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Cuproptosis, a new type of programmed cell death, is involved in the development and progression of malignancies. �e study of
cuproptosis-associated long non-coding RNAs (lncRNAs) in soft tissue sarcomas (STSs) is however limited.�ere is also uncertainty
regarding the prognostic accuracy of cuproptosis-associated lncRNAs in STSs and their relationship to the tumor immune mi-
croenvironment. �e aim of this study was to determine the prognostic signi�cance of cuprotosis-associated lncRNAs in STSs and
their relationship to the tumor immune microenvironment. Transcriptomic and clinical data from patients with STSs were obtained
through�e Cancer Genome Atlas (TCGA). Overall, 259 patients were randomly allocated to a training group or a testing group. In
the training group, a cuproptosis-associated lncRNA signature was constructed, and the signature was veri�ed in the testing group.
On the basis of risk scores and clinical features, we later developed a hybrid nomogram. We also performed functional and tumor
immune microenvironment analysis based on the cuproptosis-associated lncRNA signature. A signature of 5 cuproptosis-associated
lncRNAs was created. Based on this signature, we categorized STS patients into high-risk and low-risk groups.�e study showed that
patients at high risk had a worse prognosis than those at low risk. A nomogram was then constructed combining clinical char-
acteristics with the risk scores, and it was shown to have credible predictive power. Functional enrichment and tumor immune
microenvironmental analyses showed that high-risk STSs tend to be immunologically sensitive tumors. In our study, we found a
cuproptosis-associated lncRNAs signature, which serves as an independent prognostic indicator. Cuproptosis-associated lncRNAs
may play a role in the tumor immune microenvironment, which might be a therapeutic target for patients with STSs.

1. Introduction

Sarcomas are solid tumors originating from the mesen-
chymal tissue and are classi�ed as osteosarcoma and STSs
[1], with more than 50 histological types. �e incidence of
human osteosarcoma and STS is 1 per 100,000 and (4-5)/
100,000 per year, respectively, accounting for approximately
1% of all malignancies [2]. Despite the fact that STSs can
arise anywhere in the body, extremities account for 60–70%
[3]. �e mechanisms of biological behavior of human STSs,
such as occurrence, proliferation, metastasis, resistance to
radiotherapy, and recurrence, need to be studied more

thoroughly from various aspects. lncRNAs are RNA mol-
ecules with transcripts that are longer than 200 nucleotides,
which were initially thought to be by-products of RNA
polymerase II transcription [4]. lncRNAs are important
regulatory molecules in the process of tumorigenesis [5–7].
In addition, lncRNAs are also associated with tumor inva-
sion, in�ltration, metastasis, and prognosis [8]. Currently,
due to the advancement of high-throughput sequencing
technology, more and more functions of lncRNAs are being
annotated. lncRNAs such as T⁃ALL⁃R⁃LncR1 and MEG3
have been found to be associated with rhabdomyosarcoma
[9, 10], and it has been shown that polyadenylated nuclear
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noncoding RNA (PAN RNA) is associated with Kaposi’s
sarcoma [11]. However, the function of many other lncRNAs
in STSs remains unknown.

Depending on the mechanism of cell death, there are
different ways of cell death, and the common ones are
apoptosis, necroptosis, pyroptosis, and ferroptosis [12].
Similar to ferroptosis, copper is an indispensable trace el-
ement in all living organisms and is usually maintained at
very low levels in mammalian cells. Intracellular concen-
trations of copper ions that exceed the threshold for
maintaining homeostatic mechanisms likewise exhibit cy-
totoxicity. Tsvetkov et al. [13] first found that cuproptosis
occurs through the direct binding of copper to the lipidated
components of the tricarboxylic acid cycle (TCA).(is led to
lipid-acylated protein aggregation, and loss of iron-sulfur
cluster proteins, which in turn triggered proteotoxic stress
and ultimately cell death. However, studies of cuproptosis-
associated lncRNAs in STSs are limited. Specifically, there is
uncertainty regarding the prognostic accuracy of cur-
proptosis-associated lncRNAs and their relationship to tu-
mor immune microenvironment in STSs. (erefore, the aim
of our study was to identify cuproptosis-associated lncRNAs
in STSs, as well as to understand the role of cuproptosis-
associated lncRNAs in tumor immune microenvironment
and prognosis, which not only sheds light on the signaling
pathways and molecular mechanisms involved in the
cuproptosis action in STSs, but also might provide new
perceptions for patients with STSs seeking immunotherapy.

