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Background. Tissue inhibitor of metalloproteinase-2 (TIMP2), an endogenous inhibitor of matrix metalloproteinases, has been
disclosed to participate in the development and carcinogenesis of multiple malignancies. However, the prognosis of TIMP2 in
different cancers and its correlation with tumor microenvironment and immunity have not been clarified. Methods. In this
study, we conducted a comprehensive bioinformatics analysis to evaluate the prognostic and therapeutic value of TIMP2 in
cancer patients by utilizing a series of databases, including Oncomine, GEPIA, cBioPortal, GeneMANIA, Metascape, and
Sangerbox online tool. The expression of TIMP2 in different cancers was analyzed by Oncomine, TCGA, and GTEx databases,
and mutation status of TIMP2 in cancers was then verified using the cBioPortal database. The protein-protein interaction
(PPI) network of the TIMP family was exhibited by GeneMANIA. The prognosis of TIMP2 in cancers was performed though
the GEPIA database and Cox regression. Additionally, the correlations between TIMP2 expression and immunity (immune
cells, gene markers of immune cells, TMB, MSI, and neoantigen) were explored using Sangerbox online tool. Results. The
transcriptional level of TIMP2 in most cancerous tissues was significantly elevated. Survival analysis revealed that an elevated
expression of TIMP2 is associated with unfavorable survival outcome in multiple cancers. Enrichment analysis demonstrated
the possible mechanisms of TIMPs and their associated genes mainly involved in pathways including extracellular matrix
(ECM) regulators, degradation of ECM and ECM disassembly, and several other signaling pathways. Conclusions. Our findings
systematically dissected that TIMP2 is a potential prognostic maker in various cancers and use the inhibitor of TIMP2, which
may be an effective strategy for cancer therapy to improve the poor cancer survival and prognostic accuracy, but concrete
mechanisms need to be validated by subsequent experiments.

1. Introduction

Cancer, a vicious disease, is the second leading cause of
death, and the statistics are daunting globally [1]. Given
the situation, the requirement for biomarker-matched
molecularly targeted treatment for cancers shows the trend
of increasing recognition. The investigation of novel and
promising biomarkers as cancer mediators and therapeutic
targets has now spanned multiple decades. In order to pin-
point novel biomarkers and to develop new interventions,

we firstly and comprehensively delineated the expression
spectrums and prognostic value of tissue inhibitor of metal-
loproteinases 2 (TIMP2) in diverse malignancies, which trig-
gered fundamental cellular responses and was a vital player
during tumorigenesis.

TIMPs are proteins approximately 21 kDa in molecular
weight and consisting of 184–194 amino acids [2, 3]. They
are dimers composed of an N-terminal domain and a
smaller C-terminal domain binding to the MMP substrate
[4]. Thus, the family of TIMPs (TIMP-1, 2, 3, 4) are able
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to mediate the degradation of MMPs and prominently
appreciated as inhibitors of MMP activity [4, 5]. MMPs, also
known as matrixins, primarily regulated the remodeling of
the ECM components, which functions in many pathologi-
cal conditions such as tumor cell invasion and metastasis,
cell growth and differentiation, angiogenesis, and apoptosis
[2, 6, 7]. TIMP2, ascribed to tissue inhibitors of metallopro-
teinase (TIMPs) family members, functioned as an endoge-
nous inhibitor of matrix metalloproteinases (MMPs) and a
homeostatic regulator at the interface between extracellular
matrix (ECM) and cellular components [8, 9]. TIMP2,
located on chromosome 17q25, has been indicated in the
modulation of MMP-2 proteolytic activity via formation of
a 1 : 1 stoichiometric suppressive complex with the enzyme
[10, 11]. Tumor environment (TME) was coincident with
increasing levels of active MMP expression, which was over-
whelmed by TIMP2, resulting in tumor promoting functions
[8]. TIMP2 showed that it exhibited a multiple interactions
with components of the ECM by targeting several putative
receptors, such as membrane-bound MMP146 [12, 13],
integrin α3β15 [12], and insulin-like growth factor 1 recep-
tor (IGFR1) [9]. These implicated that TIMP2 was involved
in multiple different cancer-promoting processes, aiding dis-
coveries in identifying therapeutic targets regarding the
TIMP-metalloproteinase-substrate network.

Clinical cancer bioinformatics was emphasized as a cru-
cial tool and emerging science, which might serve as a new
paradigm for guiding cancer research. Recently, escalating
online platforms for the mining, sharing, analysis, and inte-
gration of cancer data have come into existence. In this
study, we had a sophisticated understanding of TIMP2 in
pan cancer on basis of data-mining analysis from various
databases, providing a theoretical basis for cancer diagnosis
and prognosis. A preprint of our article has previously been
published [14].

