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Thyroid cancer is a great part of the endocrine tumor with an increasing incidence. Papillary thyroid carcinoma (PTC) is the most
common subtype. With the enormous pace taken in the microarray technology, bioinformatics is applied in data mining more
frequently. Weighted gene coexpression network analysis (WGCNA) can perform analysis combining clinic information. We
performed WGCNA for prognostic genes associated with PTC. From the GEO profile, we got ten modules. We identified a key
module that was closest to patients’ survival time. Then, we screened five hub genes (ATRX, BOD1L1, CEP290, DCAF16, and
NEK1) from the key module based on the clinical information from TCGA. These five genes not only significantly differ
between the normal and tumor groups but have prognostic value. The receiver operating characteristic (ROC) curve indicated
that they had the potential to serve as prognostic genes. We performed next-generation sequencing using the PTC tissue to get
more convincing evidence. Besides, we established a new signature and verified it through K-M plots and ROC. The signature
could be an independent factor for the prognosis of PTC, and we built a nomogram to carry out a quantitative study. In a
word, the hub genes we explored in the study deserved more basic and clinical research.

1. Introduction

Thyroid cancer represents a series of carcinomas with an
increasing incidence and high mortality [1, 2]. Thyroid can-
cer belongs to the malignant tumor of the endocrine system,
and it locates in the head and neck. There are four common
subtypes, papillary thyroid carcinoma, follicular thyroid car-
cinoma, undifferentiated carcinoma, and medullary thyroid
carcinoma [3]. Papillary thyroid cancer (PTC) accounts for
the most. The age at first diagnosis of PTC is decreasing.
Moreover, PTC directly leads to 10%-15% of the death rate
of patients. Early diagnosis of PTC seems arduous but para-
mount to decreasing morbidity and mortality.

Nowadays, several pieces of research are exploring
potential biologic markers for the molecular pathogenesis
of PTC. Nevertheless, few are introduced into clinical appli-
cation. BRAF is a biological marker widely used in clinical

work and serves as an indicator of mutation. Many evalua-
tion indexes select BRAF as a standard to test the value of
biological markers found in research. Finding more biologic
markers like BRAF with clinical significance may facilitate
the early diagnosis and treatment of PTC.

Currently, the full application of microarray technology
and bioinformatics analysis can assist us in discovering
new clues regarding hub genes [4–8]. However, traditional
difference analysis has a deadly shortcoming, a lack of clini-
cal information [9]. This point limits the application of bio-
informatics analysis in clinical work. We use weighted gene
coexpression network analysis (WGCNA) to enhance the
value of the outcomes we got. WGCNA corresponds to an
information reduction method and unsupervised classifica-
tion strategy [10]. The advance of WGCNA lies in identify-
ing gene modules and undergoing significant analysis with
phenotypes. It is now universally applied to explore potential
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Figure 1: Continued.
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Figure 1: Identification of hub gene modules in papillary thyroid cancer patients: (a) the association heat map between different modules;
(b) papillary thyroid cancer sample clusters; (c) the relationship between red module and survival time for PTC patients; (d) the gene
expression characteristics in red modules.

Table 1: The enrichment results of the red module genes.

Source Term_name Term_id Adjusted_p_value

GO: MF. Beta-catenin binding GO:0008013 1.60E-02

G.O.:CC Nucleoplasm GO:0005654 8.90E-07

G.O.:CC Nuclear lumen GO:0031981 3.51E-06

G.O.:CC Membrane-enclosed lumen GO:0031974 7.04E-05

G.O.:CC Organelle lumen GO:0043233 7.04E-05

G.O.:CC Intracellular organelle lumen GO:0070013 7.04E-05

G.O.:CC Nucleus GO:0005634 2.13E-04

G.O.:CC Intracellular GO:0005622 2.52E-04

G.O.:CC Intracellular non-membrane-bounded organelle GO:0043232 4.16E-04

G.O.:CC Non-membrane-bounded organelle GO:0043228 4.40E-04

G.O.:CC Intracellular organelle GO:0043229 6.20E-04

G.O.:CC Chromosome GO:0005694 1.33E-03

G.O.:CC Nuclear body GO:0016604 5.49E-03

G.O.:CC Organelle GO:0043226 2.28E-02

G.O.:CC Chromosomal region GO:0098687 2.96E-02

G.O.:CC Microtubule cytoskeleton GO:0015630 3.93E-02

GO:CC Chromosome, centromeric region GO:0000775 4.97E-02
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biomarkers for early cancer diagnosis, clearing the molecular
mechanism of tumor development and targets for individual
treatment.