2. Materials and Methods

2.1. Data Retrieval and Identification of Cuproptosis-Associ-
ated lncRNAs. We downloaded transcriptomic and clinical
data from the TCGA database of a total of 261 patients with
STSs (Table S1). Copy number variation (CNV) data and
somatic mutation data (level (2)) for STS cases have also
been downloaded from the TCGA data portal (https://tcga-
data.nci.nih.gov/tcga/dataAccessMatrix.htm). Study partic-
ipants with incomplete clinical information were excluded.
Cuproptosis-associated genes were obtained from a litera-
ture search [13–17]. We then assessed the correlation of
cuproptosis-associated lncRNAs with cuproptosis-associ-
ated genes by Pearson’s correlation analysis. In order to
identify cuproptosis-associated lncRNAs, Pearson’s corre-
lation coefficients higher than 0.2 (R> 0.2) and P values less
than 0.05 (P∗0.05) were required.

2.2. ConstructionandVerification of aCuproptosis-Associated
lncRNA Signature. We included 259 STS patients who were
randomly assigned to a training or testing group (Figure 1).
In the training group, by combining the analysis of uni-
variate Cox regression, LASSO Cox regression, as well as
multivariate Cox regression, a cuproptosis-associated
lncRNAs signature was constructed. Finally, a risk score for
each individual was computed using this prognostic sig-
nature. (e risk score was calculated using the following
formula: risk score� (normalized expression level of each
cuproptosis-associated lncRNA ∗ corresponding correlation

coefficient). Based on the median value of the risk score, the
training group, testing group, and all patients were classified
into high-risk and low-risk groups, respectively. Overall
survival (OS) was compared between the high-risk and low-
risk groups in the training group, testing group, and all
patients respectively by Kaplan–Meier analysis.

2.3.Constructionof aPredictiveNomogram. We later created
a hybrid nomogram using the “rms” R package that in-
corporates the lncRNA signature and clinicopathological
features of STS patients to predict their OS (1-, 3-, and 5-
year). For determining the predictive power of a nomogram,
calibration curves and consistency indices (C-index) were
used.

2.4. Function Enrichment Analysis. Based on the risk scores,
all samples were categorized into high-risk and low-risk
groups. (e “clusterProfiler” package in R was used to
analyze enrichment analyses of Gene Ontology (GO),
FDR< 0.05, and Kyoto Encyclopedia of Genes and Genomes
(KEGG), FDR< 0.01, between the high-risk and low-risk
groups.

2.5. Analysis of Tumor Immune Microenvironment between
the Patients in High-Risk and Low-Risk Groups. We calcu-
lated the ratio of each tumor-infiltrating immune cell in all
patients using the CIBERSORT algorithm [18]. Results
produced by CIBERSORT were filtered at 0.05 P value. To
evaluate the difference of the tumor immune microenvi-
ronment between the high-risk group and low-risk group,
immune functions and each immune cell were compared
between the high and low-risk groups. Tumor mutation
burden (TMB) [19] and tumor immune dysfunction and
exclusion (TIDE) [20] were also analyzed in the patients in
predicting their reactions to immunotherapy.

2.6. Statistical Analysis. R was used to conduct all statistical
analyses (v4.0.5). If the statistical significance level was not
specifically indicated, it was assumed to be P< 0.05.

3. Results

Overview of mutation changes and expression changes of
cuproptosis-associated genes in our patients: it is shown that
8 of 237 STS patients were with cuproptosis-associated
genetic mutations (Figure 2(a)). CNV frequencies of
cuproptosis-associated genes in our patients are shown in
Figure 2(b). (e position of altered CNV in cuproptosis-
associated genes of our patients on their respective chro-
mosomes is shown in Figure 2(c).