2. Materials and Methods

2.1. Oncomine Database. Oncomine (http://www.oncomine
.org) is a free and public cancer microarray data for aca-
demic research community [15]. The relative mRNA expres-
sion of TIMP2 in various cancer tissues compared with the
normal tissues is analyzed by Oncomine. The thresholds
are defined at p vaule≤1E-4, fold change ≥ 2, and gene rank
top 10%.

2.2. cBioPortal Database. The cBioCancer Genomics Portal
(cBioPortal database, http://cbioportal.org) is a newly devel-
oped interactive, open-access web server for the exploration
of numerous cancer genomics datasets, based on the data
retrieved from the TCGA database [16]. Analysis of the
genomic alterations of TIMP2 included copy number ampli-
fication, deep deletion, missense mutation with uncharted
significance, and mRNA upregulation. 32 studies (10967
samples) in Pancancer studies module were selected.

2.3. GEPIA Database. The GEPIA (Gene Expression Profil-
ing Interactive Analysis) database (http://gepia.cancer-pku
.cn/index.html) is an open-access web resource for analyzing

the RNA sequencing expression data from the TCGA and
the Genotype-Tissue Expression (GTEx) database and pro-
vides customizable functions including differential expres-
sion analysis, correlation analysis, and survival analysis
[17] . In the current study, we mainly used the GEPIA data-
base to get the overall survival (OS) and DFS data of TIMP2
of high level of TIMP2 patients and low levels of TIMP2
patients.

2.4. GeneMANIA Database. The GeneMANIA (https://www
.genemania.org/) was adopted to predict the potential func-
tions of TIMP2. GeneMANIA produced a series of genes
with similar functions to TIMP2 and exhibited a gene-gene
interaction network to expound relationships between
TIMP2 and its associated genes. In this study, we con-
structed this interactive functional-association network for
TIMP2 in terms of genetic interactions, coexpression, colo-
calization, physical interactions, predictions, and protein
domain similarity [18].

2.5. Relationship between TIMP2 Expression and Immunity.
Cancer progression is an intricate process controlled by a
series of factors that coordinate the crosstalk between
immune components of TME and the tumor cells. Knowl-
edge of the sophisticated interplay between tumor and
immunity could aid in formulating novel combination treat-
ments to conquer tumor immune evasion mechanisms and
direct immunotherapy decision-making. Attuned with these
facts, we explored the relationship between the level of
TIMP2 expression and immunity by using Sangerbox online
tool, including infiltrating immune cells, gene markers of
immune cells, tumor mutational burden (TMB), microsatel-
lite instability (MSI), and neoantigen.

2.6. Functional and Pathway Enrichment Analysis. Func-
tional and pathway enrichment analysis of TIMP family
members and coexpressed genes was next performed using
Metascape. Metascape website (http://metascape.org) is a
friendly and well-maintained gene-list analysis online tool
for gene analysis and annotation, which integrated analysis
tools and biological information to offer a systematic anno-
tation [19]. The Molecular Complex Detection (MCODE)
algorithm was employed to screen the densely connected
modules of PPI network. Gene Ontology (GO) terms for
biological process, cellular component, and molecular func-
tion categories were enriched based on the Metascape online
tool.

2.7. Single-Cell Functional Analysis. The functional state of
TIMP2 in diverse cancer types was assessed by CancerSEA
(http://biocc.hrbmu.edu.cn/CancerSEA/). CancerSEA, a
comprehensive database aimed at delineating a cancer
single-cell functional state atlas, covers 14 functional states
of 41,900 cancer single cells from 25 tumor types. These
functional states include stemness, invasion, metastasis, pro-
liferation, EMT, angiogenesis, apoptosis, cell cycle, differen-
tiation, DNA damage, DNA repair, hypoxia, inflammation,
and quiescence [20].
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2.8. Statistical Analysis. The expression data from the Onco-
mine database is analyzed by Student’s t-test. Transcripts
per million (TPM) serve as a measurement of the proportion
of transcripts in the pool of RNA. The expression level of
TIMP2 is showed with log2 TPM. The prognostic values of
high- and low-expression groups were evaluated according
to the hazard ratio (HR), 95% confidence interval (CI), and
log-rank P values. P value <0.05 indicated statistically signif-
icant differences.

