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Background. Oxidative stress (OS) reactions are closely related to the development and progression of bladder cancer (BCa). This
project aimed to identify new potential biomarkers to predict the prognosis of BCa and improve immunotherapy. Methods. We
downloaded transcriptomic information and clinical data on BCa from The Cancer Genome Atlas (TCGA). Screening for OS
genes was statistically different between tumor and adjacent normal tissue. A coexpression analysis between lncRNAs and
differentially expressed OS genes was performed to identify OS-related lncRNAs. Then, differentially expressed oxidative stress
lncRNAs (DEOSlncRNAs) between tumors and normal tissues were identified. Univariate/multivariate Cox regression analysis
was performed to select the lncRNAs for risk assessment. LASSO analysis was conducted to establish a prognostic model. The
prognostic risk model could accurately predict BCa patient prognosis and reveal a close correlation with clinicopathological
features. We analyzed the principal component analysis (PCA), immune microenvironment, and half-maximal inhibitory
concentration (IC50) in the risk groups. Results. We constructed a model containing eight DEOSlncRNAs (AC021321.1,
AC068196.1, AC008750.1, SETBP1-DT, AL590617.2, THUMPD3-AS1, AC112721.1, and NR4A1AS). The prognostic risk
model showed better results in predicting the prognosis of BCa patients and was strongly correlated with clinicopathological
characteristics. We found great agreement between the calibration plots and prognostic predictions in this model. The areas
under the receiver operating characteristic (ROC) curve (AUCs) at 1, 3, and 5 years were 0.792, 0.804, and 0.843, respectively.
This model also showed good predictive ability regarding the tumor microenvironment and tumor mutation burden. In
addition, the high-risk group was more sensitive to eight therapeutic agents, and the low-risk group was more responsive to
five therapeutic agents. Sixteen immune checkpoints were significantly different between the two risk groups. Conclusion. Our
eight DEOSlncRNA risk models provide new insights into predicting prognosis and clinical progression in BCa patients.

1. Introduction

Bladder cancer (BCa) is a tumor growing in the mucosa of
the bladder and is one of the most prevalent urogenital
malignancies, ranking sixth among male-related cancers
[1]. In today’s clinical treatment, cystoscopy pathological
biopsy is the gold standard for detecting this highly hetero-
geneous cancer [2, 3]. BCa is categorized into two categories
based on tumor invasion in the bladder: nonmuscle-invasive

and muscle-invasive. Nonmuscle-invasive bladder cancer
(NMIBC) accounts for almost 70% of all newly diagnosed
BCa patients [4]. Tumor excision is the most common ther-
apy for NMIBC, followed by immunotherapy with intravesi-
cal BCG vaccine or intravesical chemotherapy [5]. The 5-
year survival rate of NMIBC patients accounts for about
90% of all BCa patients, with a postoperative recurrence risk
of 50% to 70% [6]. Nearly 25% of NMIBC patients eventu-
ally develop muscle-invasive bladder cancer (MIBC), which
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may be related to drug resistance [7]. Although the current
combination of surgical, radiotherapy, chemotherapy, and
targeted treatment regimens have extended overall patient
survival to some extent, the overall patient recurrence and
mortality rates of BCa are still high [5]. Due to the high het-
erogeneity of BCa, personalized medicine is an excellent
technique to increase therapy outcomes and patient progno-
sis. Personalized medicine necessitates a diverse set of
proven molecular biomarkers, including early diagnostic
and prognostic indicators that can assist doctors in identify-
ing patients in need of early aggressive therapy and predict-
ing patients’ responses to developing targeted medicines [8].
In the last several years, immunotherapy using immune
checkpoint inhibitors has been gradually utilized for treat-
ment and achieved some efficacy. This approach includes
anti-PD-L1 therapies, atezolizumab, avelumab, nivolumab,
and pembrolizumab, which are approved only in the metas-
tatic stage [9–11]. However, relatively few biomarkers are
used to evaluate immunotherapy’s efficacy in BCa. As a
result, new and precise efficacy assessments in BCa therapy
are urgently needed.