3.1. Construction of a Cuproptosis-Associated lncRNA
Signature. We enrolled 259 patients with STSs and these
patients were randomly separated into the training group
(n� 130) or the testing group (n� 129) in a ratio close to 1 :1.
(e clinical data of all patients are specified in Table S1. It
revealed no statistically significant difference in the clinical
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characteristics between the training group and the testing
group. Following the obtainment of 19 cuproptosis-asso-
ciated genes from the literature review, 181 cuproptosis-
associated lncRNAs emerged with these genes by Pearson’s
correlation were calculated (Figure 2(d)). In our training
group, first, in the univariate Cox regression analysis, we
detected six cuproptosis-associated lncRNAs with a prog-
nostic value (Figure 3(a)). Second, LASSO Cox regression
was performed to reduce multicollinearity, which resulted in
the selection of six lncRNAs (Figure 3(b)). (ird, a subse-
quent multivariate analysis highlights 5 cuproptosis-

associated lncRNAs (ADAMTS9−AS1, CASC2,
LINC00680, SNHG1, and TRG−AS1) for prognosis based
on the lowest AIC (Figure 3(c)) [21]. Here, we explain how
the risk score is computed based on the expression levels of
each lncRNArisk score�ADAMTS9−AS1×0.624842897955339;
CASC2×−3.58535963345813; LINC00680×0.631698088926909;
SNHG1×0.384954590110563; TRG−AS1×−1.38127131637069.

(e cuproptosis-associated genes and these 5 cuprop-
tosis-associated lncRNAs were correlated. For example,
ADAMTS9−AS1 was positively correlated with LIPT1, GLS,
etc., and negatively with SLC31A1, FDX1, etc. SNHG1 was
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Figure 1: Flowchart of the study.
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positively correlated with LIAS, GCSH, etc., and negatively
with NLRP3, NFE2L2, etc. (Figure 3(d))

Patients in the training group were categorized into
the high-risk group (n � 65) and low-risk (n � 65) group
using the median risk score. Each patient’s lncRNA
expression levels, risk status, and survival outcome are
demonstrated in Figures 4(a), 4(d), and 4(g).
Kaplan–Meier analysis clearly demonstrated that the OS
in the high-risk group was worse than that in the low-risk

group (Figure 4(j)). (e AUC was 0.831 at 1 year, 0.766 at
3 years, and 0.721 at 5 years (Figure 4(m)).

3.2. Verification of the Cuproptosis-Associated lncRNA
Signature. To further verify the accuracy of the cuproptosis-
associated lncRNAs signature, we calculated a risk score for
each individual in the testing group using the same formula
we used in the training group. (e patients were then
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Figure 2: Mutation changes and expression changes of cuproptosis-associated genes in the patients. (a) In each waterfall plot, mutation
information is presented for each gene associated with cuproptosis, and each mutation type is indicated by the color at the bottom. In the
abovementioned bar chart, the numbers on the left represent the mutation burden whereas on the right are the mutation frequencies. (b)
Frequencies of CNV, gain, and loss among cuproptosis-associated genes. (c) Position of altered CNV in cuproptosis-associated genes on 23
chromosomes. (d) 181 cuproptosis-associated lncRNAs correlated with 19 cuproptosis-associated genes.
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classified into a high-risk group (n� 54) and a low-risk
group (n� 75) based on the same cut-off values as the
training group. Each patient’s lncRNA expression levels, risk
status, and survival outcome are elucidated in Figures 4(b),
4(e), and 4(h). (e results of Kaplan–Meier analysis dem-
onstrated a relatively poor prognosis for STS patients in the
high-risk group (Figure 4(k)). (e AUC was 0.669 at 1 year,
0.658 at 3 years, and 0.699 at 5 years (Figure 4(n)).