3. Results

3.1. The Expression and Mutation Profiling of TIMP2 in
Different Cancer Types. Cancer is a disease of the genome
and develops as one end-product of accumulating somatic
mutation [21, 22]. Remarkable advances in next-generation
sequencer (NGS) and computational technology dealing
with massive data make it available to synthetically analyze
cancer genome profiles at clinical and research levels [22].
Thus, our aim was to explore the genomic mutation profil-
ing of TIMP2 in pan cancer, regarding the analysis of
TIMP2, which was exhibited by the cBioPortal database.
The genetic alteration characterization of TIMP2 showed
that its amplification was one of the most important single
factors for alteration in liver cancer, BRCA (breast invasive
carcinoma), mesothelioma, sarcoma, lung adenocarcinoma,
LGG, CRC, uveal melanoma, PCPG, esophagus cancer, pan-
creas cancer, thyroid cancer, GBM, and ccRCC. Besides,
TIMP2 mutation frequencies are the highest in liver cancer,
BRCA, and mesothelioma (Figure 1(a)). The Oncomine
database showed that TIMP2 mRNA levels were signifi-
cantly upregulated in nine cancer datasets, especially lym-
phoma (15 reported). Meanwhile, leukemia was the most
down-expression cancer type (9 reported). Additionally, we
visualized the expression of TIMP2 genes in various cancer
tissues and adjacent tissues in Figure 1(c), and the higher
TPM levels of TIMP2 in multiple cancers were observed
(P < 0:05). Data extracted from the TCGA database revealed
that the TIMP2 expression was notably higher in 10 tumor
types compared to matched TCGA normal tissues and GTEx
data, including CHOL, GBM, HNSC, KIRP, LAML, LGG,
LIHC, PAAD, SKCM, and STAD (Figure 1(c)).

3.2. The Prognostic Significance of TIMP2 Expression in
Different Cancer Types. Kaplan Meier curves displayed ele-
vated expression of TIMP2 was an unfavorable prognostic
factor for cancer patients, including OS (overall survival,
Figure 2(a)) and DFS (disease-free survival, Figure 2(b))
prognosis. As shown in Figure 2(c), the high mRNA expres-
sion of TIMP2 predicted worse survival for UCEC (HR = 1:3
, 95% CI: 1.08-1.55, P = 0:0046), BLCA (HR = 1:15, 95% CI:
1.05-1.25, P = 0:0019), MESO (HR = 1:59, 95% CI: 1.13-
2.24, P = 0:0082), STAD (HR = 1:25, 95% CI: 1.07-1.45, P
= 0:0037), LGG (HR = 1:39, 95% CI: 1.05-1.85, P = 0:022),
and KICH (HR = 2:16, 95% CI: 1.12-4.17, P = 0:022),
respectively.

3.3. The Correlation between TIMP2 Expression and Immune
Infiltrates. When analyzing the association between TIMP2

expression and immune subtypes, it was found that the
expression of TIMP2 was most positively associated with
central memory CD4+ T cell, central memory CD8+ T cell,
effector memory CD4+ T cell, effector memory CD8+ T cell,
gamma delta T cell, immature dendritic cell, mast cell,
MDSC, memory B cell, natural killer cell, natural killer T
cell, plasmacytoid dendritic cell, regulatory T cell, T follicu-
lar helper cell, and type 1 T helper cell. Furthermore, TIMP2
was most positively associated with major immune cells in
OV, LUAD, LUSC, PARD, BLCA, ESCA, PAAD, LIHC,
BRCA, COAD, STAD, THCA, READ, and LGG
(Figure 3(a)). With regards to gene markers of immune cells,
the expression of TIMP2 was found to positively correlate
with CD276. PRAD, COAD, THCA, and KICH were top
four tumors which had the most gene markers of immune
cells positively associated with the TIMP2 expression
(Figure 3(b)). Analysis of the relationship between TIMP2
expression and six common immune cells revealed that the
expression of TIMP2 positively correlated with COAD,
LIHC, PRAD, LUAD, OV, ACC, LGG, READ, and THCA
(Figure 3(c)). In addition, our study found that the TIMP2
expression was positively correlated with ImmuneScore,
StromalScore, and ESTIMATEScore in THCA, HNSC,
LAML, READ, LGG, DLBC, KICH, OV, LUAD, LUSC,
PRAD, BLCA, ESCA, TGCT, and PAAD (Figure 3(d)).
Furthermore, we evaluated the association of TIMP2 with
levels of immune cell infiltration in cancers. As shown in
Figure 4, TIMP2 was significantly correlated with B cells,
CD8+T cells, CD4+T cells, macrophages, neutrophils,
and dendritic cells in multiple cancers, including BRCA,
COAD, HNSC, KIRC, LIHC, LUAD, LUSC, PAAD,
STAD, and THCA. These results suggested that the
TIMP2 expression might be involved in regulating the
aforementioned immune molecules and play a vital role
in immune microenvironment.