Oxidative stress (OS) was originally defined in 1985 as
a state of imbalance between oxidative and antioxidant
activities in the body that favors oxidation and leads to
inflammatory infiltration of neutrophils and increased
release of proteases. Production of numerous oxidative
intermediates in aging and disease development kick in
[12]. Free radicals generated by redox processes, such as
ROS and other compounds with unpaired electrons, can
damage DNA, proteins, and lipids, causing tissue damage
[13]. ROS can alter TGF-β1-induced ECM synthesis
through the p38MAPK/Akt signaling pathway [14]. The
ECM is an essential part of the tumor microenvironment,
and tumors can also control the ECM to induce ROS gen-
eration under pathological conditions. In normal tissues,
ROS may maintain a normal range with ECM, but under
pathological conditions, this standard range will be bro-
ken, and the underlying mechanism needs more explora-
tion to explain [15]. OS in cellular physiology is caused
by an imbalance between reactive oxygen species (ROS)
and antioxidant signaling. This shows that ROS is a criti-
cal component of the OS. There is abundant evidence that
the continuous production of ROS in the body can pro-
mote the survival of cancer cells [16, 17]. They can trigger
oncogenic signals, increase cell survival and proliferation,
and cause DNA damage and genetic instability. On the
other hand, as the tumor progresses, the level of ROS
gradually increases. When the level of ROS is higher than
the redox threshold of the tumor microenvironment, the
antitumor signal is generated, which starts to induce
tumor cell death and affects the relationship between
tumor and normal cells. The redox balance between ROS
suggests that ROS can also be a target for tumor therapy.
Thus, OS has a dual purpose in cancer cell physiology
[18–20]. Many lncRNAs may be regulated by OS during
carcinogenesis, and lncRNAs could modulate OS by
enhancing or inhibiting the oxidative/antioxidant system
[21]. ROS-related lncRNAs may not only act as direct bio-
markers to assist in differentiating patients with cancer but

also help clinicians monitor dynamic redox homeostasis
and assess the risk of developing cancers. Therefore, devel-
oping additional ROS-related lncRNA biomarkers is cru-
cial for the early diagnosis of cancers [21].

In recent years, the rise of big biological data mining
for patient prognosis has driven the rapid development
of personalized medicine [22]. Previous studies have ana-
lyzed OS genes and constructed prognostic models for var-
ious tumor types, including gastric cancer [23]. However,
most studies on traditional lncRNAs have been still in
their early stage. Therefore, it is imaginable that lncRNA-
based therapies in clinical studies were imminent [24].
Several lncRNAs associated with OS have been proven
essential to tumor initiation and progression [24]. lncRNA
MALAT1 increased ROS levels and promoted head and
neck squamous cell carcinoma metastasis [25]. Vascular
endothelial growth factor A (VEGFA) had worsened OS
and increased cancer development [26]. Another carcino-
genic lncRNA, LINC00173.v1, had been found to induce
angiogenesis and the development of lung squamous cell
carcinoma. In vivo studies showed that antisense oligonu-
cleotides specific for LINC00173.v1 had a better anticancer
effect and enhanced the sensitivity of lung squamous cell
carcinoma to cisplatin [27].

This research focused on exploring differentially
expressed oxidative stress lncRNAs (DEOSlncRNAs) in
BCa and assessed their prognostic significance. RNA-
sequencing and somatic mutation data in Bca patients were
obtained from The Cancer Genome Atlas (TCGA) database.
In this research, we identified eight OS-related lncRNAs to
construct the prognostic risk model, which could enhance
the prognostic prediction of BCa patients with various clin-
ical circumstances. We further analyzed the differences in
clinical characteristics and related prognoses through risk-
prognosis groupings, a nomogram, functional enrichment
analysis, tumor mutation burden analysis, and immune infil-
tration assessment. This model showed a foundation for fur-
ther investigation of immune mechanisms, new therapeutic
targets, and clinical agents.

2. Methods

2.1. Identification of Differentially Expressed OS-Related
lncRNAs. In total, we collected 807 OS genes from the
GeneCards database, and 172 differentially expressed OS
genes were identified using the “Limma” package in the R
project (log2|fold change (FC)|≥1.0, and p < 0:05) [28]. A
total of 14056 lncRNAs were abstracted from the TCGA
database. Furthermore, Pearson correlation analysis identified
a correlation analysis between 172 differentially expressed OS
genes and 14056 lncRNAs. A total of 1157 OS-related
lncRNAs (OSlncRNAs) were identified in BCa (|cor|>0.4,
p < 0:001). Finally, 720 differentially expressed OSlncRNAs
(DEOSlncRNAs) were attained by using the Limma pack-
age (log2|FC|≥1.0 and p < 0:05).