Finally, similar to the training and testing groups, we
obtained consistent results comparing all patients with the

same cut-off values. Each patient’s lncRNA expression levels,
risk status, and survival outcome are depicted in
Figures 4(c), 4(f), and 4(i). (e results of Kaplan–Meier
analysis demonstrated a relatively poor prognosis for STS
patients in the high-risk group (Figure 4(l)). (e AUC was
0.750 at 1 year, 0.701 at 3 years, and 0.669 at 5 years
(Figure 4(o)).

On the basis of the entire examined genes (Figure 5(a)),
19 cuproptosis-associated genes (Figure 5(b)), 181
cuproptosis-associated lncRNAs (Figure 5(c)), and 5
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Figure 3: (e construction of a prognostic signature in STS patients. (a) (e univariate Cox regression analysis between cuproptosis-
associated lncRNAs and OS of STSs is shown in the forest plots. (e P-values were obtained by univariate cox regression. (b) According to
minimum criteria, six cuproptosis-associated lncRNAs were selected by the least absolute shrinkage and selection operator (LASSO)
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cuproptosis-associated genes and the 5 prognostic cuproptosis-associated lncRNAs in the proposed signature.
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cuproptosis-associated lncRNAs of the signature
(Figure 5(d)), the difference between high-risk and low-risk
individuals is ascertained using principal component anal-
ysis (PCA) via the “ggplot2” R package. (e results showed
that there is a relatively wide range of gene expression
between high-risk and low-risk patients.

3.3. Construction of aNomogram to Predict Patients’ Survival.
Considering the inconvenient clinical utility of the
cuproptosis-associated lncRNA risk score in predicting OS
of patients with STSs, we later combined the cuproptosis-
associated lncRNAs risk scores with clinicopathological
features to create a hybrid nomogram model for predicting
1-, 3-, and 5-year OS (Figure 6(a)). Predictors included the
risk score and gender. (e subsequent calibration plots
suggested that the proposedmodel performed similarly to an
ideal model (Figure 6(b)).

3.4. Functional Enrichment Analysis. In the high- and low-
risk groups, we analyzed differentially expressed genes
(DEGs) using GO enrichment and KEGG pathway analyses.
Results of GO showed that DEGs in the high-risk and low-
risk groups were enriched primarily in biological processes
relating to immunity, such as humoral
immunity, lymphocyte-mediated immunity, and adaptive
immunity (Figures 7(a), 7(c)). (e results of KEGG pathway
analyses indicated that DEGs in the high-risk and low-risk
groups tend to be enriched in many pathways such as
cholesterol metabolism, PPAR signaling pathway, comple-
ment and coagulation cascades, as well as the PI3K-Akt
signaling pathway. (Figures 7(b), 7(d)).

3.5. Tumor ImmuneMicroenvironment of Soft Tissue Sarcoma
betweenHigh-Risk and Low-Risk Patients. We calculated the
proportion of various tumor-infiltrating immune cells using

the CIBERSORT algorithm to explore the relationship be-
tween the risk score and the tumor immune microenvi-
ronment in all patients. (e results showed that tumor-
infiltrating immune cells differed significantly between high-
risk and low-risk individuals (Figures 8(a), 8(b)). As shown
in Figure 8(b), patients in the high-risk group had signifi-
cantly lower proportions of tumor-infiltrating B cells naive,
plasma cells, T cells CD8, monocytes, and M1 macrophages.
High-risk patients, however, had significantly more resting
NK cells and M0 macrophages infiltrating the tumor. Based
on the CIBERSORT algorithm, a correlation was found
between the risk score and the abundance of immune cells
(Figures 8(c)–8(i)). As can be seen in the scatter diagrams,
the risk score was positively correlated with the number of
M0 macrophages, M2 macrophages, and NK cells resting,
and negatively correlated with naive B cells, M1 macro-
phages, monocytes, NK cells activated, plasma cells, T cells
CD8, and follicular helper T cells.