3.4. Relationship between TIMP2 Expression and TMB, MSI,
and Neoantigen. TMB is defined as the number of somatic
mutations detected on NGS per megabase (mb) [23, 24].
As measured by immunohistochemistry, high TMB is an
emerging biomarker of predicting the response to immune
checkpoint inhibitors [25]. Across tumor diagnoses, patients
with high TMB might be an optimal subgroup for ICI ther-
apy and have a higher likelihood of immunotherapy [24, 26].
More broadly, neoantigens arise from tumor-specific muta-
tions that differ from wild-type antigens, which is a major
factor in the activity of clinical immunotherapies and may
guide application of immunotherapies [27] [28]. These
observations indicated that TMB, MSI, and neoantigen
might form biomarkers in the immune response to cancer
patients and provide the progress of novel therapeutic
approaches with an incentive. In addition, TIMP2 was posi-
tively correlated with TMB in OV, LGG, and SKCM and
negatively correlated with TMB in STAD and KIRP
(Figure 5(a)). TIMP2 was positively correlated with MSI in
UVM and TGCT and negatively correlated with MSI in
HNSC, STAD, and UCEC (Figure 5(b)). TIMP2 was nega-
tively correlated with neoantigen in with MSI in STAD
(Figure 5(c)).
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3.5. Functional Annotation of Coexpression Gene Network of
TIMP2. The TIMP family (TIMP-1, 2, 3, 4), a class of tran-
scription factors, has four members, which are roughly 40%
identical in amino acid sequence, and TIMP2 and TIMP4
share most similarities [3]. As shown in Figure 6(a), 20 genes
showed the greatest association with TIMPs in the gene
interaction network, including RECK, MMP1, MMP14,
MMP3, MMP2, AGTR2, PCSK5, ESR1, ADAM17, MMP9,
MXRA8, EFEMP1, MMP8, ETV4, JUND, EGR1,
ADAMTS4, ADAM15, STAT3, and JUNB. Further func-
tional analysis revealed that the top six pathways related to

these genes were NABA ECM regulators (log P = −22:8947,
z − score = 30:68476), PID AP1 pathway (log P = −19:2461,
z − score = 37:29148), IL-4 (interleukin-4) and IL-13 (inter-
leukin-13) signaling (log P = −19:1111, z − score = 31:49618
), negative regulation of membrane protein ectodomain prote-
olysis (log P = −17:967, z − score = 47:44123), response to
peptide (log P = −15:867, z − score = 16:87997), and blood
vessel development (Figures 6(b) and 6(c)). Moreover, it was
also related to the metabolism of insulin, glucose, and fat
and cell surface receptor signaling pathways which regulate
immune response. The top 3 most relevant MCODE modules
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Figure 1: Genomic alterations and mRNA expression landscape of TIMP2 in different types of cancers. (a) The genetic alteration type and
frequency of TIMP2 in diverse malignancies. The results are displayed as a histogram of the alteration frequencies of TIMP2 across cancer
studies. The genetic alteration type and frequency included amplification (red), deep deletions (blue), mutation (green), fusion (purple), and
multiple alterations (grey). Color images are available online. (b) The Oncomine database showed high or low expression of TIMP2 in
various cancer tissues compared with normal tissues. Red and blue stand for the numbers of datasets with statistically significant
(P < 0:05) increased and decreased levels of PTPN family genes. (c) Transcripts per million (TPM) of TIMP2 in different cancer types
from TCGA and GTEx data. The red fusiformis represents tumor tissue, and the blue fusiformis represents normal tissue. T: tumor; N:
normal; n: number; X axis: number of tumor and normal samples; Y axis: transcript per million (log2 (TPM+1)). ∗P < 0:05, ∗∗P < 0:01,
and ∗∗∗P < 0:001.
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were NABA ECM regulators, degradation of the extracellular
matrix, and extracellular matrix disassembly (Figure 6(d)).

3.6. Functional States of TIMP2 across Various Cancer Types.
To get a better understanding of the enigmatic and sophisti-

cated role of the TIMP2 expression in cancer, we explored
the functional state of TIMP2 across various cancer types
based on the CancerSEA database. TIMP2 has been explored
at the single-cell resolution in sixteen types of cancers
(Figures 7(a) and 7(b)). TIMP2 was positively correlated
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Figure 2: The prognostic value of the TIMP2 mRNA expression in cancer patients. (a) OS, (b) DFS, and (c) forest plot disclosed the result of
survival analysis in pan cancer, 95% (CI), and P value of TIMP2 in each individual cancer. Red dots represent HR. Abbreviation: HR: hazard
ratio; CI: confidence interval; OS: overall survival; DFS: disease-free survival. The P values were calculated using the log-rank test. ