of 0.655, 0.618, and 0.818 (Figures 5(g)-
5(h)), indicating that the model has a good predictive efect.
Te established prognostic features were then further vali-
dated using GSE39582 as an external validation cohort. Te
results showed that the Kaplan–Meier survival curve showed
a worse prognosis in the high-risk group than in the low-risk
group (p< 0.05, Supplementary Figure 3A), and the pro-
portion of risk varied with increasing risk score (Supple-
mentary Figure 3B-3C), and the area under the ROC curve
showed AUC of 0.628, 0.661, and 0.648 at 1, 3, and 5 years,
respectively (Supplementary Figure 3D).

3.5.EstablishmentofNormanDiagrams forPCGs. To validate
these candidate prognostic genes as independent bio-
markers, univariate and multivariate Cox regression ana-
lyses were used to assess whether the predicted value was an
independent prognostic factor (Figures 6(a)-6(b)). Te risk
scores of age and stage combined were selected to construct
the Nomogram model, as shown in Figure 6(c). Te cor-
rected plots of the Nomogram (Figure 6(d)) show better
agreement between the predicted OS results and the actual
observations, indicating the good predictive performance of
the PCGs prognostic model. Te results show that age,
gender, stage, and risk score prognostic characteristics in-
corporated in the model.

3.6. PCGs Were Highly Expressed in the Immune
Microenvironment. Immune scores were higher in the low-
risk group than in the high-risk group, with no diference in
stromal scores (Figure 7(a)). Tere was a positive correlation
with M0 macrophages and a negative correlation with CD4+
T cells, plasma cells, eosinophils, dendritic cells, and helper
T cells (Figure 7(b)). CD4+ T cells were more abundantly
infltrated in the low-expression group, and Treg cells and
M0 macrophages were more abundantly implanted in the
high-risk group (Figure 7(c)).

3.7. Correlation of PCGs with Immune Checkpoints and
Chemokines. To clarify the correlation of genes in PCGs
with immune checkpoints, we correlated PADI1 and co-
expressed genes with 47 immune checkpoints and 42 che-
mokines. Te results were presented as heat maps, which
showed that PADI1, MUC12 and CRACR2B were negatively
correlated with immune checkpoints overall, CA2, CLDN23,
EDEM1 ITLN1, PNRC1, SPINK4 and TDRD7 were posi-
tively correlated with immune checkpoints (Figure 8(a));
PADI1, MUC12 and CRACR2B were negatively correlated
with chemokines in general, and CA2, CLDN23, EDEM1,
ITLN1, PNRC1, SPINK4 and TDRD7 were positively cor-
related with chemokines in general (Figure 8(b)).

3.8. Relationship between PCGs Risk Scores and
Immunotherapy. Next, we further analyzed the relationship
between IPS scores and risk scores, and Figures 9(a)–9(d)
show that the overall IPS scores were higher in the low-risk
group than in the high-risk group (p< 0.05, Figures 9(a)–
9(d)). Te TIDE algorithm assessed the immunodefciency,
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immune escape, MSI and TIDE scores of CRC, and the
results showed that the immunodefciency and immune
escape ability of the low-risk group were lower than those of
the high-risk group; Te MSI level was higher than that of
the high-risk group; and the TIDE score was lower than that
of the low-risk group p< 0.05, Figures 9(e)–9(h)). Te
abovementioned results indicated that the immunotherapy
efcacy was better in the low-risk group than in the high-risk
group in the risk score constructed by PCGs.

3.9. Identifcation of PCGs Risk Scores for Functional En-
richment Analysis. GSEA was employed to identify the
pathways enriched in the HALLMARK and KEGG data-
bases, showing the top fve pathways in the NES score. Te
top fve signaling pathways in the high-risk group in the
KEGG database were mainly pathways for intercellular
interactions, and the low-risk group was mainly enriched in
some molecular metabolic pathways (Figures 10(a)–10(b));
the top fve pathways in the high-risk group in the
HALLMARK database were the top fve pathways in the
high-risk group in the HALLMARK database were angio-
genesis, epithelial-mesenchymal transition, KRAS, and
WNT signaling pathways; the low-risk group was enriched
in cell cycle molecules and oxidative phosphorylation
pathways (Figures 10(c)–10(d)).

4. Discussion

Tere is growing evidence linking the PADs family to
carcinogenesis and tumor immune tolerance [20]. However,
apart from a previous study that identifed PAD1 as an EMT
that can regulate TNBC and is a biomarker for early oral
squamous carcinoma, no studies have been conducted to
correlate the tumorigenic potential of PAD1 [12]. Previous
studies have always studied single genes as a starting point
but ignored the related regulatory role between gene-gene
[21, 22].Tis study was the frst to integrate single genes with
their co-expressed genes to develop a CRC risk prediction
model for PCGs.

