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Gliomas are mixed solid tumors composed of both neoplastic and nonneoplastic cells. In glioma microenvironment, the most
common nonneoplastic and infiltrating cells are macrophages and microglia. Microglia are the exact phagocytes of the central
nervous system, whereas macrophages are myeloid immune cells that are depicted with ardent phagocytosis. Microglia are
heterogeneously located in almost all nonoverlapping sections of the brain as well as the spinal cord, while macrophages are
derived from circulating monocytes. Microglia and macrophages utilize a variety of receptors for the detection of molecules,
particles, and cells that they engulf. Both microglia and peripheral macrophages interact directly with vessels both in the
periphery of and within the tumor. In glioma milieu, normal human astrocytes, glioma cells, and microglia all exhibited the
ability of phagocytosing glioma cells and precisely apoptotic tumor cells. Also, microglia and macrophages are robustly
triggered by the glioma via the expression of chemoattractants such as monocyte chemoattractant protein, stromal-derived
factor-1, and macrophage-colony stimulating factor. Glioma-associated microglia and/or macrophages positively correlated
with glioma invasiveness, immunosuppression, and patients’ poor outcome, making these cells a suitable target for
immunotherapeutic schemes.

1. Introduction

Gliomas are diverse solid tumors composed of both neoplas-
tic and nonneoplastic cells [1]. In glioma milieu, the most
common nonneoplastic and infiltrating cells are macro-
phages and microglia [2–4]. In the malignant glioma milieu,
both resident microglia and macrophages derived from cir-
culating monocytes form the glioma-infiltrating immune
cells and are the key contributors to glioma progression [5,
6]. Microglial cells usually are the participant in the early
stage, while the macrophages derived from circulating
monocytes are the key participant in the later stage to pro-
mote glioma growth [5, 6].

Microglia and macrophages are vigorously triggered by
the glioma via the expression of chemoattractants such as
monocyte chemoattractant protein (MCP-1, also known as
CCL2), stromal-derived factor-1 (SDF-1), and
macrophage-colony stimulating factor (M-CSF) [7, 8]. A

study revealed that glioma-associated microglia and/or mac-
rophages (GAMs) exhibit significant diversity as well as plas-
ticity and show a partially known distinctive phenotype,
only partly ascribable to inflammatory (M1) or alternative
(M2) polarization secretory forms [9]. Circadian rhythm is
a known phenomenon that regulate and maintain homeo-
stasis in normal cells as well as tissues [10–12].

Studies have demonstrated that it stimulates cancer-
relevant processes like cell proliferation and survival, DNA
repair, metabolism, and inflammation [11, 12]. Circadian
locomotor output cycles kaput (CLOCK) and brain and
muscle ARNT-like 1 (BMAL1) also identified as aryl hydro-
carbon receptor nuclear translocator-like protein 1
(ARNTL) are two fundamental transcription factors of the
circadian mechanism, which comprise of a heterodimeric
complex [10, 13]. This complex was capable of triggering
the secretion of the period (PER) and cryptochrome (CRY)
genes, which eventually constituted a negative feedback loop
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that blocked the activity of CLOCK :BMAL1 complex [10,
13]. Microglia and macrophages are key determinants of this
mechanisms [10, 13].

This review focuses on the pivotal role of microglia and
macrophages in glioma pathogenesis as well as therapy.
The “Boolean logic” was utilized to search for article on
the subject matter. Most of the articles were indexed in
PubMed with strict inclusion criteria being the role of
microglia and macrophages at the glioma microenviron-
ment. The search terms were microglia and macrophages
and/or glioma.

2. Microglia

Microglia are the precise phagocytes of the central nervous
system (CNS) [14, 15]. They are heterogeneously located in
almost all nonoverlapping sections of the brain as well as
the spinal cord [14–16]. Functionally, they are capable of
detecting as well as engulfing extracellular material such as
tumors cells, cell debris, apoptotic cells, and microbes
(Figure 1) [15]. Thus, they provide significant support to
the function as well as structure of the CNS [15]. Studies
have demonstrated that microglial cells comprehensively
communicate with neuronal circuits in developing as well
as in the adult brain [16–18]. Furthermore, microglia trig-
gered neuronal apoptosis, eradicated less active synaptic
connections such as synaptic pruning, and stimulated neu-
ronal activity [19–21].

Also, studies revealed that microglia stimulated synapse
formation in the mature brain [18, 22, 23]. Microglia form
a 3-dimensional network in the CNS, and they communicate
via hemichannels as well as gap junctions (Figure 1) [15, 24,
25]. Studies have shown that the accumulation of microglial
at a pathological area is initiated by “danger signals,” such as
extracellular ATP as well as its derivatives, which target pur-
inoreceptors of the adenosine diphosphate receptor (P2Y)
family (Figure 1) [26, 27]. The hemichannels permit expres-
sion as well as uptake of glutamate (GLU) and ATP which
are necessary initiates of communication between neurons
and astrocytes (Figure 1) [15]. The gap junctions also permit
microglia to function as a syncytium [15]. Nevertheless, the
significance and the level of these interconnections need fur-
ther studies.

Transcriptome study on the mouse microglia showed
distinctive qualities of recently isolated brain-derived cells,
while the cultured cells showed characteristic of stimulated
microglia [15, 28]. Transcription factors (TFs) such as
Rhox5, Cebpe, E2f6, Hoxc6, Phf17, and Ppargc1b are
expressed by microglia (Figure 1) [15, 28]. Furthermore, sev-
eral membrane proteins (MPs) such as the ion transporters
Slco4a1, Slc30a5, and Mcoln3 have been recognized in
microglia that are distinctive and not secreted by other mac-
rophages (Figure 1) [15, 28]. Also, the lipid metabolism
associated cell membrane molecules (LMACMs) Lrp8,
Lpcat3, Stab1, and Pap2c, and the putative efflux cell mem-
brane receptor (PECMR) Mfsd10 is expressed by microglia
(Figure 1) [15, 28].

Resident microglia secrets pattern recognition receptors
(PRRs), which sense pathogen-associated molecular patterns

(PAMPs) like microbial pathogens as well as damage-
associated molecular patterns (DAMPs) such as the adenine
nucleotides (ATP/ADP) (Figure 1) [16, 29].

RodrÍguez et al. demonstrated that PAMPs and DAMPs
are influenced by glycans recognized as self-associated
molecular patterns (SAMPs), which act as modifiers in
tumor cells, blocking immune response in their milieus
(Figure 1) [29]. They further indicated that the utilization
of glycans by cancer cells facilitates immune suppression
by regulating the differentiation of GAMs [29].