In this passage, we selected three databases, one to get
the prognostic genes and two for validation using. We focus
on a series of phenotypes for hub genes. Furthermore, we
compared the clinical model of hub genes we selected and
BRAF to clarify this study’s clinic value. Then, we supple-
mented the pathological section to enhance our conclusions’
reliability.

2. Materials and Methods

2.1. Data Acquisition. Raw data are from Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov), a communal data-
set for genomics data of microarrays, chips, and high-
throughput gene expression data submitted by the research
community [11]. We screened the whole dataset and
selected GSE60542 because it has enough samples and com-
plete clinic information. GSE60542 uses the GPL570 plat-
form (Affymetrix Human Genome U133 Plus 2.0 Array),
including gene expression of 92 thyroid cancer samples.
There are 61 PTC samples with high-quality information
on pathology grade.

2.2. Data Procession. The data from GSE60542 have already
been normalized. After probe summarization, 21151 genes
were selected for further research. We listed all the genes’
expression variance between PTC and healthy from
GSE60542. Then, the top 20% of most different genes by
analysis of variance (4230 genes) were selected as differen-
tially expressed genes for the next WGCNA.

2.3. Gene Coexpression Network Construction. Firstly, we
text the gene and sample profiles to ensure they are good
genes and good samples. We found 8 outlier samples and
excluded them. Secondly, we underwent the WGCNA work
with the assistance of the “WGCNA” package in R software
(3.6.3) [12], the steps we used as the ways that had been
described previously [12].

2.4. Identified and Verified Hub Genes. The hub genes fit the
following standard [13]: in the WGCNA module–trait
relationships, (1) high within-module connectivity ðcor:
geneModuleMembership > 0:8Þ and (2) high correlation
with certain clinical trait ðcor:traitGeneSignificance > 0:2Þ.
In the PPI work, genes connect at less one gene. To assess
the hub genes’ clinic value, we use the data from The Cancer
Genome Atlas Project database (TCGA, https://

Figure 2: The enrichment results of the genes in the red module.
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cancergenome.nih.gov/). The Human Protein Atlas (http://
www.proteinatlas.org) was also used to verify the immuno-
histochemistry of hub genes.

2.5. Enrichment Analysis of Genes in Critical Modules and
Hub Genes. g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) is
a web server for functional enrichment analysis and conver-
sions of gene lists [14]. Gene Set Enrichment Analysis
(GSEA) is a computational strategy that decides whether
an a priori characterized set of genes appears measurably
critical and has concordant contrasts between two biological
states [15, 16]. We performed the Gene Ontology (GO)
functional annotation analysis of the genes in the key mod-
ules and GSEA for the critical genes we chose with the assis-
tance of g:Profiler and GSEA soft. p value < 0.05 was applied
in the correction of false-positive results.

2.6. Evaluation of the Hub Genes and Establishment of a
Better Signature for the PTC Survival Prediction. For the fur-
ther study of the hub genes we got, we performed multivar-
iate Cox regression analyses. We desired to clarify whether
the hub genes could be applied to be the independent factors
for the patient survival time. After that, we used the regres-
sion coefficients from the multivariate Cox regression analy-
ses we did (β) and combined the hub gene expression levels
to establish a new signature. Prognostic index ðPiÞ = ðβ ∗
expression level of ATRXÞ + ðβ ∗ expression level of BOD1L
1Þ + ðβ ∗ expression level of CEP290Þ + ðβ ∗ expression level
of DCAF16Þ + ðβ ∗ expression level of NEK1Þ [8]. Accord-
ing to the risk score, we divided patients into two groups:
low risk and high risk. For validation of the signature, we
did a series of visualization analyses. To evaluate the ratio-
nality of the new signature, we did a series of pictures includ-
ing heat maps, survival plots, and survival curves according
to the risk scores each patient got.

2.7. The Establishment of a Nomogram. Nomogram is an
effective method for predicting the prognosis of cancer
patients by simplifying the complex statistical prediction
model into a profile chart for assessing the probability of
OS in individual patients. In this study, we selected gender,
age, T stage, bilateral position, and risk score as the indepen-
dent factors to construct the nomogram. The nomogram sig-
nature could assess the survival possibility for PTC patients
in the next two and three years.