In addition, we investigated the relationship between the
5 lncRNAs in the proposed signature and the number of
immune cells. We noticed that the majority of immune cells
exhibited a significant correlation with these 5 lncRNAs
(Figure 9(a)). Immune-related functions such as Type_-
II_IFN_reponse, APC_co_stimulation, CCR, para-
inflammation, APC_co_inhibition, HLA, cytolytic_activity,
check-point, T_cell_co-stimulation, inflammation-promot-
ing, T_cell_co-inhibition, MHC_class_I, and Type_-
I_IFN_reponse were significantly more abundant in the low-
risk group, according to a correlation analysis based on
GSVA package ssGSEA (Figure 9(b)). We later compared
the immune checkpoint molecules between the two groups,
and we discovered that the low-risk group exhibited much
higher levels of expression of PDCD1, PDCD1LG2, CTLA4,
CD274, HAVCR2, and IDO1. (Figures 9(c)–9(h)).

(en, the changes in somatic mutation distribution
between the high-risk and low-risk groups were examined;
we noticed that the mutation rate was 74 (69.81%) of 106 in
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the high-risk groups and the top three mutated genes were
TP53, ATRX, and TTN, while the mutation rate was 78
(60.47%) of 129 samples in the low-risk and the top tree
mutated genes were TP53, ATRX, and RB. Notably, sig-
nificantly more ATRX and TTN mutations were detected in
patients with high risk than patients with low risk. However,
a completely opposite trend was observed regarding TP53
mutation levels (Figures 10(a), 10(b)). TMB is an indicator
associated with a better response to ICB treatment. (e
analysis of patients’ mutation data showed that a higher
TMB was found in the high-risk group compared to the low-
risk group (Figure 10(c)), suggesting that the high-risk group

might benefit from immunotherapy. Overall, survival was
better for patients with a higher TMB (Figure 10(d)). We
further compared the TMB in the high-risk and low-risk
groups. It demonstrated that patients in the low-risk group
with higher TMB had the best survival probability while
patients in the high-risk group with lower TMB had the
worst survival probability (Figure 10(e)). TIDE is a com-
putational framework for modeling the two main mecha-
nisms of tumor immune escape that can provide predictive
results regarding immunotherapy. In order to better dem-
onstrate the predictive power of risk scores for immuno-
therapy, we applied TIDE to our patients. Surprisingly,
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TIDE was negatively correlated with the risk scores
(Figures 10(f )–10(h)).

4. Discussion

Despite significant improvements in the survival rate following
aggressive multidisciplinary treatment encompassing surgery,
radiotherapy, chemotherapy, and immunotherapy, the prog-
nosis for patients with STSs remains poor [22, 23]. Even when
patients share the same clinical risk factors, their prognosis and
treatment outcomes may vary widely [24]. (erefore, the
identification of effective therapeutic targets for the diagnosis
and treatment of STSs is crucial. Recently, Tsvetkov et al. [13]

identified cuproptosis as a novel type of programmed cell death
with a dual function in tumor development and treatment;
therefore, deciphering the biological process of cuproptosis in
tumor cells might lead to new therapeutic targets. (e large
number of lncRNAs produced by human cells contributes an
important role to various biological processes, including ge-
nome expression and cell differentiation [25]. Recent studies
suggest that an abnormal expression of lncRNAmay play a role
in the progression and development of cancer [26, 27].
However, there is currently little research investigating
cuproptosis-associated lncRNAs. Notably, this is the first
comprehensive investigation of the role of cuproptosis-asso-
ciated lncRNAs involved in the development of STSs.
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Researchers in 2020 analyzed patients with high-grade
STS samples, categorized by OS, and identified 7 genes such
as CD36 andNCAM1 that are associated with a poor
prognosis, and 6 genes such as BIRC5 and LAG3 that are
associated with a good prognosis [28]. In our study5
lncRNAs were eventually identified as a cuproptosis-asso-
ciated lncRNA signature. We found that the genes co-
expressed with these 5-cuproptosis associated lncRNAs were
NLRP3, LIPT2, LIPT1, LIAS, GLS, GCSH, DBT, and ATP7B,
which were also correlated with the prognosis. As a result,