To expand our understanding of the role of PAD1 in
CRC, we evaluated the expression of TCGA in colorectal
cancer. We showed that PAD1 expression was upregulated
in colorectal cancer patients and positively correlated with
CRC. We mapped co-expression regulatory networks
(PCGs) with PADI1 as the core. We used these co-
expressed genes to construct a risk prediction model for
CRC. the model constructed by PCGs has the value of
predicting CRC prognosis. Te constructed Norman dia-
gram can better predict CRC 1, 3, and 5 years survival rates
than TNM staging. Moreover, there is a relationship be-
tween PCGs and CRC immune microenvironment. Indeed,
the immune score was higher in the low-risk group of
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Figure 1: (a) Diferential expression of PADI1 in pan-cancer; (b) PADI1 expression was higher in rectal cancer tissues than in normal
tissues; and (c) PADI1 expression was higher in colon cancer than in normal tissues.
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Figure 2: Continued.
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PCGs, which may be related to the fact that PADI1 has been
reported to have an immunosuppressive function, an
ability that the tumor may exploit to promote its ability to
escape immune cells. Te abundance of immune cell in-
fltration calculated from CIBSORT showed that PADI1
was negatively correlated with CD4+ T cells, plasma cells,
and helper T cells and that CD4+ T cell infltration was less
in the low-risk group. In contrast, Tregs cell infltration was
more abundant. Nine genes in the PCGs model correlated
with PADI1, so we looked at these genes separately con-
cerning the immune. We, therefore, performed an analysis
of the relationship between these genes and immune
checkpoints and chemokines separately, which contains
both positive and negative correlations, precisely due to the

complexity of the PADI1 regulatory network. Finally, we
evaluated the relationship between PCGs risk scores and
IPS and TIDE. Both immunotherapy predictions suggested
better efcacy in the low-risk group than in the high-risk
group. Tis indicates that PADI1 and its co-expressed
genes may serve as new markers for clinical immuno-
therapy and improve clinicians’ predictions for CRC im-
munotherapy. In exploring the mechanisms associated
with poor prognosis and poor immunotherapy in the high-
risk group of PCGs, we found extracellular matrix
remodeling, PPAR signaling pathway, angiogenic signaling
pathway, EMT signaling pathway, KRAS signaling path-
way, and WNT signaling pathway were highly enriched
[23–25]. Tese pathways were reported to have
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a relationship with the immune escape of tumors. It is
suggested that low-risk patients are immunogenetically
“hot” tumors and high-risk patients are immunogenetically
“cold” tumors [26].

PAD gene family is all located on the short arm of human
chromosome 1, region 3, band 6 (1p36), in a highly clustered
gene cluster, hence, the name PADI. Interestingly, this locus
is expected to contain a novel, as yet undefned, protein
associated with tumorigenesis. In recent years, PADs-
mediated protein guanylation has received much attention
due to its diference from traditional phosphorylation and
acetylation modifcations [27]. For example, PADI2 and
PADI4 can catalyze the guanylation of histones H3 and H4
at the gene promoter, leading to local alterations in chro-
matin structure and regulation of tumor-associated gene
transcription in human breast cancer cells. Following

PADI1-mediated guanylation, the loss of charge on target
protein substrates is thought to lead to the breakdown of
cytokeratin-polyserin complexes and protein degradation of
these target proteins [20]. Apart from its role in epidermal
function, we are poorly informed about the potential
functions of PADI1 in other physiological or pathological
activities.

Despite the merits of the PCGs signature, our study has
some limitations that need to be addressed. First, due to the
retrospective nature of this study, our views should be
interpreted with caution. Second, sampling bias may be
unavoidable due to genetic heterogeneity within tumors.
Tird, although we validated the predictive value of the new
signature for prognosis, immune cell infltration, and
treatment response using various methods, external vali-
dation is needed for other independent CRC cohorts.
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5. Conclusions

Genes from PADI1-related co-expression as a newly de-
veloped signature show great potential as prognostic bio-
markers and immunotherapy predictors in colorectal cancer
patients. Prospective studies are essential to further validate
the predictive accuracy of this signature before applying it to
the individualized management of CRC in a clinical setting.
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Figure 10: GSEA of high- and low-risk samples based on the prognostic index of PCGs signature. (a) Enriched genomes in the KEGG set for
high-risk samples. Each line represents a specifc genome in a unique color, with upregulated genes located to the left near the origin of the
coordinates, compared to downregulated genes located to the right of the x-axis. Only genomes with NOM p< 0.05 and FDR q< 0.05 were
considered signifcant, and only the fve leading genomes are shown in the fgure. (b) Genomes enriched in KEGG with low-risk group
samples, and only 5 leading genomes are shown in the fgure. Only 5 leading genomes are shown in the fgure. (c) Gene sets are enriched in
the HALLMARK collection by high-risk samples. Only the 5 leading genomes are shown in the fgure. (d) Gene sets are enriched by low-risk
samples in the HALLMARK set. Only the 5 leading genomes are shown in the fgure.
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