3. Results

3.1. Weight Coexpression Network Construction. 4230 genes
and 61 samples in GSE60542 were applied to construct the
network (Supplementary figures 1A-B). The samples were
clustered using the average linkage and Pearson correlation
methods [13]. In this passage, we defined the soft-
thresholding parameter β = 14 to build the free-scale system
(Supplementary figure 1C). Scale-free R2 = 0:87 means the
high quality of the network (Supplementary figure 1E). The
way using average linkage hierarchical clustering identified
ten modules (Supplementary figure 1D). For visualization,
they were termed different colors (Figure 1(a)). The genes
which cannot be clustered were put in the gray module. So
we did not take this module for further study.

3.2. Key Module Identification. The red module significantly
negatively correlated with the T stage (Figure 1(b)). What is
more, the genes in this module are significantly positively
related to survival time (Figure 1(c)). After evaluation of the
genes’ expression in the red module (Figure 1(d)), we selected
the red module as a vital module with clinical significance.

3.3. Enrichment of Genes in the Red Modules. We underwent
the functional annotation analysis of the genes in the red
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Figure 3: The Kaplan-Meier plots of PTC patients in TCGA with high and low expression of (a) ATRX, (b) BOD1L1, (c) CEP290, (d)
DCAF16, and (e) NEK1.
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Figure 4: The ROC of different genes for PTC patients in TCGA: (a) NEK1, (b) DCAF16, (c) CEP290, (d) ATRX, (e) BOD1L1, and (f)
BRAF.
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modules with g:Profiler (https://biit.cs.ut.ee/gprofiler/gost)
[14] (Table.1). Moreover, visualize the result using the
Enrichment Map, a plugin of Cytoscape. The outcome dem-
onstrated that the genes are mainly enriched in intracellular
lumen organelle. They are mainly clustered at chromosomal
and encoded construction protein (Figure 2). What we
found indicated that the genes in the red module might play
essential roles in cell growth, which exists in vast differences
between tumor and normal tissues.

3.4. Hub Gene Identification and Validation. Based on the
cut-off standard mentioned previously ðjMj > 0:8, jGSj >
0:2, and PPI degree score>1), 38 genes were selected.
However, not all of them are meaningful in clinic work.
We introduced the overall survival (OS) to text the clinic
value of each gene. OS of the patients with thyroid cancer
based on Kaplan Meier-plotter was from GEPIA (http://
gepia.cancer-pku.cn/) [17], an online database based on
TCGA. The patients with high expression of ATRX,
BOD1L1, CEP290, DCAF16, and NEK1 have significantly
shorter OS time, and they have a high hazard ratio (HR)
(Figure 3).

Moreover, we validated these five genes’ expression
levels via TCGA. To evaluate the reliability of these five
genes for prognosticating tumors, we created the ROC curve.
The ROC curve demonstrated that ATRX, BOD1L1,
CEP290, DCAF16, and NEK1 had enough efficiency for
prognosticating PTC (Figures 4(a)–4(e)). What excites us is
that these molecules performed better than PTC traditional
diagnosis marker—BRAF, which indicated that these mole-
cules might be potential clinical markers in further research
(Figure 4(f)). The immunohistochemical (IHC) pictures
from the Human Protein Atlas verified the higher expression
of hub genes in PTC (Figure 5).

3.5. GSEA of Hub Genes and Correlation Analysis. After
obtaining the “final” hub genes to explore the potential
pathway they joined in the PTC, we performed the GSEA.
We paid more attention to the pathway associated with
tumors. What we found was that BOD1L1 got closely related
to the TGF- (transforming growth factor-) beta signaling
pathway and adherent junctions (FDR q − value < 0:05),
which all facilitated the tumors’ proliferation and transferal
(Figures 6(a) and 6(b)). For more details about the GSEA
results, please check Supplementary file 1 and Supplemen-
tary file 2. Then, we performed the correlation analysis and
created the heat map with R soft and ggcorrplot package.
Figure 7 indicated that the hub genes we found are signifi-
cantly related (p < 0:05).

3.6. Multivariate Cox Regression Analyses and Establishment
of a New Signature for the PTC Survival Prediction. In order
to exploit the clinical predictive value of the model fully,
we established a risk score signature based on the multi-
variate Cox regression analyses, as the above statement
[8]. The new signature gave each PTC patient in TCGA
a risk score. According to the median value of the risk
score, the 410 PTC patients with enough follow-up infor-
mation were divided into high-risk and low-risk groups.

