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Purpose. Cancer development and immune escape involve DNA methylation, copy number variation, and other molecular events.
However, there are remarkably few studies integrating multiomics genetic pro�les into endometrial cancer (EC). �is study aimed to
develop a multiomics signature for the prognosis and immunotherapy response of endometrial carcinoma. Methods. �e gene ex-
pression, somatic mutation, copy number alteration, and DNA methylation data of EC were analyzed from the UCSC Xena database.
�en, a multiomics signature was constructed by a machine learning model, with the ROC curve comparing its prognostic power with
traditional clinical features. Two computational strategies were utilized to estimate the signature’s performance in predicting im-
munotherapy response in EC. Further validation focused on the most frequently mutant molecule, ARID1A, in the signature. �e
association of ARID1A with survival, MSI (Microsatellite-instability), immune checkpoints, TIL (tumor-in�ltrating lymphocyte), and
downstream immune pathways was explored.Results.�e signature consisted of 22multiomicsmolecules, showing excellent prognostic
performance in predicting the overall survival of patients with EC (AUC� 0.788). After stratifying patients into a high and low-risk
group according to the signature’s median value, low-risk patients displayed a greater possibility of respond to immunotherapy. Further
validation on ARID1A suggested it could induce immune checkpoints upregulation, promote interferon response pathway, and interact
with Treg (regulatory T cell) to facilitate immune activation in EC. Conclusion. A novel multiomics prognostic signature of EC was
identi�ed and validated in this study, which could guide clinical management of EC and bene�t personalized immunotherapy.

1. Introduction

As the most prevalent gynecologic malignancy, endometrial
carcinoma (EC) is one of the leading causes of female mortality
worldwide [1]. Endometrial cancer develops in about 142,000
women worldwide every year, and an estimated 42,000 women
die from this cancer. �e introduction of ICB (Immune
Checkpoint Blockade) has achieved favorable clinical e£ects in
patients with end-stage EC where the chemotherapy regimen
has little progression [2, 3]. However, more than 80% of pa-
tients are nonresponders, or NDB (no durable clinical bene�t),
to immunotherapy, and the underlying factors resulting in

heterogeneous prognoses are poorly understood. In fact, cancer
development and immune response are determined by mul-
tiple factors, including genomic mutation [4], DNA methyl-
ation [5], and copy number variance [6], et al. �erefore,
analysis incorporating multiomics data is urgently needed for
EC management.

We utilized meta-dimensional strategies to seek genet-
ically susceptible molecules from gene expression, somatic
mutation, copy number alteration, and DNA methylation
data of EC, aiming to develop a multiomics signature for
prognosis and immunotherapy response of EC. �e signa-
ture was built by machine learning model, and its e¥ciency
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was compared with traditional clinical features. Two com-
putational approaches were also deployed to estimate the
signature’s performance in predicting immunotherapy re-
sponse. Further validation focused on the most frequently
mutant molecule in the signature: ARID1A. ,e association
of ARID1A with survival, MSI (Microsatellite-instability),
immune checkpoints, TIL (tumor-infiltrating lymphocyte),
and downstream immune pathways were explored and
potential mechanisms was given.

,e present study constructed a novel multiomics
prognostic signature for prognosis and immunotherapy
response of EC, which could guide clinical management of
EC and benefit from personalized immunotherapy.

2. Methods and Materials

2.1. Data Acquisition. Multiomics data of EC (endometrial
carcinoma) were acquired from databases, such as the
TCGA-UCEC cohort (,e Cancer Genome Atlas Endometrial
Cancer, 543 tumors, and 35 normal samples) at the UCSC
Xena website [7] (https://xenabrowser.net/datapages/).,ese
data included datasets of Copy Number Variation (CNV),
DNA methylation (450k), RNA-seq of raw counts, somatic
mutation (MuTect2 method), and survival data. In parallel,
gene sets of 482 mutated genes with alteration frequency >5%
and 380 copy number varied genes with alteration frequency
>1% in EC were retrieved from Cbioportal [8] (https://www.
cbioportal.org) and OncoKB [9] database (https://oncokb.org).

