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Bone marrow mesenchymal stem cells (BMSCs) have been identi�ed as a potential therapeutic approach to immune-related
diseases. Here, we show that BMSC-derived exosomes promote FOXP3 expression and induce the conversion of CD4+ Tcells into
CD4+CD25+FOXP3+ Treg cells, which is signi�cant for immunosuppressive activity. We found that miR-181a-5p is upregulated
in BMSC-derived exosomes and can be transferred to CD4+ Tcells. In CD4+ cells, miR-181a directly targets SIRT1 and suppresses
its expression. Moreover, downregulated SIRT1 enhances FOXP3 via protein acetylation. In conclusion, our data demonstrated
that BMSC-derived exosomal miR-181a is critical in the maintenance of immune tolerance. Furthermore, our results reveal that
BMSC-derived exosomal miR-181a induces the production of CD4+CD25+FOXP3+ Treg cells via SIRT1/acetylation/FOXP3.

1. Introduction

Pancreas transplantation is widely used for treating diabetes
mellitus [1, 2]. However, recurrent autoimmunity and
conventional allograft rejection are signi�cant obstacles to
pancreas transplantation [1, 2]. Learned tolerance is a
hallmark of the immune system, and the induction of im-
mune tolerance is considered a promising way to improve
the success of pancreas transplantation [3, 4].

MSCs are multipotent stromal cells that play a signi�cant
role in the immune response via immune suppression [5].
Zhang et al. showed the role of MSC-mediated immuno-
suppression in immune thrombocytopenia [6]. Mounayar
et al. suggested that PI3kα and STAT1 modulate immu-
nosuppressive activity by MSCs [7]. Exosomes are a type of
membrane microvesicles approximately 40–150 nm in di-
ameter [8] that are involved in Treg cell development [8, 9]
and can mediate cellular communication by carrying

miRNAs to neighboring cells [10]. Research suggests that
stem cell-derived exosomes could be a new strategy for the
treatment of neurodegenerative diseases [11]. In addition,
accumulating evidence indicates that MSC-derived exoso-
mal miRNAs are critical for immunosuppression regulation.
Du et al. showed that MSC-derived cells promote immu-
nosuppression of regulatory T cells in asthma [12]. Shahir
et al. indicated that MSC-derived exosomes could induce
mouse tolerogenic dendritic cells [13]. Moreover, MSC-
derived exosomal miRNAs function in immunosuppression
[14]. MSC-derived exosomes can transfer microRNAs
(miRNAs) to receptors, subsequently a¦ecting immune
homeostasis [15–17].

Moreover, previous studies found that MSCs seem to
play a signi�cant role in inducing FOXP3-expressing Treg
cells [18, 19]. Forkhead box protein 3 (FOXP3)-expressing
CD4+CD25+ Treg cells are critical for immune tolerance
maintenance, for example, Nemo-like kinase-enhanced
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FOXP3 participates in Treg cell-mediated immune tolerance
[20]. FOXP3+ Treg cells promote transplantation tolerance
via neuropilin-1 [21]. POH1 contributes to immune toler-
ance by maintaining FOXP3+ Treg cells [22]. Increasing
evidence suggests that the maintenance of FOXP3 expres-
sion is critical for Treg cell development and function. Jang
et al. indicated that Hhex suppresses Treg cells by inhibiting
FOXP3 [23]. Chen demonstrated that dysregulation of
FOXP3 by hypermethylation impairs the function of Treg
cells [24]. FOXP3 also plays a central role in immune tol-
erance; thus, stabilization of FOXP3 expression may provide
an acceptable way to maintain immune tolerance and im-
prove the success of pancreas transplantation [25]. Re-
searchers have demonstrated that FOXP3 expression and
activity could be controlled by posttranslational modifica-
tions. Moreover, posttranslational modifications of FOXP3
contribute to Treg cell function [26]. Kagoya et al. indicated
that arginine methylation of FOXP3 plays a crucial role in
the suppressive activity of Treg cells [27]. Lin et al. suggested
that kaempferol promotes the suppressive function of Treg
cells by inhibiting PIMI-mediated FOXP3 phosphorylation
[28]. In addition, the deacetylation of FOXP3 by sirtuin 1
(SIRT1) also functions in Treg cell regulation [29–31]. It was
reported that acetylation of FOXP3 modulates the sup-
pressive function of CD4+CD25+ FOXP3+ Treg cells [29, 30].
Zhang et al. showed that miR-23a-3p-mediated FOXP3
acetylation could induce Treg function [32]. In abdominal
aortic aneurysm (AAA), SIRT1-regulated acetylation of
FOXP3 modulates Treg function [30]. Forkhead box protein
3 (FOXP3)-expressing CD4+CD25+ Treg cells play an es-
sential role in immune tolerance maintenance [33]. Sus-
tained FOXP3 expression is the most specific marker for
characterizing CD4+CD25+FOXP3+ Treg cells [23, 34].
,erefore, the regulation of FOXP3 may provide a potential
method for immunosuppression. Epigenetic regulation,
such as acetylation andmethylation, of FOXP3 has been well
studied [35].