we later developed a risk score dividing STS patients into the
high- and low-risk groups, and our results demonstrated a
significant difference in OS between the two groups. A
further finding was that the risk scores could accurately
predict patient prognosis without regard to traditional
clinical risk markers or molecular factors. And then, a
predictive nomogram was created by integrating the risk
score with gender, thereby further improving its utility and
making the risk score easier to use. For a better under-
standing of the relationship between cuproptosis-associated
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Figure 7: Analysis of GO enrichment and KEGG pathways. (a–c).(e DEGs between patients with high risk and patients with low risk have
been shown to be enriched mostly in immune-associated biological processes according to the GO enrichment analysis. (b–d) According to
the KEGG pathway analysis, it is elucidated that the DEGs between high-risk and low-risk groups were typically enriched in complement
and coagulation cascades, cholesterol metabolism, and PPAR signaling, etc.
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Figure 8: Comparison of immune infiltrating cells between high- and low-risk groups. (a) (e proportion of immune cell types in all
patients between high- and low-risk groups. (b) (e proportion of 22 infiltrating immune cell types between the high-risk group and low-
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lncRNAs and STSs, functional enrichment analysis of GO
and KEGG were undertaken. (e results of GO showed that
DEGs in the high-risk and low-risk groups were enriched
primarily in biological processes relating to immunity, such
as humoral immunity, lymphocyte-mediated immunity, and
adaptive immunity. (e results of KEGG pathway analysis
indicated that DEGs in the high-risk and low-risk groups
tended to be enriched in many pathways such as cholesterol
metabolism, PPAR signaling pathway, complement and
coagulation cascades, as well as the PI3K-Akt signaling
pathway.

It is well known that lncRNAs are involved in the tumor
immune microenvironment of tumors. (ey have been
proved to play a significant role in various types of cancer
[29, 30]. We examined the association between tumor-in-
filtrating immune cells and risk scores in the present study
and determined that risk scores were adversely associated
with the immune function and immune checkpoints. (us,
our study is the pioneer to investigate the correlations be-
tween cuproptosis-associated lncRNAs and tumor immu-
nity in STSs. In our study, the high-risk group had
significantly fewer tumor-infiltrating B cells, plasma cells,
T cells, monocytes, and M1macrophages than the low-risk
group. However, a higher proportion of cancer-infiltrating
NK cells resting, as well as more M0 macrophages were
found in high-risk patients. Studies have found that better
outcomes are associated with many types of cells such as
natural killer cells, tumor-infiltrating B cells, tumor-asso-
ciated neutrophils (TANs), as well as dendritic cells. Con-
versely, the presence of tumor-associated macrophages
(TAMs) was detrimental to the outcome [31]. (ese results
were mostly consistent with our patients between high-risk
and low-risk groups. As key and well-known regulatory
immune checkpoint molecules, programmed death-1 (PD-
1) as well as its ligand PD-L1 checkpoint pathway, in