2.2. Construction of the Prognostic Signature. 396 BCa sam-
ples acquired from TCGA were randomly separated into a
training cohort and a test cohort in a 1 : 1 ratio to create a
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lncRNA-based signature. By univariate Cox analysis, we iden-
tified potential DEOSlncRNAs that showed great prognostic
value for BCa in the training cohort (p < 0:05). Then, we con-
ducted a LASSO regression analysis to remove the overfitting
variables. Subsequently, a DEOSlncRNA signature was further

generated using multivariate Cox regression to analyze the
hazard ratios of potential lncRNAs. The risk of
DEOSlncRNA signature = exp ðDEOSlncRNAsÞ × β, where
β is the coefficient of each candidate DEOSlncRNA from the
multivariate Cox analysis.

720 diff-oxidate stress lncRNAs

Univariate cox regression (p<0.05)

Immune
microenvironment

DNA
mutation

GO and KEGG
enrichment analysis

Drug
sensitivity

Clinic correlation and 
nomogram

TCGA database
807 oxidative stress gene 
from genecards dataset

14056 lncRNAs 172 diff-oxidate stress gene

Pearson correlation analysis (cor>0.4 or cor<–0.4, p<0.001)

LASSO regression analysis
to construct risk model 

Multivariate cox regression

1157 oxidate stress lncRNAsEntire set (N=396)

Test set (N=196) Train set (N=200)

Internal validation

BLCA clinical information in TCGA

Figure 1: Study design and flowchart of this study.
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Figure 2: The volcano plot of differentially expressed oxidative stress related genes and lncRNAs. (a) The volcano plot of 172 differentially
expressed oxidative stress genes extracted from GeneCards database. (b) The volcano plot of 720 differentially expressed oxidative stress-
related lncRNAs (DEOSlncRNAs).
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Figure 3: Construction of the prognostic risk model. (a) The LASSO coefficient profile of 8 differential oxidative stress lncRNAs. (b) The 10-
fold cross-validation for variable selection in the LASSO regression. (c) PCA plot of risk score based on the expression profiles of all genes.
(d) PCA plot of oxidative stress genes. (e) PCA plot of oxidative stress prognostic risk-related lncRNAs. (f–h) Kaplan–Meier curves of
progression free survival between the high-risk and low-risk groups in the entire, test, and training sets. (i–k) Kaplan–Meier curves of
disease-specific survival between the high-risk and low-risk groups in the entire, test, and training sets.
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The lncRNA-mRNA coexpression network was used to
display OS-related lncRNAs and their corresponding
mRNAs in risk models. Cytoscape software (version 3.7.2)
was utilized to visualize coexpression networks. By using
the R studio software of the “ggalluvial” R package, Sankey
plot were applied to reveal complex relationships [29].

2.3. Evaluation and Validation of the Risk Model. Risk scores
were analyzed for each BCa patient. Based on the median
risk score, all patients were classified into high-risk groups
(high-risk score) and low-risk groups (low-risk score). The
prognosis of the two risk groups was compared using KM
survival curves. Time-dependent receiver operating charac-
teristic (ROC) curve analysis was performed using the “sur-
vival,” “survminer,” and “timeROC” R packages [29],
assessing prognostic feature specificity and sensitivity. The
area measured prognostic accuracy under the ROC curve
(AUC), a measure of discrimination. Principal component
analysis (PCA) was performed using the “ggplot2” R pack-
age to explore distinguishability [29]. Afterward, the distri-
bution of patient risk scores and scatter plots were plotted
to visualize the detailed correlation of death status with risk
scores.

A boxplot was utilized to assess the association of clinical
features with risk scores. The two risk groups performed p
value tests using KM survival curves to compare clinical
characteristics and prognostic closure.

2.4. Construction of the Predictive Nomogram. The 396 cases
with accompanying clinical data were employed for the uni-
variate and multivariate Cox regression analysis. A nomo-
gram constructed combining DEOSlncRNAs and other
clinicopathological features was applied to predict prognos-
tic outcomes in BCa patients. Calibration curves were cre-
ated to validate the accuracy of the nomogram.

2.5. Gene Set and Functional Enrichment Analysis. The sam-
ples were separated into two groups based on the median
risk estimates. The genes that differed in expression between
the high- and low-risk groups were discovered with
|log2FC|≥ 1 and a false discovery rate (FDR)<0.05 using
the R package “Limma.” Gene Ontology (GO) analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analysis were applied to explore the gene functions
and identify the signaling pathways related to the differen-
tially expressed genes.