In this study, we uncovered the underlying mechanism
by which BMSC-derived exosomal miR-181a induces
CD4+CD25+FOXP3+ Treg cells via SIRT1/acetylation/
FOXP3, providing a potential way to improve the success of
pancreas transplantation.

2. Materials and Methods

2.1. Cell Culture. BMSCs were purchased from Cyagen
Biosciences (MUBMX-01001). ,en, the cells were cultured
in Mouse Mesenchymal Stem Cell Growth Medium
(MUCMX-90011, Cyagen Biosciences) and cultured at 37°C
and 5% CO2. CD34 and CD44 surface markers were used for
BMSC analysis.

2.2. BMSC-Exosome Isolation and Identification. When the
density of BMSCs reached approximately 80%, the culture
medium was discarded, and serum-free medium for BMSCs
was added. After culturing for 24 h, the supernatant was
aspirated into a 50ml centrifuge tube and subjected to
gradient centrifugation (300 g, 10min; 2000 g, 10min;

10000 g, 30min) at 4°C. ,e supernatant was transferred to
an exosome extraction ultracentrifuge tube and subjected to
centrifugation (100000 g, 70min). ,e supernatant was
discarded, and the sediment was washed with PBS and
subjected to centrifugation (100000 g, 70min). ,e exo-
somes were resuspended in 150 μl PBS and identified with
transmission electron microscopy as described previously
[36].

2.3.CD4+TCell IsolationandPurification. CD4+ Tcells from
the spleen were isolated using magnetic activated cell sorting
(MACS). Briefly, a spleen cell suspension was obtained by
grinding the tissue. After lysis, the cells were resuspended in
PBE buffer. Anti-CD4 magnetic beads (Miltenyi) were used
to isolate CD4+ T cells following the manufacturer’s
protocol.

2.4. Flow Cytometry. Flow cytometry analysis was per-
formed to determine the percentage of Treg cells in CD4+
T cells. Treg cells were measured by flow cytometry with
FOXP3+ as the marker. Briefly, the cells were first stained
with anti-CD4-FITC (ab218745, Abcam), anti-CD25-PE
(ab210334, Abcam), and anti-FOXP3-APC (ab200568,
Abcam) antibodies. Fluorescence signals were measured by a
FACS Fortessa system (BD).

2.5. Cell Transfection. Cells were transfected with miR-181a
inhibitor (5′-ACUCACCGACAGCGUUGAAUGUU-3′)
andmiR-181a NC (5′-CAGUACUUUUGUGUAGUACAA-
3′) using Lipofectamine 2000 reagent (Invitrogen) according
to the manufacturer’s instructions.

2.6. Reverse Transcription-Quantitative (RT-q) PCR Analysis.
RT-qPCR was used to examine the expression of miR-181a.
Total RNA was isolated using TRIzol reagent (R0016,
Beyotime), and 1 μg RNA was used as a template for cDNA
synthesis using SuperScript III RT (18080093, Invitrogen).
,e primers used in this study were as follows: miR-181a-5p
forward primer: 5′-CGGCAACATTCAACGCTGT-3′ and
reverse primer: 5′-GTGCAGGGTCCGAGGTATTC-3′; U6
forward primer: 5′-CTTCGGCAGCACATATAC-3′ and
reverse primer: 5′-GAACGCTTCACGAATTTGC-3′. RT-
qPCR was performed at 95°C for 3min, 95°C for 5 s, 56°C for
10 s, 75°C for 25 s (39 cycles), 65°C for 5 s, and 95°C for 50 s.

2.7.Western Blotting. Total proteins were extracted by RIPA
lysis buffer (Beyotime, P0013B), and the concentration of the
proteins was measured by a BCA kit (Beyotime, P0012).
Equal amounts of protein lysates were loaded on a sodium
dodecyl sulfonate-polyacrylamide gel (SDS–PAGE) and
transferred to a polyvinylidene fluoride membrane. ,e
membrane was blocked with 5% nonfat milk and incubated
with antibodies at 4°C overnight. ,e primary antibodies
used were as follows: anti-CD81 (1 :1000, Cell Signaling
Technology, 56039), anti-CD63 (1 :1000, Abcam, ab68418),
anti-CD9 (1 :1000, Abcam, ab223052), anti-SIRT1 (1 :1000,
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Abcam, ab263965), and anti-FOXP3 (1 : 2000, Abcam,
ab10901). GAPDH was used as a loading control. ,en, a
horseradish peroxidase (HRP)-labeled secondary antibody
was used to detect the specific protein bands.

2.8. Immunoprecipitation. ,e acetylation of FOXP3 was
detected using an IP kit (Absin, abs955-50 tests) according to
the manufacturer’s instructions. Briefly, the collected cells
were washed with PBS and lysed with IP lysis buffer on ice
for 5min. Cells were scraped from the plate and transferred
to a microcentrifuge tube. After ultrasonic disruption 3
times, the cells were subjected to centrifugation (14,000 g,
10min) at 4°C, and the supernatant (cell lysate) was
transferred to a new tube. Cell lysates (200–1000 µg total
protein) were mixed with anti-FOXP3 antibody. After
overnight incubation at 4°C, the protein A/G plus agarose
was added to the sample and incubated on a rotator at 4°C
for 2 hours. ,e mixture was centrifuged at 12,000 g for 1
minute to retain the precipitate, and it was washed with wash
buffer. ,e acetylation of FOXP3 was determined by
Western blotting with antiacetylated-lysine antibody (Cell
Signaling Technology, 9941) and anti-FOXP3 antibody
(Abcam, ab10901).

2.9. Luciferase Reporter Assay. ,e wild (WT) or mutant
(MUT) type of the 3′-UTR of SIRT1 was inserted into the
pGL3 promoter vector (Promega, E1761). SIRT1 WT or
SIRT1 MUTand miR-181a control or miR-181a mimic were
transfected into HEK-293T cells (Procell, CL-0005). ,e
luciferase activities were measured by the Dual-Luciferase
Reporter Assay System.

2.10. Statistical Analysis. All of the data are presented as the
mean± SD as indicated for at least three independent ex-
periments and were tested with Student’s t-test for between-
group differences. P< 0.05 was considered statistically
significant.

3. Results

3.1.CharacterizationofBMSCsandBMSC-DerivedExosomes.
We first identified BMSCs by detecting the CD34 and CD44
surface markers of the cells (Figure 1(a)). Exosomes derived
from MSCs were identified with transmission electron
microscopy (Figure 1(b)). Western blotting results indicated
that the exosome markers CD9, CD63, and CD81 in the
exosomes were significantly higher than those in the BMSC
lysate (Figure 1(c)).

3.2. miR-181a Is Highly Expressed in BMSC-Derived
Exosomes. To determine the expression of miR-181a in the
BMSC-derived exosomes, we first performed RT-qPCR to
detect miR-181a expression in the BMSC-derived exosomes
and BMSC lysates. As shown in Figure 2(a), the expression
of miR-181a was upregulated in the BMSC-derived exo-
somes. In addition, after coculturing with the BMSC-derived

exosomes, miR-181a expression was increased in the CD4+
cells (Figure 2(b)).

3.3. BMSC-Derived ExosomemiR-181aTreatmentTriggers the
Conversion of Effector T Cells into FOXP3+ Expressing Tregs.
We next determined the role of MSC-derived exosome miR-
181a (BMSC-exo-miR-181a) in the stimulation of
CD4+CD25+FOXP3+ Treg cells. CD4+ cells were treated with
BMSC-exo-miR-181a, and the frequency of
CD4+CD25+FOXP3+ Treg cells was analyzed by flow
cytometry. As shown in Figure 3(a), the frequency of
CD4+CD25+FOXP3+ Treg cells in the BMSC-exo-miR-181a
treated group was higher than that in the BMSC lysate
treated group.

We next knocked downmiR-181a by miR-181a inhibitor
transfection into BMSCs and isolated exosomes from the
knockdown BMSCs. ,e expression of miR-181a in exo-
somes derived from miR-181a inhibitor-transfected BMSCs
was measured (Figure 3(b)). After inhibition of miR-181a,
the exosomes no longer increased the frequency of
CD4+CD25+FOXP3+ Treg cells (Figure 3(c)). ,ese results
revealed the function of BMSC-exo-miR-181a in main-
taining CD4+CD25+FOXP3+ Treg cells.

3.4. BMSC-Derived Exosomal miR-181a Regulates FOXP3 via
SIRT1-Mediated Acetylation. miRNAs were previously re-
ported to modulate target genes by binding to their 3′UTRs.
Based on bioinformatics analysis, miR-181a could directly
target a deacetylase, SIRT1 (Figure 4(a)). According to the
dual-luciferase reporter assay, there was a relationship be-
tween miR-181a and SIRT1 (Figure 4(b)). After BMSC-exo-
miR-181a treatment, the expression of SIRT1 in CD4+ cells
decreased (Figure 4(c)). Inhibition of miR-181a rescued
SIRT1 expression (Figure 4(d)).