Ghosh et al. revealed that microglia were capable of pro-
ducing ATP via glycolysis as well as oxidative phosphoryla-
tion (OXPHOS), highly secreted glucose transporter
(GLUT)-5, which had an extreme affinity for fructose
(Figure 1) [30]. It was established that microglial population
is regulated via signals originating from the binding of col-
ony stimulating factor 1 (CSF1) as well as interleukin- (IL-
) 34 to the microglial CSF1 receptor (CSF1R) (Figure 1)
[31–33]. Furthermore, mice defective of CSF1R or IL-34 or
the CSF1R adaptor protein DNAX activation protein of
12 kDa (DAP12) had significantly decreased quantities of
tissue macrophages as well as microglia (Figure 1) [31–33].
Transcription factor, interferon regulatory factor- (IRF-) 8,
was responsible for the development of microglia because,
IRF8-deficient mice exhibited expressively decreased
microglia concentration in adults (Figure 1) [31, 34].

3. Anatomical Localization of
CNS Macrophages

In the CNS, macrophages are categorized into perivascular
macrophages, meningeal macrophages, macrophages of the
circumventricular organs, and macrophages of the choroid
plexus according to their anatomical locations [35]. Studies
have shown that all CNS macrophages located in the peri-
vascular or Virchow-Robin spaces, subdural meninges, and
choroid plexus originated from short-lived blood monocytes
after birth which often rapidly substituted by bone marrow-
(BM-) derived cells [35–37].

Studies have further demonstrated that perivascular and
meningeal macrophages are produced from embryonic yolk
sac precursors, while choroid plexus macrophages have dual
embryonic as well as adult hematopoietic origins [35, 38,
39]. A study established that CNS are often restricted at
the interface between the parenchyma and the circulation
[39]. Studies have demonstrated that perivascular macro-
phages exist in the CNS parenchyma after BM transplanta-
tion in chemotherapeutical conditioning milieu [40, 41].
CNS macrophages comprise of a complex network of het-
erogeneous cell populations, and together with other
blood-borne myeloid cells that infiltrate the brain under cer-
tain conditions, macrophages may potentially lead to novel
therapies for brain diseases [35, 38, 39].

BM chimeras using irradiation of the recipient exhibited
that macrophages at CNS boundaries originated from blood-
borne myeloid cells during adulthood [42, 43]. Goldmann
et al. demonstrated that transplantation of BM from
Acta1-GFP mice resulted in robust dissemination of
donor-derived GFP+Iba-1+ macrophages in the subdural

2 Journal of Oncology



meninges, perivascular spaces, and choroid plexus, while
microglial switch was restricted [35]. Kvisten et al. investi-
gated the histopathological aspects of GAMs in human
GBMs with emphasis on the number, distribution, and mor-
phology of Iba1- and CD68-immunoreactive GAMs, as well
as the relationship with tumor growth estimated from mag-
netic resonance imaging scans [44].

4. Microglia and Macrophage Subtypes

Microglia exists in three distinct kinds which serve diverse
functional roles in the CNS [45]. These three microglia
forms are amoeboid, ramified, and reactive microglia [45].
The amoeboid microglia are linked to the embryonic CNS
development [46, 47]. These cells composed of a round cell
body, pseudopodia, and a thin filopodia-like processes [46,
47]. They contain several lysosomes and attributes sugges-
tive of a motile phagocytic phenotype [46, 47]. These cells
are seen late in conception and vanish quickly after birth
in rats [46, 47]. These cells function as tissue histogenesis
responsible for the elimination of inapt as well as unessential
axons and also aid in the advancement of axonal migration
as well as growth [48–50]. These cells change into ramified
microglia in the adult CNS [51].

On the other hand, ramified microglia exist in copious-
ness quantities in the brain parenchyma and comprise of
about 10-20% of the entire quantity of glial cells in the adult
CNS [52]. These cells types are tin and round in nature con-
sisting of copious branching processes with very minute
cytoplasm [53]. These cells showed pinocytotic actions as
well as confined motility and are preserved via local cell divi-

sion as well as the recruitment of circulating peripheral
blood monocytes [45, 54]. They contribute to metabolite
removal as well as the elimination of toxic factors secreted
from injured neurons and are capable of transforming into
neurons, astrocytes, or oligodendrocytes [45, 55].

Reactive microglia are rod-like, with nonbranching pro-
cesses and copious lysosomes as well as phagosomes [56,
57]. These reactive cells constitute a cluster of macrophages
related to brain injury as well as neuroinflammation [56, 57].
Also, reactive microglia secrete MHC class II antigens as well
as other surface molecules comprising of CD40, B7, and
ICAM-1which are essential for antigen presentation [58,
59]. Furthermore, reactive microglia express inflammatory
mediators, which coordinate the cerebral immune response
[58, 59]. Moreover, reactive microglia often amass at the site
of damage where they participate in neuroprotective func-
tion by phagocytosing injured cells as well as debris after
an injurious event [60].

Microglial subtypes are also defined by differential gene
expressions into keratan sulfate proteoglycan- (KSPG-)
microglia, Hox8b-microglia, CD11c-microglia, TREM2-
microglia, microglia-supporting neurogenesis, single-cell
RNAseq data, and proliferative-region-associated microglia
(PAM) [61]. On the other hand, M1 or classically activated
macrophages were subgrouped in M1a and M1b [62], while
M2 or alternative activated macrophages are subdivided into
four distinct subtypes such as M2a, M2b, M2c, and M2d,
depending on the type of inducing agent as well as the
expressed markers [63]. It is worth noting that the associa-
tion between amoeboid, ramified, and reactive microglia
and glioma needs urgent investigation. Also, the association
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between M1 macrophages like M1a and M1b as well as M2
macrophages subtype like M2a, M2b, M2c, and M2d and gli-
oma needs further investigation.

5. Differences between Microglia
and Macrophages

Microglia, which are widespread in the CNS, originate from
yolk sac progenitors and migrate to the brain during the
early stages of development [14, 64]. They are the resident
macrophages of the CNS and constitute about 20% of the
entire quantity of cells in the CNS [14, 64]. Studies have
shown that these cells are scattered in all regions of the
brain, and their concentration differs according to the area,
varying from about 5% in the corpus callosum to about
12% in the substantia nigra [14, 64–66]. These cells conserve
CNS homeostasis by modulating synapses based on neuro-
nal activity as well as the concurrent intercommunication
between neurons and astrocytes [64, 65].

Studies have demonstrated that microglial cells come
together during fetal development, childhood, and puberty
resulting in “synaptic pruning” as well as the generation of
neurotrophic factors [64, 67, 68]. Microglia share many
functions with peripheral macrophages; polarized microglial
populations can be differentiated from polarized macro-
phages by protein secretory profiles, phagocytic capability,
and response to injuries [69, 70]. Moreover, M2 microglia
appear to offer more protection than M2 macrophages
in vitro and exhibit a higher affinity to conserve their M2 sta-
tus [69, 70]. Studies have established that both microglia and
bone marrow-derived macrophages in the CNS are associ-
ated with phenotype switching but may participate differ-
ently to CNS repair in vivo animal models [71–73].

Macrophages are myeloid immune cells that are depicted
with fervent phagocytosis. It was speculated that macro-
phages are derived from circulating monocytes based on fact
that, in pathological situations, monocytes produce macro-
phages [74, 75]. Monocytes, specifically the Ly6Chi mono-
cytic subclass, exhibit a short half-life just like neutrophils
[74, 76]. Thus, these cells compose of precursor reservoir
for tissue-resident mononuclear phagocytes. Transplanta-
tion investigations exhibited near-total reorganization of tis-
sue macrophage populations, with the exclusion of
Langerhans cells as well as microglial cells [74, 77]. Microg-
lia perform functions analogous to macrophages such as
phagocytosis as well as antigen presentation [78]. They also
perform extra functions in homeostasis like the expression
of neurotrophic factors that are fundamental for both nor-
mal preservation and response to pathological disorders
[78, 79].

Microglia are peripatetic within their own distinctive
zones and totally scan the brain parenchyma countless times
a day [78, 80]. Thus, they function as fundamental compo-
nent to normal parenchymal immune surveillance [80].
Studies have demonstrated that microglia are sensitive to
ATP, potassium, and purinoceptor inhibitors and are capa-
ble of sensing neuronal cell death as well as other patholog-
ical features with high acuity while scanning [81, 82].
Microglia are transformed into amoeboid phenotypes upon

stimulation, and they act analogously like macrophages with
extreme metabolic rate, quick migration to the lesion source,
and expressing of IL-6, IL-1β, and tumor necrosis factor
alpha (TNFα) before phagocytosing as required [78, 83].

RodrÍguez et al. indicated that the use of CD45 anti-
bodies exhibited low secretory levels for resident microglia
(CD45low) as well as high secretory levels for CNS macro-
phages (CD45high) [29]. Greter et al. established that leuko-
cyte antigen CD45 was upregulated in activated microglia
and thus could be used as a marker to differentiate microglia
from blood-derived immigrated macrophage populations as
well as blood monocytes which had a decreased secretion of
the common leukocyte antigen CD45 [84]. Bowman et al.
also demonstrated that CD49D was deficient in microglia
and can be used to differentiate them from CNS macro-
phages in mouse as well as human brain tumors [85].

Studies have demonstrated that ionized calcium-binding
adaptor molecule (Iba1) which is extremely preserved in
mammals was an advantageous and specific marker for the
recognition of microglia, since its detection [86, 87]. Several
studies have further demonstrated that Iba1 is not secreted
in blood monocytes, but often also in blood-derived tissue
macrophages as well as dendritic cells [84, 88, 89]. Studies
have demonstrated that similar microglia markers such as
the major histocompatibility complex (MHC) class II, the
fractalkine receptor (CX3CR1), and Sall1can be utilized to
differentiate parenchymal microglia from border-associated
macrophages [26, 90].

Macrophages are also recruited glioma milieu from
peripheral hematopoietic stem cell compartments although
microglia are the resident tissue macrophage of the brain
[38, 91]. Microglia and macrophages originate from different
location but exhibit similar functions in glioblastoma multi-
forme (GBM) [38, 91]. Thus, brain macrophages are also
associated with brain homeostasis as well as immune
responses in pathological states [38]. Nevertheless, in
GBM, microglial cells and infiltrating macrophages amass
within and around the tumor mass, but they are ineffective
in fighting tumor development or can even strengthen the
tumor [91].

6. Microglia and Macrophages
Subtypes in GBM

GBM milieu often compose of both microglia and macro-
phages which both have classically been subdivided into
M1 (proinflammatory) as well as M2 (immunosuppressive)
phenotypes to distinguish them as either possessing antitu-
mor or tumor-promoting (protumor) activities, correspond-
ingly [78]. Mills et al. were the first to propose the M1/M2
dichotomy as a way to differentiating the phenotypic prefer-
ences of macrophages from the perspective of T helper
(Th)1 as well as Th2 lineages in CD4+ T cells [92]. They
indicated that M1 denoted macrophages with Th1 linages
which generated inflammatory stimulated nitric-oxide spe-
cies (iNOS), whereas M2 denoted macrophages with Th2
which generated more cell division-inducing polyamines,
like ornithine [92].
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It was established that macrophages can be polarized
into M1 or M2 phenotype depending on the stimulus [7,
93]. M1 macrophages are referred to as classically activated,
or proinflammatory macrophages, and are induced in
response to inflammatory stimuli such as lipopolysaccha-
rides (LPS), interferon- (IFN-) γ, and GM-CSF [7, 93]. Fur-
thermore, M1 macrophages express proinflammatory
cytokines like TNFα, IL-6, and CXCL10, present antigen to
immune cells and phagocytize tumor cells [7, 93]. M2 mac-
rophages are referred to as alternatively induced, or immu-
nosuppressive, and are stimulated in response to stimuli
such as IL-4, IL-13, and M-CSF [7, 93]. Moreover, M2 mac-
rophages express immune-suppressive cytokines like IL-10
as well as transforming growth factor-beta (TGF-β), pro-
mote T regulatory (Treg) cell differentiation, and assist in
tumor progression. These macrophage features are analo-
gous to microglia [7, 93].

Studies have demonstrated that the alternative macro-
phage activation had subdivisions like M2a which is respon-
sible for Th2 responses, type II inflammation, killing of
pathogens, and allergy, M2b which is also responsible for
Th2 activation as well as immunoregulation, and M2c which
is responsible for immunoregulation, matrix deposition, and
tissue remodeling [94–96]. These polarized subpopulations
of macrophages vary in terms of receptor secretion, effector
function, cytokine, and chemokine generation [94, 97]. Stud-
ies revealed that microglial and macrophage populations are
characterized by CD11b+/CD45dim (microglia) and CD11b+/
CD45high (macrophages) phenotypes and constitutes about
13-34% (microglia) as well as about 4.2-12% (macrophages)
of the tumor cell mass in experimental gliomas [98, 99].

7. Glioma-Associated Microglia and/or
Macrophages at Glioma Microenvironment

Majority of the nonneoplastic cells in glioma are GAMs
either of peripheral origin or brain resident microglia [1,
94, 100]. GAMs constitute about 30% of the entire glioma
mass and partakes in numerous functions in GBM progres-
sion such as motility, proliferation, survival, and immuno-
suppression (Figure 2) [1, 94, 100]. Furthermore, the GAM
structure consists of a collection of differentiation 15% of
CD11b+/CD45dim-activated resident microglia which are
mostly localized in peritumoral zones, as well as 85%
CD11b+/CD45high-infiltrative peripheral derived monocyte
macrophages which are mainly localized in perivascular
zones [101].

Kvisten et al. observed that, in specific glioma regions,
there were more GAMsCD68 in the slow-growing GBMs,
whereas the quantities of GAMsIba1 were analogous similar
to slow- and fast-growing gliomas [44]. There were expres-
sively more GAMsIba1 compared to GAMsCD68 (Figure 2)
[44]. It was revealed that the lba1 antibody interacts with
an ionized calcium-binding protein characteristic for both
resting and stimulated microglia/macrophages, while anti-
CD68 label lysosomal membranes are detected in these cells
[102]. It was further observed that phenotypes and activa-
tion states of GAMs were more relevant [102]. Moreover,
ramified GAMs were more predominate in the peripheral

parts of the tumor compared to the central parts where
GAMs predominantly had amoeboid phenotypes [44].

Studies have demonstrated that most GAMs were situ-
ated in perivascular regions and were best envisaged in
CD68 stained sections, particularly in the infiltration zone
[103–105]. This reflected the existence of GAMs in perivas-
cular niches, in which there was an association between dif-
ferent cell types [103–105]. Studies further revealed that
GAMs were mostly diffusely disseminated although they
concentrated in microanatomical compartments coherent
with perivascular as well as per necrotic niches [104, 106].
Hambardzumyan et al. observed that the blood-brain barrier
was frequently compromised resulting in an infiltration of
peripheral macrophages in CNS diseases [94].

Studies have demonstrated that GAMs display a mixed
M1/M2 phenotype, depending on the time as well as stage
of disease in numerous GBM models (Figure 2) [9, 98,
107]. Hattermann et al. detected that GAMs from GBM
patients secreted both M1 and M2 markers concurrently
when freshly isolated GAMs from human GBM patients
were compared to M1- and M2-polarized human macro-
phages [98]. Szulzewsky et al. established that GAMs from
both murine glioma models exhibited gene secretion pattern
that partially overlapped with specific M1 and M2 subsets
(Figures 2) [9]. It was further revealed that GAM secretory
profiles were very distinctive in glioma-associated pheno-
type, independent of conventional macrophage subsets [9].
The secretion of CD45 is the most frequently used method
to differentiate resident microglia from infiltrating GAMs
from the periphery. Microglia often exhibit mid to low
CD45 secretion, while GAMs exhibit high CD45 secretion
[4, 7].

GAMs were capable of augmenting the production of
anti-inflammatory molecules like TGF-β1, arginase 1
(ARG1), and IL-10 which are associated with alternative
macrophage activation and molecules like vascular endothe-
lial growth factor (VEGF), matrix metalloproteinase
(MMP)-2, MMP9, and MT1-MMP which supports tissue
remodeling and angiogenesis (Figure 2) [8, 9]. Nevertheless,
GAMs were capable of producing proinflammatory mole-
cules like TNFα, IL-1β, and CXCL10 (Figure 2) [6, 8, 108].
Furthermore, GAMs were capable of augmenting the secre-
tion several genes like Vegfa and Hgf which implicated in
angiogenesis, ARG1 and Tgfb3 which are implicated in
immune suppression, and MMP2, MMP14, and Ctgf which
are implicated in tumor invasion (Figure 2) [9]. Thus, GAMs
promote tumor growth instead of inhibiting tumor growth
via the expression factors that support glioma invasion or
immunosuppressive factors [6, 108].

Szulzewsky et al. demonstrated that genes like glycopro-
tein nonmetastatic b (GPNMB) and secreted phosphopro-
tein 1 (SPP1) were highly secreted by GAMs in different
glioma mouse models as well as human GBM (Figure 2)
[9]. They indicated that high secretion of these genes corre-
lated well with shorter prognosis in patients with glioma [9].
They also established that GL261 cells secrete GPNMB at a
very high concentrations in their experience involving
GL261 glioma models [9]. Nevertheless, in their RCAS-
PDGFb glioma mouse model, as well as in human GBM
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samples, GAMs were the major source of GPNMB secretion
in all paired experimental samples [9].

Ripoll et al. demonstrated that GPNMB functions as a
negative modulator of proinflammatory macrophage stimu-
lated in RAW264.7 cells [109]. Therefore, high GPNMB
secretion in GAMs was capable of inducing protumorigenic
phenotypes of GAMs [109]. Studies have demonstrated that
GPNMB was capable of blocking T cell stimulation via direct
cell-cell intercommunication of antigen-presenting cells
(APCs) and T cells resulting in immunosuppressive milieu
in gliomas (Figure 2) [110, 111]. SPP1 was also recognized
as a ligand for CD44, and SPP1-CD44 communication aug-
mented the stemness of CD44 secretory glioma-stimulatory
cells (Figure 2) [112]. Furthermore, it was established that
GAMs and not any other cells in the tumor microenviron-
ment were the principal source of SPP1 secretion in gli-
oma [112].

8. Microglia and Macrophages in Glioma
Invasion and Angiogenesis

Cancer invasion is a cell- and tissue-driven phenomenon via
which the physical, cellular, and molecular factors adapt as
well as respond during the entire development of the disease
[113]. Cancer invasion is induced and sustained via signal-
ing pathways that regulates cytoskeletal dynamics in tumor
cells as well as the turnover of cell-matrix and cell-cell junc-
tions, subsequent to cell migration into the neighboring tis-
sue [113]. Angiogenesis is a regular physiological process,
essential for normal tissue repair and growth [114]. In path-
ological situations, angiogenesis is often depicted by the
unremitting proliferation of endothelial cells and blood ves-

sel formation in [114]. Thus, angiogenesis is very fundamen-
tal in tumor growth, invasion, and metastasis [114].

Yeh et al. demonstrated that matrix expressed precisely
by glioma cells was able to condition microglia to express
proinvasive factors [115]. They indicated that rat C6 astrocy-
toma cell line secreted excessive concentrations of extracel-
lular matrix (ECM) proteins like fibronectin (FN) as well
as vitronectin (VN), both of which are either nonexistent
or secreted in extremely low concentrations in normal astro-
cytes (Figure 3) [115]. Färber et al. demonstrated that α5β1
was secreted by both glioma cells and microglia which indi-
cates that influencing fibronectin signaling may influence
both cell compartments (Figure 3) [116]. TGF-β is key
growth factors that was capable of mediating microglia stim-
ulation of glioma invasion (Figure 3) [117]. Coniglio et al.
demonstrated that microglia were capable of secreting epi-
dermal growth factor (EGF), most possibly the natural full-
length precursor, on their surface [117, 118].

Studies have shown that ErbB1 was augmented in
approximately half of human glioma samples [119–121].
Studies have further demonstrated that glioma cells are
capable of interacting with epidermal growth factor receptor
(EGFR) in an autocrine manner by cosecreting ErbB1
ligands (Figure 3) [122, 123]. Also, studies have shown that
agents which were capable of inhibiting IL-1β, TNFα, and
IL-6 secretion in microglia blocked their ability to induce
GBM invasion (Figure 3) [124, 125]. Furthermore, inhibi-
tory antibodies directed against IL-18 blocked BV-2 microg-
lia from augmenting glioma cell migration as well invasion
[117]. Nevertheless, recombinant IL-18 was capable of pro-
moting C6 astrocytoma migration via stimulation of iNOS
pathway (Figure 3) [117]. Studies have demonstrated that
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GAMs are capable of promoting GBM invasion via the mod-
ulation of MMPs (Figure 3) [117].

Ye et al. established that prime human glioma stem cells
cocultured with GAMs prior to orthotopic grafting in NOD-
SCID mice were more invasive compared to naïve glioma
stem cells, and this correlated with upregulation of MMP9
in the tumor cells [5]. Held-Feindt et al. also demonstrated
that human GAMs upregulated MMP2 as well as MMP9
mRNA secretion in response to exogenously administered
CX3CL1 in vitro [126]. Moreover, Markovic et al. estab-
lished that silencing of MMP14 in GAMs reduced GL261
tumor size [108]. Several studies have demonstrated that
CSF1R was an invasion-related molecule responsible for
normal microglial function (Figure 3) [127–129]. Further-
more, its ligand, CSF-1, was also implicated to augment
GAM density (Figure 3) [130].

Brandenburg et al. revealed that, at the mRNA level,
GAMs isolated from GL261 gliomas oversecreted proangio-
genic molecules like VEGF and CXCL2 (Figure 3) [131].
They indicated that depletion of resident microglia explicitly
led to a decrease in tumoral vessel counts analogous to that
detected in total myeloid cell ablation, signifying that
microglia had a more prominent role in angiogenesis com-
pared to monocyte derived macrophages [131]. Further-
more, another study revealed that several GAMs associated
with the tumor were detected in the perivascular niche in
direct contact with CD31+ vessels which does not occur in
the normal vasculature of nondiseased brain tissue
(Figure 3) [132]. Moreover, it was observed that microglia
often traffic through tumors along the vasculature in study
involving microglia and the aberrant vasculature [132].

Bayerl et al. observed that both microglia and peripheral
macrophages had direct interactions with vessels both in the
periphery of and within the tumor in study involving allo-
grafted mice [132]. Also, significantly elevated levels of
angiogenesis inducing factors like CCR2, CXCR4, CCL2,
CCL5, CXCL2, CXCL10, CXCL14, VEGF, and VEGFR1
and a few other transcripts were detected in microglia as well
as macrophages isolated from tumor-bearing animals
(Figure 3) [133]. Nijaguna et al. revealed that glioma-
secreted MCSF triggered angiogenesis in vitro as well as
in vivo through macrophage-/microglia-secreted factors
[134]. Also, it was established that recombinant human
MCSF triggered angiogenesis through macrophages by facil-
itating VEGFA secretion [135].

Nijaguna et al. further established that MCSF present in
the glioma cell conditioned medium influenced monocytes
or microglial cells as well as facilitated the expression of fac-
tors, which triggered angiogenesis in vitro (Figure 3) [134].
They indicated that angiogenesis triggered by monocyte/
microglia exposed to glioma cell conditioned medium was
dependent on the stimulation of MCSF/MCSFR signaling
in macrophages [134]. Furthermore, a search of novel medi-
ators of angiogenesis in the microglial secretome by means
of an unbiased proteomic strategy detected 67 proteins
expressively modulated by MCSF [134]. Moreover, it was
observed that VEGFA level was augmented in microglial cell
secretomes through a MCSF-dependent mechanism [134].

Nijaguna et al. further established that glioma-derived
MCSF upregulated IGFBP1 level in the secretome of micro-
glial cells (Figure 3) [134]. Also, neutralizing IGFBP1 by a
specific antibody in the microglial secretome after the
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administration of glioma cell conditioned medium spicily
decreased tube formation in HUVEC, implying that stimula-
tion of MCSF which resulted in upregulation of IGFBP1
secretion by microglial cells was fundamental for angiogene-
sis [134]. Thus, IGFBP1 expressed by microglial cells in
response to glioma-expressed MCSF was perhaps the main
origin of tumor angiogenesis (Figure 3) [134].

9. Microglia and Macrophages Signing
Pathways in Glioma

Several pathways through microglia and macrophages that
intercommunicate with other tumor development factors
have been described in glioma [71, 136–138]. Microglia
and macrophages utilize a variety of receptors for the detec-
tion of molecules, particles, and cells that they engulf [15,
139]. Several members of the signal transducer and activator
of transcription (STAT) family, such as STAT1, STAT3, and
STAT6, have been implicated in phenotypic switching of
microglia as well as macrophages (Figure 4) [71, 136]. Sev-
eral studies have demonstrated that STAT1 triggered M1
polarization after introducing IFN‐γ, whereas STAT6 was
key in forming M2 phenotype after stimulating IL‐4 as well
as IL‐13 (Figure 4) [140–142]. Furthermore, STAT3 was
capable of triggering both IL‐10‐activated M2 polarization
and IL‐6‐activated M1 polarization (Figure 4) [143, 144].

McFarland et al. established that STAT3 was capable of
modulating M1 antitumor response [7]. Moreover, it was
further established that STAT3 was capable of stimulating
GAMs which was responsible for M2 phenotype [7]. It was
further demonstrated that augmented GAM STAT3 stimula-
tion resulted in a reduction of M2 GAM infiltration in
tumors of SOCS3fl/fl mice compared to SOCS3−/− mice
in vivo [7]. Studies revealed that siRNA blockade of STAT3
in glioma cells resulted in microglial stimulation as well as
tumor growth blockade in murine models, with upsurges
in IL-2, IL-4, IL-12, IL-15, and CXCL10 as well as upregula-
tion of CD80 and CD86 on myeloid cells (Figure 4) [137,
138]. Studies have further demonstrated that cytokines like
heme oxygenase 1 (HO-1) and HDL were capable of modu-
lating macrophage phenotypes via the SOCS-JAK-STAT
pathway (Figure 4) [145, 146].