2.6. Analysis of Tumor-Infiltrating Immunocyte and Immune
Checkpoints. CIBERSORT, an immune-related algorithm
that analyzes the abundance of 22 immunocyte types, was
used to display the immune landscape of BCa samples. We
compared the risk scores and immune checkpoint activation
between the low- and high-risk groups by the R package
“ggpubr” [30].

2.7. Estimation of Tumor Mutational Burden. Tumor muta-
tional burden (TMB) was a novel therapeutic metric for
determining immunotherapy sensitivity. The R package
“maftools” [31] were used to handle somatic mutation data,
which includes somatic coding, base replacement, and
insert-deletion mutations. The median TMB value was uti-
lized as the cutoff point for classifying BCa patients as
high-TMB or low-TMB.

2.8. Exploration of the Model in Clinical Treatment. Derived
from the Genomics of Drug Sensitivity in Cancer (GDSC)
database, the R package “pRRophetic” [32] was performed
to analyze the gene therapy response defined by the half-
maximal inhibitory concentration (IC50) in each BCa
patient.

2.9. Statistical Analysis. R version 4.1.2 was applied to exam-
ine all statistical data. Kaplan-Meier survival analysis was
performed to detect survival distinctions between the two
risk groups. Statistical analysis was performed using flexible
statistical methods and was statistically significant when the
p value was less than 0.05.

3. Results

3.1. Acquisition of Differentially Expressed OSlncRNAs. The
flowchart of this study is shown in Figure 1. A total of
14056 lncRNAs were extracted from transcriptome data of
BCa from TCGA. 807 OS-related genes were extracted from
the GeneCards database, and 172 differentially expressed
OS-related genes were identified, including 71 upregulated
and 101 downregulated genes (Figure 2(a)). Then, the coex-
pression relationship was analyzed between 14056 lncRNAs
and 172 differentially expressed OS-related genes. In total,
1157 lncRNAs were identified as OS-related lncRNAs
(OSlncRNAs). Finally, 720 differentially expressed OSlncR-
NAs (DEOSlncRNAs) were identified (Figure 2(b)).

Table 1: Eight DEOSlncRNAs with BCa in the TCGA dataset were identified by LASSO analysis.

Gene HR Lower 95% CI Upper 95% CI Coefficient p value

AC021321.1 0.285311974 0.125446119 0.648907459 -1.02655 0.002776

AC068196.1 0.113629968 0.015911989 0.811449103 -1.80103 0.030138

AC008750.1 0.205638247 0.064731943 0.65326463 -2.01385 0.00732

SETBP1-DT 1.85386739 1.102382313 3.117633744 0.734441 0.019939

AL590617.2 1.571522901 1.139970992 2.1664448 0.613165 0.005785

THUMPD3-AS1 0.585684206 0.397611657 0.862716127 -0.33666 0.006784

AC112721.1 1.330182562 1.103569024 1.603330293 0.335326 0.002752

NR4A1AS 1.368998896 1.008550835 1.858268232 0.3252 0.043949
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Figure 4: Continued.
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3.2. Development of a Prognostic Risk Model. We integrated
clinical characteristics from the BCa cohort in TCGA and
excluded individuals with a survival duration of fewer than
30 days. A total of 396 patients were randomly allocated to
the train and test groups. We identified 32 prognosis-
associated DEOSlncRNAs in the train set through univari-
able Cox analysis. A multivariate analysis was then per-
formed. Eight DEOSlncRNAs (AC021321.1, AC068196.1,
AC008750.1, SETBP1-DT, AL590617.2, THUMPD3-AS1,
AC112721.1, and NR4A1AS) were identified to develop a
risk model owing to the coefficient as a result of the LASSO
Cox regression and multivariate analyses (Figures 3(a) and
3(b)). The risk score = ½AC021321:1 × ð−1:0265Þ� + ½AC
068196:1 × ð−1:8010Þ� + ½AC008750:1 × ð−2:0138Þ� + ½
SETBP1 −DT × ð0:7344Þ� + ½AL590617:2 × ð0:6131Þ� + ½
THUMPD3 −AS1 × ð−0:3366Þ� + ½AC112721:1 × ð−0:3353Þ
� + ½NR4A1AS × ð0:3252Þ�. This indicated that AC021321.1,
AC068196.1, AC008750.1, and THUMPD3-AS1 were lowly
expressed in the high-risk group, and SETBP1-DT,
AL590617.2, AC112721.1, and NR4A1AS were highly
expressed in the high-risk group (Table 1). We showed the