Accumulating evidence has demonstrated that SIRT1
modulates FOXP3 expression via protein deacetylation.
Here, we detected FOXP3 and acetylation levels in CD4+
cells treated with BMSC-exo-miR-181a. BMSC-exo-miR-
181a promoted FOXP3 and acetylation (Figures 4(c) and
4(e)). ,e suppression of miR-181a decreased FOXP3 and
acetylation levels (Figures 4(d) and 4(f )).

4. Discussion

Here, we demonstrate the effect of exosomes derived from
bone marrow mesenchymal stem cells (BMSCs) on im-
munosuppressive regulation. Our results indicate that
BMSC-derived exosomes can induce the transformation of
CD4+ T cells into CD4+CD25+FOXP3+ Treg cells.
CD4+CD25+FOXP3+Treg cells play a key role in the ag-
gressiveness of diseases and cancers by regulating the im-
mune response. In recent years, with advances in research,
the regulatory mechanism of CD4+CD25+Foxp3+Treg cells
in the process of controlling autoimmunity and maintaining
immune tolerance has been gradually understood [37, 38].

In our study, it was demonstrated that miR-181A was
highly expressed in BMSC-derived exosomes, and miR-
181A, miR-181b, miR-181c, and miR-181D jointly formed
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Figure 1: Characterization of BMSC and BMSC-derived exosomes. (a) CD34, CD44, and CD90 surface markers of the cells measured by
§ow cytometry. (b) Exosomes isolated from BMSCs detected by transmission electron microscopy. (c) Exosome diameter measured by
dynamic light scattering (DLS). (d) Expression of exosomemarkers detected by §ow cytometry. (e) Expression of exosomemarkers detected
by Western blot.
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the miR-181 family, which is one of the most abundant
miRNAs in lymphatic tissues [39]. mir-181a plays an im-
portant role in B cell development in bone marrow [40, 41]

and immune function [42]. We found that miR-181A can be
internalized by CD4+ cells and that miR-181A in CD4+ cells
directly target SIRT1. SIRT1 is a protein deacetylase that
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Figure 3: BMSC-derived exosome miR-181a treatment triggers the conversion of e¦ector T cells into FOXP3+-expressing Tregs. (a) �e
frequency of CD4+CD25+FOXP3+ Treg cells in CD4+ T cells cocultured with BMSC-derived exosomes analyzed by §ow cytometry.
∗∗∗P< 0.001. (b) miR-181a expression in CD4+ T cells treated with NC or miR-181a inhibitor-transfected BMSC-derived exosomes
measured by RT-qPCR assay. ∗∗∗P< 0.001. (c) �e frequency of CD4+CD25+FOXP3+ Treg cells in CD4+ T cells treated with NC or miR-
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regulates protein expression through deacetylation. miRNA
and host cell protein expression are important regulatory
mechanisms. Studies have shown that HCV impairs the
T cell response through miR-181a-mediated DUSP6 ex-
pression [43]. miR-181A not only regulates T cell

response-related proteins but also balances immune-medi-
ated virus clearance with in§ammatory damage and en-
hances immune tolerance [44].�is study demonstrated that
miR-181A has a targeted relationship with SIRT1, a
deacetylase that regulates protein expression. In future
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Figure 4: BMSC-derived exosomal miR-181a regulates FOXP3 via SIRT1-mediated acetylation. (a)�e binding site of miR-181a and SIRT1
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studies, the proteins related to miR-181A that have roles in
the process of immune tolerance can be further studied, and
the related mechanisms can be explored. Our results suggest
that the suppression of SIRT1 enhances FOXP3 activity by
increasing acetylation levels. In addition, our results suggest
that BMSC-derived exosomes trigger
CD4+CD25+FOXP3+Treg cells through mir-181A/SIRT1-
mediated FOXP3 acetylation.

Collectively, our data show that exosomes from bone
marrow mesenchymal stem cells (BMSCs) induce the
transformation of CD4+ T cells into CD4+CD25+FOXP3+
Treg cells. miR-181a is preferentially expressed in exosomes
derived from bone marrow mesenchymal stem cells and can
be transferred to CD4+ T cells. miR-181a directly targets
SIRT1 in CD4+ T cells and reduces SIRT1 expression. In-
hibition of SIRT1 enhances FOXP3 expression by promoting
acetylation of FOXP3. We found that bmSC-derived exo-
somes carrying miR-181A induced the production of
CD4+CD25+FOXP3+ Treg cells by regulating FOXP3 ex-
pression. In addition, we revealed the mechanism by which
exosomal miR-181A enhances FOXP3 expression through
sirT1-catalyzed acetylation. A limitation of this study is that
we did not verify this mechanism in vivo.
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