Studies have demonstrated that GAMs were recruited to
sites of gliomas via interaction between CCL2/MCP-1 which
are basically generated by glioma cells as well as its receptor
CCR2 which is secreted by GAM and by a CCL7/MCP-3-
CCR1/CCR2/CCR3-crosstalk (Figure 4) [98, 147–149]. Fur-
thermore, small chemotactic cytokines, known as chemo-
kines, are fundamental participants in GBM progression
because they are capable of accelerating the infiltration of
GAMs into glioma tissues [98, 147–149]. Held-Feindt et al.
demonstrated that CX3CL1 stimulated recruitment of
GAMs into GBM as well as augmented the secretion of the
MMP 2, 9, and 14 in the tumor cells (Figure 4) [126]. Studies
further exhibited that chemokine/receptor pairs like
CXCL12/CXCR4/CXCR7, CXCL16/CXCR6, and CX3CL1/
CX3CR1 were obviously associated with tumor progression
(Figure 4) [126, 150, 151].

Hattermann et al. revealed that GAMs are depicted with
the secretion of these chemokine/receptor pairs signifying an
essential function of this secretory profile in GAM biology in
gliomas [98]. Bouhlel et al. established that PPARγ was
capable of facilitating monocyte differentiation into macro-
phages primed toward M2 polarization, which had anti-
inflammatory properties (Figure 4) [152]. Studies have dem-
onstrated that IRFs exercise different functions in macro-
phage polarization. It was observed that IRF4 was a
fundamental transcription factor regulating M2 polarization,
while IRF‐5 and IRF‐8 modulated M1 polarization
(Figure 4) [153, 154]. Studies have further demonstrated that
M1 and M2 phenotypes correlated well with distinct miRNA
profiles [71, 155].

Studies revealed that miRNA‐155 secretion stimulated
M1 polarization via a knockdown of mRNAs transcription
from M2 signature genes, while miRNA‐124 stimulated
M2 polarization by influencing mRNA transcription from
M1 genes [156, 157]. Bruna et al. established that robust
action of TGF-β signaling pathway in human glioma tissues
correlated with poor prognosis [158]. Studies have demon-
strated that infiltrating leukocytes were responsible for the
buildup of TGF-β1 at the invasive front portion of tumor,
while glioma cells were capable of producing TGF-β2
[158–161]. Studies have further showed that TGF-β binds
to type II TGF-β receptor- (TGFBR-) 2 once stimulated
[158–161].

Studies further established that the ligand-bound
TGFBR2 was capable of efficiently transstimulating the
TGFBR1, which transduced intracellular signals via canoni-
cal Smad-dependent and/or Smad-independent pathways
like ERK, p38, Rac, and PI3K-Akt pathways (Figure 4)
[159, 160, 162]. Wesolowska et al. revealed that inhibition
of TGFBR2 was capable of blocking the invasion of glioma
cells [163]. Studies have also demonstrated that TGF-β was
capable of influencing cancer development processes like cell
invasion, immune suppression, and microenvironment
modification [159, 160]. Ye et al. demonstrated that GAMs
expressively augmented the invasive ability of glioma stem-
like cells (GSLCs) via paracrine generation of TGF-β1 as
well as the TGF-β1-TGFBR2 signaling pathway (Figure 4)
[5].

Ye et al. observed that GAMs were profoundly dissemi-
nated at the invasive front region of glioma and was associ-
ated with CD133+ glioma cells like GSLCs and these GAMs
generated robust quantities of TGF-β1 (Figure 4) [5]. They
indicated further that augmented invasive potential of
GSLCs was triggered by elevated generation of MMP9 from
CD133+ GSLCs by paracrine TGF-β1 from GAMs via
TGFBR2 pathway (Figure 4) [5]. Studies have showed that
glioma-infiltrating GAMs were polarized to M2 phenotype
by secreting robust quantities of immunosuppressive cyto-
kines like IL-10 and TGF-β1 which were capable of aug-
menting tumor immune suppression as well as accelerated
tumor progression [164–166].

Studies have also demonstrated that TNFα was capable
of triggering the expression of CCL2, IL-6, IL-1, and NO
which are expressively generated by GAMs (Figure 4) [107,
167]. Studies have shown that TNF receptor 1 (TNFR1)
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stimulation was capable of degrading IκBa, a blocker of
NFκB signaling. It was further observed that this degrada-
tion triggered a positive feedback loop with p65/p50 nuclear
translocation resulting in the transcriptional stimulation of
TNFα [168, 169]. Also, NFκB stimulation triggered promi-
gratory genes that participated in tumor invasiveness associ-
ated with numerous protumor chemokines as well as the
MMP pathways [170]. TNFR1 and the related NFκB path-
way in microglia could be involved in glioma pathogenesis
(Figure 4) [168]. Thus, further studies are needed in this
direction.

Cytokines exhibiting an augmented level in GBM serum
comprised of MCSF, which was also upregulated in GBM
tissue via a mechanism dependent on the SYK-PI3K-NFκB
pathway (Figure 4) [134]. Chiu et al. established that admin-
istration of IL-12 as well as LPS discernibly augmented
microglial phagocytotic activity via the TRAIL pathway
(Figure 4) [171]. Studies revealed that GAMs exhibited pro-
tumorigenic properties by upregulation of MMP-2 but did
not express cytokines like IL-1β, IL-6, and TNFα, which
are distinctive from the inflammatory phenotype (Figure 4)
[80, 172]. A study revealed that the significance of IL-1β lies
in the IL-1β/CCL2/IL-6 interaction between microglia as
well as glioma cells (Figure 4) [173].

Also, a study revealed that IL-1β secreted by both
microglia and macrophages stimulated the p38 mitogen-

activated protein kinase (MAPK) pathway in glioma cells,
which in turn results in augmented secretion of CCL2—the
agonist for CCR2 on microglia (Figure 4) [173]. This led to
an upsurge in microglial production of IL-6 and subse-
quently MMP2, which accelerated tumor migration, inva-
sion, and gliomagenesis [174, 175]. The CX3CR1/IL-1β/
CCL2 pathway was capable of decreasing IL-6 protumor sig-
naling as well as the blockade of MMP-based pathways in
microglia (Figure 4) [173]. GBM cells triggered TLR2/6
stimulation in both macrophages and microglia via the mye-
loid differentiation primary response 88/TLR8 signaling
pathway, which in turn results in the augmentation of
MMP-9 which accelerate tumor invasion as well as angio-
genesis (Figure 4) [78, 176].

Enhancer of zeste homolog 2 (EZH2) is the core catalytic
subunit of Polycomb repressive complexes 2 (PRC2) [1,
177]. Yin et al. demonstrated that EZH2 suppression in
GBM triggered polarization shift of microglia as well as
PMMC-derived macrophage resulting in the augmentation
of M1 markers as well as decrease in M2 markers [1]. Yin
et al. indicated that EZH2 blockade in GBM reduced the
secretion of M2 markers as well as augmented the secretion
of M1 markers in coculturing microglia and that iNOS was
associated with EZH2-mediated microglial polarization shift
(Figure 4) [1]. They further indicated that EZH2 blockade in
GBM resulted in decreased TGFβ1 as well as TGFβ2,
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whereas TGFβ2 promoted microglia capabilities (Figure 4)
[1]. Thus, TGFβ2 was associated with EZH2-mediated
GBM progression as well as growth [1].

In glioma milieu, normal human astrocytes, glioma cells,
and microglia all exhibited the ability of phagocytosing gli-
oma cells and precisely apoptotic tumor cells [178, 179].
Sialic acid binding immunoglobulin-like lectins (Siglecs) are
significant modulatory receptors secreted by microglia and
bind to sialated ligands on neurons or CNS tumor cells
[180–182]. Siglec signaling modulated the stimulation of
microglia as well as phagocytosis activity [180–182]. Studies
established that they also serve as binding receptors which
triggered signaling via signal-regulatory protein alpha (SIRPα
and CD172a), complement receptor 3 (CR3 and CD11b), low-
density lipoprotein receptor-related protein (LRP and
CD90.2), and protein triggering receptor expressed on mye-
loid cells-2 (TREM2) (Figure 4) [15, 183–185].

Studies have further demonstrated that Siglecs are capa-
ble of regulating phagocytosis via microglia, specifying that
live neurons are capable of regulating phagocytosis via the
secretion of corresponding ligands [183–185]. Wu et al.
showed that glioma cancer stem cells (gCSCs) were capable
of inhibiting phagocytosis via human microglia in vitro
[165]. Furthermore, reversal of phagocytosis inhibition after
STAT3 silencing by WP1066 as well as STAT3 siRNA in
gCSCs resulted in the inhibition of phagocytosis (Figure 4)
[165, 178]. This suggested that pSTAT3 pathway was capa-
ble of inhibiting phagocytosis via gCSCs [165].

10. Microglia and Macrophages in
Glioma Therapy

Studies have shown that the abundance of GAMs positively
correlated with GBM invasiveness, immunosuppression, and
patients’ poor outcome, making these cells a suitable target
for immunotherapeutic schemes [91, 186, 187]. The conver-
sion of M2 macrophages to M1 macrophages has been
implicated as a potential treatment strategy to reduce glioma
growth [94]. Proinflammatory M1 macrophages have dem-
onstrated to be of therapeutic target in cancer due to their
antitumor functional properties (Figure 5) [7]. Zeiner et al.
observed that an M1-polarized immune microenvironment
correlated with prolonged survival in patients with GBM
[188]. Studies have demonstrated that introduction of
amphotericin or CSF1R blockade stimulated M1 activity in
GBM (Figure 5 and Table 1) [189, 190].

Lisi et al. observed that mTOR kinase inhibitor stimula-
tion in glioma triggered microglia to secrete M1 phenotypes
(Table 1) [191]. Furthermore, introduction dopamine (DA)
blocked tumor growth by reprogramming M2-polarized
macrophages to M1 phenotypes in a rat model of glioma
(Table 1) [192].

Studies have shown that agents like low dose irradiation
(IRRAD) as well as phosphatidylserine antibody (aPS)
administration triggered a proinflammatory M1 phenotype
in tumor-associated microphages that reduced tumor
growth in other cancer models (Figure 5 and Table 1)
[193, 194]. Studies with these agents are warranted in gli-
oma. Chen et al. discovered that OLFML3 is a novel as well

as potent CLOCK-modulated microglia chemoattractant in
GBM. They demonstrated that OLFML3 depletion aug-
mented survival in patients with GBM [10].

It was established that the fundamental function of the
CLOCK :BMAL1 complex in GBM tumor biology, specifi-
cally its modulation of precise metabolic as well as immunity
genes like OLFML3, elucidates hypothetical therapeutic tar-
gets governing fundamental cancer hallmarks of stemness as
well as immune suppression [10]. Furthermore, pharmaco-
logical stimulation of circadian clock components REV-
ERBs, which repress transcription of CLOCK as well as
BMAL1, was capable of inhibiting the growth of GBM
(Figure 5 and Table 1) [10, 195]. Precisely, stimulation of
REV-ERBs was selectively toxic to glioma cells by influenc-
ing oncogenic drivers such as HRAS, BRAF, and PIK3CA
which triggered apoptosis as well as blocked autophagy
(Figure 5 and Table 1) [10, 195].

Hwang et al. established that microglia conditioned cul-
ture medium (MCM) facilitated apoptosis of glioma cells,
with extra cytotoxic effect when microglial cells were intro-
duced to LPS or IFNγ in vitro study (Figure 5 and Table 1)
[196]. They observed that this influence was glioma-specific,
without unwanted astrocyte cytotoxicity. Furthermore, pro-
teonomic evaluation of the MCM revealed LPS- and IFNγ-
associated proteins together with significantly elevated secre-
tion of cathepsin proteases such as cathepsin B (Figure 5 and
Table 1) [196]. Also, glioma apoptosis was no longer
detected when cathepsin B was suppressed, signifying this
protein’s importance in microglial antitumor function [196].

Preclinical trials demonstrated that local administration
of oligodeoxynucleotides containing CpG motifs (CpG-
ODN) had robust immunostimulatory effects as well as acti-
vation of toll-like receptor- (TLR-) 9 in both microglia and
macrophages (Figure 5 and Table 1) [197]. Carpentier et al.
revealed that the use of CpG-ODN in a murine in vivo gli-
oma model triggered a reduction in tumor size without tox-
icity to brain parenchyma (Table 1) [198]. Chiu et al.
established that IL-12 was capable of activating microglia
because it was able to augment the secretion of ED1 as well
as TNF-associated apoptosis-stimulating ligand using
recombinant adenovirus-carrying IL-12 (rAAV2/IL-12)
(Figure 5) [199]. Studies have further demonstrated that
IL-12 treatment was capable of triggering microglial-
mediated apoptosis of GBM cells via DR4/5 binding
in vitro (Figure 5 and Table 1) [171, 199].

Tabouret et al. indicated that, with tumor recurrence,
there was a switch in secretory profile from VEGFR3-HIF-
1α to CXCL12-CXCR4 predominance in GAMs (Figure 5)
[200]. Thus, microglia may have roles in propagating extra
mechanisms of immune resistance in tumor recurrence,
offering alternative basis for scrutinizing as well as targeting
this population to augmented antitumor strategies [200].
Studies have demonstrated that GAMs secreted EGF as well
as CSF1R, whereas GBM cells secreted EGFR as well as CSF-
1 to create a paracrine loop [118, 201]. Coniglio et al.
revealed that blockade of EGFR as well as CSF1R in cocul-
tures of murine microglia/macrophages and GL261 cells
inhibited GAM augmented of invasiveness (Figure 5 and
Table 1) [118].
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Table 1: A summary of drugs or chemical agents related to glioma-associated microglia and/or macrophages targets.

Drug/chemical agent Influence on microglia and macrophages in glioma therapy
Source/
reference

Amphotericin Stimulation of M1 activity in GBM [189, 190]

CSF1R blockade Stimulation of M1 activity in GBM [189, 190]

mTOR kinase inhibitors Microglia to secretion of M1 phenotypes in GBM [191]

Dopamine Reprogramming of M2-polarized macrophages to M1 phenotypes in glioma [192]

Irradiation Stimulation of proinflammatory M1 phenotype in cancer models [193, 194]

Phosphatidylserine antibody Stimulation of proinflammatory M1 phenotype in cancer models [193, 194]

OLFML3 Potent CLOCK-modulated microglia chemoattractant in GBM [10]

REV-ERBs

Repress transcription of CLOCK as well as BMAL1 was capable of inhibiting the growth of
GBM

Selectively toxic to glioma cells by influencing oncogenic drivers such as HRAS, BRAF, and
PIK3CA which triggered apoptosis as well as blocked autophagy

[10, 195]

LPS or IFNγ Facilitation of apoptosis of glioma cells, with extra cytotoxic effect [196]

Oligodeoxynucleotides
(CpG-ODN)

Robust immunostimulatory effects as well as activation of TLR-9 in both microglia and
macrophages

[197]

CpG-ODN Reduction in tumor size without toxicity to brain parenchyma [198]

IL-12 Microglial-mediated apoptosis of GBM cells via DR4/5 binding in vitro [171, 199]

EGFR and CSF1R blockade Inhibition of GAM augmented invasiveness of glioma [118]

PLX3397
Decreased the recruitment of GL261-associated microglia/macrophages as well as glioma

invasiveness in vivo
[118]

BLZ945
Inhibition of the progression of intracranial xenografts of conventional human glioma cells via

the facilitation of GAM antitumor gene secretion
[190]

Advanced glycation end
products (RAGE)

Inhibition of IL-6, VEGF secretion, and angiogenesis in GL261-associated microglia/
macrophages

[202]

A2V
Overcoming resistance to therapies directed against the VEGF pathway in both the GL261 as

well as human glioma stem cell xenograft mouse models
[127]

Osteopontin (OPN)
OPN-mediated chemokine properties of macrophages were based on the intercommunication

between OPN and integrin αvβ5
[207]
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Coniglio et al. further demonstrated that introduction of
PLX3397, a CSF-1R inhibitor, was capable of decreasing the
recruitment of GL261-associated microglia/macrophages as
well as glioma invasiveness in vivo (Figure 5 and Table 1)
[118]. Pyonteck et al. also demonstrated that the use of
CSF1R inhibitor, BLZ945, inhibited the progression of intra-
cranial xenografts of conventional human glioma cells via
the facilitation of GAM antitumor gene secretion (Figure 5
and Table 1) [190]. Chen et al. demonstrated that IL-6 and
VEGF secretion were inhibited in GL261-associated microg-
lia/macrophages after silencing receptor for advanced glyca-
tion end products (RAGE) as was angiogenesis (Figure 5 and
Table 1) [202]. Introduction of A2V, a bispecific antibody to
VEGF, and Ang-2, another proangiogenic factor, was capa-
ble of overcoming resistance to therapies directed against
the VEGF pathway in both the GL261 and human glioma
stem cell xenograft mouse models (Figure 5 and Table 1)
[127].

Margueron and Reinberg demonstrated that EZH2 was
capable of silencing a bundle of tumor suppressor genes
via methylation of lysine 27 of histone 3 (H3K27) of target
genes [177]. Studies further demonstrated that EZH2 was
extremely abundant in GBM samples and that secretory
levels of EZH2 positively correlated with GBM grades as well
as unfavorable survival [203, 204]. Thus, EZH2 could be a
diagnosis as wells prognosis biomarker for glioma. Studies
established that silencing of EZH2 by siEZH2 or function
suppression by DZNep triggered GBM growth inhibition
(Figure 5) [205, 206]. Furthermore, EZH2 was capable of
modulating several tumor processes like cell cycle, prolifera-
tion, apoptosis, invasion, and mobility, GBM stem cell dif-
ferentiation and maintenance, and tumor angiogenesis [1,
205]. Studies on EZH2 and microglia/microphages or
GAM axis are needed to evaluate their influence in glioma.

Wei et al. revealed that osteopontin (OPN) had substan-
tial predictive potential in determining survival of patients
with GBM [207]. Also, OPN was associated with the mesen-
chymal subtype—known to be augmented with polarized
macrophages [207]. Furthermore, it was observed that
OPN secretory levels directly correlated with several macro-
phage markers in GBM specimens. Moreover, OPN was
upregulated in the tumor milieu via the OPN/integrin αvβ5
pathway [207]. OPN-mediated chemokine properties of
macrophages were based on the intercommunication
between OPN and integrin αvβ5 (Figure 5 and Table 1)
[207]. A study established that OPN–/– microenvironment
augmented survival in mice bearing intracerebral GL261
tumors [207]. Nevertheless, another study did not find any
significant augmentation in survival [9].

11. Conclusion

Microglia are the precise phagocytes of the CNS, whereas
macrophages are myeloid immune cells that are depicted
with fervent phagocytosis. Macrophages are derived from
circulating monocytes because, in pathological conditions,
monocytes produce macrophages. Microglia and macro-
phages utilize a variety of receptors for the detection of mol-
ecules, particles, and cells that they engulf. In glioma milieu,

normal human astrocytes, glioma cells, and microglia all
exhibited the ability of phagocytosing glioma cells and pre-
cisely apoptotic tumor cells. GAMs positively correlated
with GBM invasiveness, immunosuppression, and patients’
poor outcome, making these cells a suitable target for immu-
notherapeutic schemes.
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