chromosomal location, transcript length, and subcellular
localization of eight lncRNAs by using the DIANA Tools.
Among them, AC068196.1 has been less studied, and its
localization in cells was currently uncertain (Table S1).
This approach separated 396 BCa patients into two risk
groups, with the median score as the cutoff. The risk
model was validated further using a PCA distribution 3D
plot, which verified perfect separation between distinct risk
sample sets (Figures 3(c)–3(e)). The low-risk group
outlived the high-risk group in terms of disease-specific
and progression-free survival (Figures 3(f)–3(m)).

3.3. Verification of Eight Signature OSlncRNAs. The relation-
ship between the eighteen correlated DEOSGs and eight
DEOSlncRNAs is shown in Figures 4(a) and 4(b). The
expression levels of eight DEOSlncRNAs in the normal
and tumor groups from the BCa dataset in TCGA are shown
in Figures 4(c)–4(j)).

To determine the prognostic association of eight hub
lncRNAs, we analyzed the prognosis of eight hub lncRNAs in
the context of the clinical information of BCa patients. The
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Figure 4: The variability of the eight DEOSlncRNAs. (a) The network between eighteen differential oxidative stress genes and eight
DEOSlncRNAs. (b) Sankey plot between eighteen differential oxidative stress genes and eight DEOSlncRNAs. Box plot of the variability
of the eight DEOSlncRNAs: (c),AC021321.1, (d) AC068196.1, (e) AC008750.1, (f) SETBP1-DT, (g) AL590617.2, (h) THUMPD3-AS1, (i)
AC112721.1, and (j) NR4A1AS.
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results indicated that overall survival rates were increased in
patients with a high expression of AC008750.1, AC021321.1,
AC068196.1, and THUMPD3-AS1 (Figures 5(a)–5(d)) and a
low expression of AL590617.2, NR4A1AS, SETBP1-DT, and
AC112721.1 (Figures 5(e)–5(h)).

3.4. Validation of the Prognostic Signature in the Test Set and
the Entire Set. The prognostic signature’s predictive value
was evaluated in both the test set (n = 196) and the complete
set (n = 396). In the test and whole sets, the risk score for-
mula was used to assess the distribution of risk scores, sur-
vival status, survival time, and associated expression
criteria of these lncRNAs in patients between the low-risk
and high-risk groups. According to these findings, the
high-risk group had a worse prognosis (Figures 6(a)–6(p)).

The sensitivity and specificity of the model for predicting
prognosis were assessed using ROC curves. We further
examined the ROC curve results by calculating the area
under the ROC curve (AUC). The 1-, 3-, and 5-year AUCs
were 0.792, 0.804, and 0.843, respectively, in the entire set;
0.705, 0.713, and 0.769, respectively, in the test set; and
0.881, 0.887, and 0.929, respectively, in the training set
(Figures 6(e), 6(k), and 6(q)). The clinical variables and risk
score had the strongest predictive capacity according to the
risk model’s 1-year ROC curve (Figures 6(f), 6(l), and 6(r)).

3.5. Risk Score and Clinical Molecular Subtypes. The conven-
tional clinicopathological characteristics, namely, age, gen-
der, grade, stage, M-stage, N-stage, and T-stage, were also
consistent. We further explored a significant relationship
between the risk score and clinicopathological characteris-
tics; age; gender; tumor grade; M, N, and T-stages; and
immunophenotyping. Our results showed that the risk
scores for patients with stage IV, N0, T4, and C1 disease
were significantly higher than those of patients with other
disease stages. Meanwhile, the risk score was not signifi-
cantly related to age, gender, grade, and M-stage
(Figure S1A-H). We further found a significant decrease in
stem cell content with an increasing risk score (Figure S1I).

Survival curves indicated that patients in the high-risk
group with age, gender, high-grade, M0, N0-1, T3-4, and
stages III-IV disease had a poorer prognosis, and low-grade
M1 and T0-2 disease was not significantly correlated with
prognosis, indicating the good predictive accuracy of this
model (Figure S2A-N).

3.6. Construction of the Nomogram. According to univariate
Cox regression, the risk score hazard ratio and 95 percent
confidence interval (CI) were 1.194 and 1.137-1.254
(p < 0:001), respectively, and 1.158 and 1.098-1.221
(p < 0:001), respectively, according to multivariate Cox
regression (Figures 7(a) and 7(b)). Furthermore, age was also
an independent prognostic parameter (1.031 and 1.013–
1.049; p < 0:001) (Figure 7(b)). The concordance index of
the risk score was the highest, indicating that the risk score
is more accurate in predicting the prognostic outcome than
other clinical information (Figure 7(c)).

We also utilized 1-, 3-, and 5-year calibration plots to
confirm that the nomogram was in good agreement with
the prediction of overall survival (Figure 7(d)). Based on
independent prognostic factors, namely, risk score, age, T-
stage, N-stage, stage, gender, and grade, we constructed a
nomogram for predicting the 1-, 3-, and 5-year overall sur-
vival incidences of BCa patients (Figure 7(e)).

3.7. GO and KEGG Enrichment Analysis of the Two Risk
Groups. We performed GO and KEGG analysis of differen-
tially expressed genes in the low-risk and high-risk groups
to better understand the underlying biological processes.
The differentially expressed genes were predominantly
enriched in BCa-related biological processes through the
results of the GO analysis, such as “keratinocyte differentia-
tion,” “keratinization,” “extracellular matrix disassembly,”
“epidermal cell differentiation,” and “epidermis develop-
ment” (Figure S3A-B). According to the KEGG analysis,
we found that these differentially expressed genes were
significantly enriched in “ECM− receptor interaction,”
“proteoglycans in cancer,” “focal adhesion,” “IL−17
signaling pathway,” “protein digestion and absorption,”
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Figure 5: Prognostic values of the eight DEOSlncRNAs in the high- and low-risk groups. (a) AC008750.1, (b) AC021321.1, (c) AC068196.1,
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Figure 6: Construction and verification of the oxidative stress lncRNAs risk model of BCa patients. (a–f) The Kaplan–Meier curves of
overall survival; heatmap; risk score; survival time; time-dependent ROC curves predicted 1-year, 3-year, and 5-year overall survival; and
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Figure 8: Differences and prognosis in TMB. (a) The waterfall plot and heatmap of mutation genes in the high-risk group. (b) The waterfall
plot and heatmap of mutation genes in the low-risk group. (c) Boxplots showing TMB scores in different risk groups. (d) Correlation
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“renin−angiotensin system,” “Amoebiasis,” and “PI3K−Akt
signaling pathway” (Figure S4A-B). We constructed a
heatmap containing thirty highly expressed genes in the
high-risk group and 30 highly expressed genes in the low-
risk group (Figure S8).

3.8. Tumor Mutational Burden Analysis in the Risk Model.
The waterfall plots indicated that the top mutated genes
between the two risk groups were TP53 and TTN after
BCa patients were split into high-TMB (n = 189) and low-
TMB (n = 206) groups based on the median value of the
TMB score. Overall, comparing the most frequent somatic
mutations between the two groups, the profiles of TP53
and TTN were similar between the two groups concerning
their mutation frequencies (Figures 8(a) and 8(b)). The
mutation frequency of KDM6A was 27% in the low-risk
group, while it was <20% in the high-risk group. Further
study found that the TMB scores of patients in the low-
risk group were typically higher than those in the high-risk
group (Figure 8(c)). TMB decreased significantly with
increasing risk score (p < 0:05) (Figure 8(d)). According to
the Kaplan–Meier results, a high TMB increased patient sur-
vival compared to a low TMB (Figure 8(e)). Interestingly,
various groups of patients with varying TMB scores showed
diverse prognoses in this research. In the Kaplan–Meier
analysis, patients in the low-risk category with a high TMB
had a considerably better prognosis than those in the other
categories (Figure 8(f)).

3.9. Immune Function Analysis and Immunotherapy. We
explored differences in immune function between the two
groups by calculating ESTIMATE, immune, and stroma
scores for BCa samples. The study’s results found that
patients in the high-risk group scored significantly higher
in all three categories than those in the low-risk group
(Figure S5A-C). Further investigation of the distribution of
immune cells in BCa showed that the low-risk group was
enriched with large numbers of naive B cells, plasma cells,
CD8 T cells and Tregs. In contrast, the high-risk group
contained a higher proportion of resting memory CD4 T
cells and neutrophils (Figure S5D-F). To further explore
the correlation between immune cell infiltration and risk
score, we found that the risk score was inversely correlated
with the function of CD8 T cells and Tregs but positively
correlated with the function of M0 macrophages
neutrophils and M2 macrophages (Figure S6B-F). Tumor
immune dysfunction and exclusion (TIDE) scores were
significantly higher in the high-risk group than in the low-
risk group (Figure S5G).

However, with the growth of the notion of precision
medicine in recent years, immune checkpoint and inhibitor
(ICI) treatment has attracted extensive attention [33]. As a
result, more studies on the various amounts of immune
checkpoint expression in different groups will serve to give
benchmarks for precision medicine. Especially, the total
expression levels of genes, including TNFSF9, CD44,
PDCD1LG2, CD200, and NRP1, were significantly greater
in the high-risk group, while ADORA2A, TNFRSF25,
TNFRSF14, CD40LG, LGALS9, TNFRSF15, CD160, and

TMIGD2 were higher in the low-risk group (Figure S6A).
Furthermore, when the clinical treatment value was
considered, the high-risk group was more responsive to
A.443654, A.770041, AICAR, AUY922, AZ628, AMG.706,
AG.014699, and AZD.0530 than the low-risk group, and
the low-risk group was more sensitive to ABT.263,
AKT.INHIBITOR VIII, AXITINIB, ATRA, and ABT.888
(Figure S7A-M).

4. Discussion

BCa is one of the most prevalent urological malignant
tumors. The main clinical treatments currently include sur-
gical tumor resection and adjuvant chemotherapy. However,
the prognosis of patients with BCa has not improved in
recent years due to tumor recurrence and drug resistance
[34]. There were currently few approaches for predicting
OS-related lncRNAs in BCa patients. Our findings identified
eight lncRNAs linked to OS. NK cells were activated in vitro
to induce AC008750.1 expression to generate antitumor
capacity against lung adenocarcinoma [35]. AC112721.1
expression was higher in breast cancer and BCa than that
in normal tissue [36, 37]. AL590617.2 expression increased
with the progression of prostate cancer grade. It may form
a complex with MYC to transcriptionally regulate MYC tar-
gets or affect tumor progression through MYC recruitment
to transactivate genes such as MARVELD1, HOXB7,
PYCR3, AMIGO2, BNIP3L, and ZNF121 [38]. NR4A1AS
was upregulated in oral squamous cell carcinoma and pro-
moted the proliferation of oral squamous cell carcinoma
cells by upregulating miR-221 through demethylation [39].
In two other articles, similar results to those of the present
study were found in the prognostic model of BCa con-
structed by THUMPD3-AS1 [40, 41]. SETBP1-DT,
AC068196.1, and AC021321.1 were currently less well stud-
ied and not be described specifically.

In this research, we focused on OS-related lncRNAs and
pathways by investigating the correlation between gene
expression and gene mutations. We collected clinical data
from BCa patients in TCGA to confirm that the risk model
DEOSlncRNA had good prognostic significance. In addition,
based on DEOSlncRNAs, eight of them (AC021321.1,
AC068196.1, AC008750.1, SETBP1-DT, AL590617.2,
THUMPD3-AS1, AC112721.1, and NR4A1AS) were
selected by LASSO regression to build a risk score model,
which demonstrated that patients with higher risk scores
were more likely to encounter adverse outcomes compared
with patients with lower risk scores. TMB analysis showed
significant differences in the mutant genes KDM6A and
TTN and prognosis in different groups, and their gene func-
tions need to be further investigated. Further studies of the
immune microenvironment showed a higher proportion of
resting memory CD4 T cells and neutrophil phenotypes in
patients in the higher-risk group with higher immune scores.

In contrast, patients in the low-risk group with lower
immune scores had a higher proportion of naïve B cells,
plasma cells, CD8 T cells, and Tregs phenotypes. Interest-
ingly, both patients in the low-risk group and those in the
high-risk group were sensitive to multiple chemotherapeutic
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agents. Immune checkpoint analysis showed significant dif-
ferences in 16 genes (ADORA2A, TNFSF9, TNFRSF25,
CD44, PDCD1LG2, TNFRSF14, BTNL2, CD40LG, CD200,
LGALS9, IDO2, NRP1, TNFSF15, CD160, TMIGD2, and
HHLA2) based on this risk score. Among the immune
checkpoints, CD44 could promote cell-cell and cell-matrix
interactions, proliferation, differentiation, invasion, and
migration and is a cell adhesion receptor mainly expressed
in tumors and tumor stem cells. ROS levels in cancer cells
were often reduced by the coupling of some CD44 variants
to the glutamate-cysteine transporter XCT, making cancer
cells resistant to chemotherapy and radiotherapy [42]. Intes-
tinal epithelial cells could ablate the ECM and tight junctions
by triggering OS [43]. Neutrophils could inhibit the produc-
tion of IL-17 in the tumor microenvironment by inducing
OS, thus exerting an antitumor effect [44]. Regarding the
renin-angiotensin system, previous literature has shown that
angiotensin II induces OS in prostate cancer and promotes
inflammation [45]. The PI3K-Akt signaling pathway was a
classical OS pathway associated with cell growth and differ-
entiation [46].

Tumor mutational load was an important biological
marker indicative of tumor mutational status and has been
considered an effective method for discovering potential
tumor immune regulatory pathways [22, 47]. Notably, in
the present investigation, the prognostic survival analysis
of L-TMB was worse than that of H-TMB, and patients
in the high-risk group had lower survival rates with either
L-TMB or H-TMB compared with the low-risk group,
which indicated that patients in the high-risk group may
most urgently need targeted therapy or combination
therapy.

The function of immune cell types was affected by OS,
which directly or indirectly induced tumor development
and became an obstacle to immunotherapy [48]. Long-
noncoding RNAs associated with scorch death revealed that
risk scores were positively correlated with M0 and M2 mac-
rophages and negatively correlated with prognosis [49].
Thus, these studies indicated that different immune cell sub-
populations strongly affected cancer progression, which fur-
ther demonstrated the accuracy of predictive models based
on DEOSlncRNA constructs.

IC50 was the half-inhibitory concentration, which
reflected the patient’s sensitivity to the drug in this article.
The lower the IC50 values, the stronger the sensitivity. In
A.443654, A.770041, AICAR, AUY922, AZ628, AMG.706,
AG.014699, and AZD.0530, the IC50 value of the high-risk
group was lower than that of the low-risk group, so the sen-
sitivity of the high-risk group was higher than that of the
low-risk group. Similarly, in ABT.263, AKT.INHIBITOR
VIII, AXITINIB, ATRA, and ABT.888, the sensitivity of
the low-risk group was higher than that of the high-risk
group. This also provided a new basis for the individualized
treatment of BCa patients.

Currently, risk score models are mostly built using
LASSO regression methods. The ROC curve indicated that
this risk model had higher sensitivity and specificity than
other clinical indicators in predicting the prognosis of BCa.
At the same time, patients with different risk scores showed

different prognostic outcomes in BCa clinical subgroups,
and the correlation between risk scores and clinical index
analysis showed that immune scores were statistically dif-
ferent in N-stage, T-stage, and grade of BCa (Figure S1).
In T-stage, we found that immune scores increased with
increasing T-stage and were statistically significant, sug-
gesting that NMIBC was associated with lower immune
scores. In comparison, MIBC was associated with higher
immune scores. This result indicated that an increased risk
score was associated with invasive or metastatic BCa and was
consistent with previous prognostic results (Figure 6). This
had reference significance for the early diagnosis and person-
alized medicine of BCa patients. The development of targeted
drugs based on risk models may improve the treatment effect
of NMIBC and MIBC. Immune checkpoint inhibitors were a
potential cancer treatment that blocks key molecules and
showed excellent anticancer efficacy, particularly in revolu-
tionizing the clinical progression of metastatic and locally
advanced BCa [50, 51].

In conclusion, our research has several limitations. First,
we used R and statistical analysis to develop prognostic risk
models for eight DEOSlncRNAs using public databases.
Although these approaches have been used and proved in
numerous studies [52, 53] and some of the eight DEOSlncR-
NAs have been studied to some extent [35–41], further
research is needed to reveal the association between eight
DEOSlncRNAs and OS. And more, in-depth studies are
needed including their functions and molecular mecha-
nisms. Second, we have internally validated the risk model
in BCa transcriptome data downloaded in TCGA, and more
sequencing data will be needed for external validation in the
future. Third, we collected the clinical sample information of
BCa patients in public databases to construct the model,
which laid a foundation for future clinical applications.
However, more clinical sample information is required to
increase the model’s credibility.

5. Conclusions

In conclusion, we have screened eight DEOSlncRNAs that
were utilized to conduct a risk model. This risk model can
predict the prognosis and immune status of BCa patients
and effectively differentiate NMIBC and MIBC, thus pro-
viding favorable treatment options for patients with BCa.
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