Normal tissue Pathology

NEK1

ATRX

DCAF16

CEP290

BOD1L1

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5: The immunohistochemical (IHC) pictures declared the
different expressions between normal tissue and PTC: (a) NEK1
protein expression in normal tissue; (b) NEK1 protein expression
in PTC; (c) DCAF16 protein expression in normal tissue; (d)
DCAF16 protein expression in PTC; (e) CEP290 protein
expression in normal tissue; (f) CEP290 protein expression in
PTC; (g) ATRX protein expression in normal tissue; (h) ATRX
protein expression in PTC; (i) BOD1L1 protein expression in
normal tissue; (j) BOD1L1 protein expression in PTC.
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Figure 6: The BOD1L1 highly expressed PTC samples were significantly enriched in (a) TGF- (transforming growth factor-) β signaling
pathway and (b) adherent junction pathways.
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The heat map indicates the expression in high-risk and
low-risk groups (Figure 8(a)). From the survival plots
and survival curve, we found that the high-risk group in
the PTC patients had more death cases and lower survival
status (Figures 8(b)–8(d)).

3.7. Nomogram Curve. The nomogram shows every factor’s
impact on the OS of PTC in the next two and three years.
Nomograms turned the patients’ information into scores
on a scale. We amounted to the total score and predicted
the OS according to the total score (Figure 9).
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Figure 7: The close relationship between hub genes in this research.
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4. Discussion

Thyroid cancer is a severe threat to the health of civilization in
every age group. PTC is the most common malignant tumor
of the thyroid gland [18]. It develops as an outcome of irregu-
larities of specific genes that are generally liable for negative
regulation in the expression of genes in cellular growth, prolif-
eration, and differentiation. The TNM classification is a scien-
tific system for classifying a malignancy [19]. T represents the
tumor size and invasion ability. It is an essential phenotype for

PTC, and the more advanced the T stage of the patients is, the
worse their prognosis will be. It is an immediate requirement
for biomarkers with high effectiveness. So we explored the
potential biomarkers for PTC by combining the clinic infor-
mation—T stage. In this study, we made use of the data from
GSE60542 to screen potential biomarkers associated with
PTC. We looked through TCGA database for PTC-related
clinical and mRNA profiles for further verification.

WGCNA is an advanced data mining application that is
widely used in tumors. It is unique for combining
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bioinformation with clinic information like TNM classifica-
tion, stage, and mutation. Besides, hub genes within the mod-
ules are advanced mined to find genes that regulate tumor
growth, proliferation, and differentiation. 4230 most variant
genes and 53 PTC samples were incorporated into the study.
We identified ten modules and found that the red module
was highly negatively associated with the T stage. 38 genes sat-
isfied the criteria in total. ATRX, BOD1L1, CEP290, DCAF16,
and NEK1 were adversely related to the OS.

ATRX chromatin remodeler (ATRX) is a protein-coding
gene. The protein encoded by it has an ATPase/helicase
domain. The protein belongs to SWI/SNF complex chromatin
remodeling proteins and performs cell cycle-dependent phos-
phorylation. ATRX loss-of-function mutations are associated
with cancers that exhibit the ALT phenotype [20]. A study
reports that ATRX expressed significantly higher in osteosar-
coma compared with normal [21]. In thyroid carcinoma,
some subtypes harbor mutations of SWI/SNF subunits,
including ATRX, and the frequency of abnormal SWI/SNF
complex is lower [22]. The result fitted ours well. ATRXmight
be a therapeutic target for further research.

Biorientation of chromosomes in cell division 1 like 1
(BOD1L1) is a protein coding gene. The protein encoded by
BOD1L1 is a component of this fork protection pathway,
which safeguards genome stability after replication stress
[23]. Recently, scientists found that BOD1L1 is a replication
fork protection factor that prevents the processing of stalled
replication forks within the context of current knowledge of
the replication fork proteasome [24]. Giurato et al. [25]
reported that it modulates cancer cell proliferation and tumor
growth, exerting an oncosuppressive role in breast cancer. In
our study, the GSEA showed that BOD1L1 was significantly
related to the TGF-β signaling pathway and adherent unction.
TGF-β plays a role as a tumor suppressor at the early stage.
However, it often changes the role of a tumor promoter during
late progression [26]. Adherent junctions are essential for

maintaining tissue architecture and cell polarity and can limit
cell movement and proliferation, which is a tumor suppressor
[27]. The downregulated expression of BOD1L1 might cause
PTC through these pathways.

Centrosomal protein 290 (CEP290) encodes a large
multidomain 290 kDa protein involved in cilia biogenesis
and transport. The CEP290 protein constitutes an integral
component of the transition zone (TZ) between the basal
body and the ciliary axoneme, and it serves as a diffusion
barrier for transport in and out of the cilium [28]. It is
reported that CEP290 mutations cause a spectrum of cilio-
pathies from Leber congenital amaurosis type 10 to
embryolethal Meckel syndrome [29]. Yu et al. [30] found
that CEP290 is a susceptibility gene in hereditary nonpoly-
posis colorectal cancer.

Damage-Specific DNA Binding Protein 1 (DDB1) and
Cullin-4 (CUL4) associated factor 16 (DCAF16) serve as
substrate recognition components for the CUL4-DDB1 E3
ubiquitin-protein ligase complex, which mediates ubiquiti-
nation and proteasome-dependent degradation of nuclear
proteins [31]. Liang et al. [32] reported that DCAF16 was
expressed in human carcinomas, including adenocarcinoma,
squamous cell carcinoma, and urothelial carcinoma. What
they found indicated that DCAF16 can be an excellent prog-
nostic gene for tumors.

NIMA-related kinase 1 (NEK1) is a serine/threonine
kinase involved in cell cycle regulation but also appears to pos-
sess tyrosine kinase activity involved in DNA damage check-
point control and proper DNA damage repair [33]. Zhu
et al. [34] found that the abnormal regulation of NEK1 is a
potential risk for colorectal tumorigenesis. Besides, Melo-
Hanchuk et al. [35] reported that NEK1 expression was pro-
foundly different when comparing malignant and benign thy-
roid tissue. Moreover, there is a difference in expression
between the advanced and initial stages. The conclusion they
drew was consistent with the results of this study.
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Figure 9: The clinical application of the hub gene signature by nomogram.
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WGCNA is an in-depth analysis of mRNA and micro-
RNA massive datasets combining clinic phenotypes. It is
widely used in multigene tumor research. We used WGCNA
to construct a scale-free network with the GEO profile. The
genes identified in various modules share similar expressions
independent of the clinic information, and the measurement
of the relationship between modules and clinic traits was done
simultaneously. We picked up the red modules because it was
significantly negatively associated with the T classification. GO
analysis indicated that the genes in the module are mainly
enriched in intracellular lumen organelles. After verification
using TCGA database, we explored five genes as hub genes.
They were ATRX, BOD1L1, CEP290, DCAF16, and NEK1.
They have high coexpression, which suggests that the
WGCNA worked well in dividing modules. These five genes
had value for early diagnosis and represented different T stages
of PTC. Finally, we used immunohistochemistry figures from
HPA and next-generation sequencing in a laboratory to test
the expression of the hub genes. The difference between the
results of the online database and the tissues we collected
might be owing to the limited scale of the samples in the lab-
oratory. There needs further research about the left four hub
genes. The results in this article might be applied in the clinic
work and create a new thought for PTC research.

Though the hub genes were associated with the survival
time according to the survival plots, the multivariate Cox
regression analyses revealed that the single gene was not a
perfect independent prognostic factor. This means that fore-
casting the prognostic outcome by just one gene was inaccu-
rate. To make full use of the values of the final hub genes we
found, we build a new signature for the PTC survival predic-
tion with the support of the data from the multivariate Cox
regression analyses. Through the new multivariate Cox
regression analyses, we could announce that the risk scores
ased on the novel signature were an ideal factor for prognos-
tic. The survival time plots confirmed the same conclusion.
At last, we did a quantitative nomogram to analyze ach fac-
tor’s contributions to survival time. The model fits the gen-
eral cognition of the clinic doctors.

5. Conclusion

PTC is a momentous kind of endocrine tumor, which pos-
sesses a high incidence rate. Many pieces of research have
studied it using different methods. We performed the analy-
sis with the help of WGCNA. However, through the multi-
variate Cox regression analyses, we concluded that
selecting a single hub gene as a predictive factor for the prog-
nosis of the PTC was not perfect. The new signature based
on the results of the Cox regression analyses passed the
examination and worked well as a predictive factor. The
hub genes we found had some clinical significance and
deserved more fundamental study. Our new signature could
be applied in clinic work for its prognosis value.

6. Limitation

Morbidity in PTC results from a combination of factors.
Only using data mining and basic experiment is biased or

invalid. We still need more clinical practice to perfect our
research.
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