2.2. Differential Expression and Function Enrichment
Analysis. To reveal the molecules of real value for EC in
these multiomics datasets, a series of R packages were used
for screening, for example, the limma package [10] to seek
out differentially expressed genes between 543 tumor and 35
normal samples with |log2 Fold Change (FC)|> 1.5 and P

value< 0.05 as the threshold, as well as the ChAMP package
[11] to identify differential methylation loci with |log2 Fold
Change (FC)|> 0.5 and P value< 10−15.

A heatmap and volcano plot were used to display the 457
differentially expressed genes (DEG) and 746 CpG sites
between tumor and normal samples, with GO (https://wego.
genomics.org.cn) and KEGG (https://wego.genomics.org.
cn) enrichment analysis to dissect their biological func-
tion and related signaling pathways. Meanwhile, oncoprint-
plot was employed to present the top 30 mutated and copy
number varied genes in EC.

2.3. Construction of the Multiomics Prognostic Signature for
EC. Subsequent filtration of the 457 significant DEGs, 746
differential methylation loci, 482 mutated, and 380 copy
number varied genes was completed by LASSO penalized
Cox regression with overall survival as the dependent var-
iable. Finally, 22 molecules were adopted for modeling. Next,
Kaplan–Meier curves were depicted to show the prognostic
power of the 22-gene-signature where the risk score of each
patient was calculated with the following formula: 􏽐

n
i

Coefi∗Xi (Coefi: cox regression coefficient, Xi: expression
value of corresponding molecule, n� 22). Following that,

patients were stratified into a high- and low-risk group
according to the median risk score. A ROC (receiver op-
erator characteristic) curve and multivariate Cox regression
were also used to evaluate its prognostic performance and
independent prognostic efficiency.

2.4. Relationship of the Prognostic Signature with Immuno-
therapy Response in EC. To assess the relationship of the
signature with immunotherapy, algorithms of TIDE [12]
(tumor immune dysfunction and exclusion) and Immune
Cell AI [13] were applied to predict patients’ responses to
ICB (immune checkpoint blockade) treatment. A hundred-
percent bar-chart and a heatmap were used to display the
response difference to ICB between the high and low-risk
groups.

2.5. Validation on ARID1A for Its Prognostic Ability and
Association with Immunotherapy. Further validation fo-
cused on the most frequently mutant molecule in the sig-
nature: ARID1A. ,e association of ARID1A mutation with
patients’ survival, MSI (microsatellite-instability), immune
checkpoints or Tcell exhaustionmarkers (LAG3, SIGLEC15,
CTLA4, HAVCR2 (TIM3), PDCD1LG2 (PD-L2), CD274
(PD-L1), PDCD1 (PD1), and TIGIT) and downstream
immune pathways were explored. In addition, the impact of
the ARID1A mutation on the abundances of 22 tumor-
infiltrating immune cells was assessed by the CIBERSORT
algorithm.

2.6.UnderlyingMechanism fromARID1AMutation toCancer
Immune Activation. To identify the underlying mechanism
from ARID1A mutation to cancer immune activation,
a ternary interaction network was constructed. First, dif-
ferential expression analysis was carried out between
235 ARID1A-mut samples and 291 ARID1A-wild tumor
samples of the UCEC cohort, with 25 upregulated and 46
downregulated DEGs being obtained. By performing cor-
relation analyses between the71 DEGs, abundances of 22
immune cells computed by the CIBERSORT, and enrich-
ment scores of 29 cancer specialized immune pathways [14]
quantified by GSVA [15], the interaction pairs of DEG-
Immune Cell and DEG-Immune Pathway with a correlation
coefficient >0.3 were screened out. A further regulating
network of 71 DEG, 22 immune cells, and 29 immune
pathways was completed by Cytoscape software (https://
cytoscape.org/).

2.7. Statistical Analysis. Data processing and all analyses
were accomplished by R 4.0.4. (Package: limma, ggplot2,
survminer, ChAMP, ggcorrplot, GSVA, CIBERSORT, and
so on). A chi-square test was used for counting data. Wil-
coxon or Kruskal–Wallis tests were applied for comparisons
between groups, while the Pearson and Spearman’s rank
correlation were adopted to estimate the statistical corre-
lation of parametric or nonparametric variables. Two-sided
P< 0.05 was considered a significant threshold for all
statistical tests.

2 Journal of Oncology

https://xenabrowser.net/datapages/
https://www.cbioportal.org
https://www.cbioportal.org
https://oncokb.org
https://wego.genomics.org.cn
https://wego.genomics.org.cn
https://wego.genomics.org.cn
https://wego.genomics.org.cn
https://cytoscape.org/
https://cytoscape.org/


3. Results

3.1. Differential Expression Analysis between Tumor and
Normal Samples. ,e study protocol was illustrated in
Figure 1 and Table 1 summarized the demographic features
of the TCGA-UCEC cohort. 457 differentially expressed
genes (DEG) and 746 differential CpG sites are shown in the
heatmap and volcano-plot (Figure 2(a)-2(b)). ,ose DEGs
were mainly enriched in thermogenesis and neutrophil
activation involved in immune response pathways
(Figures 2(c) and 2(d)).,e top 30 mutant and copy number
varied genes are displayed in the oncoprint-plot
(Figures 2(e) and 2(f )).

3.2. Construction of the Multiomics Prognostic Signature.
22 molecules stood out in LASSO-Cox analysis after shrinking
most factors’ coefficient towards zero (Figure 3(a)-3(b)), in-
cluding 9 genes with somatic mutation, 4 with copy number
variance, 3 with differential CpG sites, and 6 DEGs, their
regression coefficients are shown in Table 2. ,e risk score of
each patient was illustrated which well-stratified patients into
two groups, according to the median value, with a huge dis-
crepancy in survival probability (Figures 3(c)–3(d)). Patients
were illustrated from a database. ROC curve showed a better
prognostic performance of the signature than traditional
clinical features, such as pathological stage and tumor grade
(Figure 3(e)). Subsequent univariate and multivariate Cox
analyses proved the signature can be an independent factor for
the prognosis of EC (Figures 3(f)–3(g)).

3.3. Relationship of the Prognostic Signature with Immuno-
therapy Response. In light of immunotherapy, no matter
TIDE or Immune Cell AI algorithm,more patients were seen
to be responders to ICB treatment (anti-PD-1 or anti-
CTLA4) in the low-risk group than people in the high-risk
group (71 vs 46 and 130 vs 74, respectively, P< 0.001) with
statistically significant difference (Figure 4(a) and 4(b)).

3.4. Validation on ARID1A for Its Prognostic Ability and
Association with Immunotherapy. As the most frequently
mutant gene in EC (Figures 4(c)–4(d), ARID1A can well
stratify patients into two groups with noticeable survival
differences in the UCEC cohort (4E-4 F), but did not affect
their mRNA transcription. ARID1A mutation was also as-
sociated with MSI-H status, higher level of immune
checkpoints expression, and TIL (tumor-infiltrating lym-
phocyte) (Figure 5(a)–5(c)).

3.5. ARID1A May Interact with Treg and Promote Type-
I–IFN–Response Pathway to Facilitate Tumor Immune Acti-
vation in EC. Of the 71 DEGs, 25 were upregulated and 46
were downregulated between ARID1A mut and ARID1A-
wild tumor samples (Figure 6(a)). ,ey were mainly
enriched into the p53 signaling, mTOR, DNA damage, and
stem cell development signaling pathways (Figure 6(b)).
,ese DEGs also exhibited extensive association with 22
immune cells and 29 immune pathways in the correlation

heatmap (Figures 6(c) and 6)(d). Within the final interaction
network, the type-I–IFN–Response pathway and T cell
regulatory showed a major connection with DEGs, in-
dicating that ARID1A may interact with Treg and promote
Type-I–IFN–Response pathway to facilitate tumor immune
response in EC (Figure 6)(e).