addition to immune checkpoint genes, including CTLA-4
and LAG3 play important roles in maintaining the balance
between immune tolerance and autoimmunity [32]. (e
clinical benefit of immune checkpoint inhibitors (ICIs)
has been well documented for several solid tumor types,
such as malignant melanoma, lung, renal, urothelial, and
head and neck cancer [17, 33–35]. However, the clinical
benefits of ICIs for STSs have been controversial and
generally unsatisfactory. In our study, we compared the
immune checkpoint molecules between the high-risk
group and low-risk group, and detected that the low-risk
group exhibited much higher levels of expression of
PDCD1, PDCD1LG2, CTLA4, CD274, HAVCR2, and
IDO1. Notably, in STS patients, most reported studies
showed that patients with higher immune checkpoint
molecules are less likely to be benefited from immuno-
therapy, which was consistent with our findings. For
example, researchers have mainly studied immunohis-
tochemistry to evaluate these immune checkpoints and
have ascertained the appearance of PD-1 and PD-L1, as
well as their relation to poor outcomes [36–39]. (ere
have been studies of other immune checkpoints in several
tumors, however, there is only a limited number of reports
for STSs. (e expression of T cell immunoreceptors with
Ig and ITIM domains (TIGIT) has recently been assessed
in STSs. Despite TIGIT expression not being related to
survival, CD155, its dominant ligand, did show to be
related to a worse OS in the TCGA [40]. Yi et al. [41] used
immunohistochemistry to investigate the expression of
LAG3 and found that it is overexpressed on TILs. (ey
also found that the expression of LAG3 is associated with a
poor prognosis. Sporadically, PD-1 therapies might also
be more effective in patients whose immune checkpoints
are active. According to a study published in 2020, STS
patients who reacted to anti-PD-1 immunotherapy of
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Figure 10: Comparison of mutation profiles, TMB, and TIDE in high-risk and low-risk groups. (a) (e mutation profile of high-risk
individuals. (b) (e mutation profile of low-risk individuals. (c) Violin plot showing the difference of TMB between the high- and low-risk
groups. (d) (e K-M curves of H-TMB patients and L-TMB patients. (e) (e K-M curves of H-TMB patients and L-TMB patients in the
high-risk and low-risk groups. (f–h). Immunotherapy response between high- and low-risk groups. Violin plot illuminating the difference of
the dysfunction score, exclusion score, and TIDE between the high-risk and low-risk groups.
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pembrolizumab had PD-L1-expressing macrophages in
greater numbers than those who did not react [42].

In conclusion, due to the heterogeneity of STSs, a “one
size fits all” approach will probably be less likely to be
successful. In addition, a comprehensive immune profile, in
conjunction with an assessment of clinical characteristics
would be crucial for predicting the response and survival of
ICIs.

Numerous studies have shown that for patients with high
TMB, due to their relatively high number of neoantigens,
immunotherapy might be more effective [43–45]. Our
analysis of the patients’ mutation data proved that the TMB
was higher in high-risk patients compared with low-risk
patients, indicating that immunotherapy might be more
beneficial to high-risk patients. We also found that the
mutation rate was 74 (69.81%) of 106 in the high-risk groups
and the top three mutated genes were TP53, ATRX, and
TTN, while the mutation rate was 78 (60.47%) of 129
samples in the low-risk and the top tree mutated genes were
TP53, ATRX, and RB1. Notably, significantly more ATRX
and TTN mutations were detected in patients with high risk
than in patients with low risk. However, a completely op-
posite result was observed for mutation levels in TP53. TIDE
is a computational framework that models the two main
mechanisms of tumor immune escape, which can be used to
predict immunotherapy responses [46, 47]. High TIDE
predicts nonresponders in patients with suppressive cells
that inhibit T-cell infiltration. To better demonstrate the
predictive power of the risk score for immunotherapy, we
applied TIDE in our cohort. We were surprised to find that
there was a negative correlation between the TIDE and risk
scores, further suggesting that high-risk patients might react
more actively to immunotherapy.

In summary, it is demonstrated that the cuproptosis-
associated lncRNA signature can effectively predict the
tumor immune microenvironment in STS patients, and
high-risk patients are more likely to have immunosensitive
tumors that react more readily to immunotherapy. Fur-
thermore, we also discovered that although low-risk patients
had a better prognosis, however, they tend to have immu-
nologically insensitive tumors that are hard to be treated by
immunotherapy.

5. Conclusion

We developed a prognostic signature that has shown to be
independent, highly reliable, and may provide some insight
into future studies investigating the mechanisms between
lncRNA and cuproptosis. Meanwhile, this study may pro-
vide new perceptions for patients with soft tissue sarcoma
seeking immunotherapy.

5.1. Limitations. It is important to note that the study has
several limitations. (e first is that all analyses were per-
formed on a public database, therefore, to further improve
the reliability of the prediction results, we need to perform
more in vivo and in vitro experimental studies to validate the
newly established risk score model. Second, we were

temporarily unable to obtain information about the ex-
pression levels of other lncRNAs supporting soft tissue
sarcoma, clinical characteristics of patients, overall survival,
and follow-up.
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