TCGA Cohort of Endometrial Cancer (EC)
RNA-seq, Mutation, CNV, DNA Methylation and Survival Data

457 DEGs, 746 CpG Sites, 482
Mutation, 380 CNV

1. Overall Survival

2. Immunotherapy

Lasso-Cox
Analysis

Multi-omics Prognostic Signature

Overall Survival
ROC Evaluating

Immunotherapy response
(lmmuneCellAI, TIDE)

Association with Tumor
Mutation Burden

3. Gene-Cell-Pathway
Interacting Network

Association with 8
Immune Checkpoints

Association with 26
Immune Cells

Association with 29
Immune Pathways

Model Construction Validation

Figure 1: Study protocol.

Table 1: Clinical feature of TCGA-UCEC cohort.

ARID1A-mut ARID1A-wild Pvalue
SAMPLE 233 288
AGE 61.49± 10.66 65.89± 11.02 <0.001
BMI 34.11± 15.06 33.54± 9.28 0.608
STAGE 0.009
Stage I 164 (70.39%) 159 (55.21%)
Stage II 21 (9.02%) 29 (10.07%)
Stage III 44 (18.87%) 77 (26.73%)
Stage IV 4 (1.72%) 23 (7.99%)
DIABETES 0.76
NO 120 (74.07%) 138 (72.63%)
YES 42 (25.93%) 52 (27.37%)
HYPERTENSION 0.992
NO 75 (42.37%) 84 (42.42%)
YES 102 (57.63%) 114 (57.58%)
GRADE 0.025
G1 52 (22.32%) 44 (15.28%)
G2 58 (24.89%) 57 (19.79%)
G3 121 (51.93%) 180 (62.50%)
High grade 2 (0.86%) 7 (2.43%)
STATUS <0.001
Alive 213 (91.42%) 223 (77.43%)
Dead 20 (8.58%) 65 (22.57%)
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4. Discussion

,e present study constructed a novel multiomics prog-
nostic signature for prognosis and immunotherapy response
of EC, which could guide clinical management of EC and
benefit personalized immunotherapy. Following validation,
it indicated the ARID1A mutation may interact with Treg
and promote Type-I–IFN–Response pathway to facilitate
tumor immune response and better survival outcomes for
EC patients.

ARID1A (BAF250a), though connected with a superior
outcome of ICB treatment in several cancer types, has rarely
been reported for its prognostic and predictive ability in the
immunotherapy cohort of EC [16–18]. As a subunit of the
SWI/SNF chromatin-remodeling complex, it harbors an N-
terminal DNA binding ARID (∼110 residues) and a C-
terminal folded region (∼250 residues) [19], which are es-
sential to increasing chromatin accessibility, binding to the
promoter regions and facilitating transcription of multiple
genes [20]. Inconsistently, the majority of DEGs were found
to be downregulated in the ARID1A-mut group in our study

(46 vs 25), partly accounting for the tumor suppression effect
of ARID1A deficiency in a wide range of cancer types
[21–23]. ,ese results were in line with the advantageous
role of ARID1A mutation for patients’ survival outcomes in
the TCGA-UCEC in this study.

In fact, association between ARID1A mutation and fa-
vorable ICB treatment outcome in other cancer types is not
scarce. Shen J et al. have reported a greater proportion of ICB
responses in the ARID1A-deficient group than in the
ARID1A-wild group in ovarian cancer mouse models [24].
A similar result was also observed in two melanoma cohorts
[25–27] (42.86% responders versus 25.81% nonresponders
and 100% responders versus 51.43% nonresponders, re-
spectively). In addition, favorable survival outcomes in
ARID1A mutant patients when receiving ICB treatment
were also revealed in a pan-cancer study [16], but merely 10
EC samples with the ARID1A mutation were included, not
sufficient to demonstrate the survival difference.

Elsewhere, ARID1A mutation was seen to be involved in
Type-I–IFN–Response pathway and regulatory T cell to
interact with EC development, partly accounting for its
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Figure 3: Construction and evaluation of the prognostic signature. (a) Most factors’ coefficients were penalized toward zero by LASSO
regression. (b) 22 variables were screened out with a minimal partial likelihood deviance. (c) Patients’ survival status, ranking by their risk
score. (d) Survival analysis between high-risk and low-risk group. (e) Risk score out-weights common clinical features in predicting patients’
survival with higher AUC of 0.788. (f ) (g) Univariate and multivariate Cox regression demonstrated the prognostic signature can be an
independent prognostic factor. (AUC : Area under the curve; BMI : Body mass index).
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Table 2: 22 key molecules identified by LASSO-Cox regression.

Molecules Annotation Coefficient
ACVR1 (Activin A Receptor Type 1) Mutation −0.31351085
ARID1A (AT-Rich Interaction Domain 1A) Mutation −0.230538257
ATM (Ataxia Telangiectasia Mutated) Mutation −0.095420173
BIRC6 (Baculoviral IAP Repeat Containing 6) Mutation −0.13931703
ERBB3 (Erb-B2 Receptor Tyrosine Kinase 3) Mutation −0.167684278
HOXA11 (Homeobox A11) Mutation 0.340669897
POLE (DNA Polymerase Epsilon) Mutation −0.18491545
POLQ (DNA Polymerase ,eta) Mutation −0.035077258
SPOP (Speckle Type BTB/POZ Protein) Mutation −0.094758819
GINS4 (SLD5,GINS Complex Subunit 4) CNV 0.058592508
GORAB (Golgin, RAB6 Interacting) CNV 0.074299734
GSTM1 (Glutathione S-Transferase Mu 1) CNV 0.172758754
KCNMB3 (Potassium Calcium-Activated Channel Subfamily M Regulatory Beta
Subunit 3) CNV −0.111711137

PTPN22 (Protein Tyrosine Phosphatase Non-Receptor Type 22) DEG −0.074886487
CDH18 (Cadherin 18) DEG 0.197447688
KCNK3 (Potassium Two Pore Domain Channel Subfamily K Member 3) DEG 0.047114247
PCSK1 (Proprotein Convertase Subtilisin/Kexin Type 1) DEG 0.114882922
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advantageous role in many kinds of cancer. ,e previous
study has already linked IFN I [28] and IFN II [29] pathway
to ICB therapy outcome in multiple cancers and there was
data also connecting the ARID1Amutation with IFN I and II
Response pathway activity [17]. Apart from IFN pathways,
in agreement with our findings, ARID1A mutation could
also result in a higher level of PD-1, MSI, and T cell in-
filtration [30–32] to promote cancer immunity and po-
tentiating favorable ICB treatment response.

Given the inherent fault of bioinformatics analysis-
lacking of convincing data from reality. ,e conclusion of
this study may be constrained. Furthermore, multicentric
clinical studies and experiments at the cell and animal levels
are warranted to validate the results under different cir-
cumstances. Following validation, it indicated that ARID1A
mutation may interact with Treg and promote Type-
I–IFN–Response pathway to facilitate tumor immune re-
sponse and better survival outcomes for EC patients.
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5. Conclusion

,e present study constructed a novel multiomics prog-
nostic signature for prognosis and immunotherapy response
of EC, which could guide clinical management of EC and
benefit from personalized immunotherapy.

Abbreviation

EC: Endometrial carcinoma
TCGA-
UCEC:

,e Cancer Genome Atlas-Uterine Corpus
Endometrial Carcinoma cohort

ICB: Immune checkpoint blockade
CNV: Copy number variation
MSI: Microsatellite instability
MSI: Microsatellite-instability
TIL: Tumor infiltrating lymphocyte
DEG: Differentially expressed genes
OS: Overall survival
PFS: Progression-Free survival.
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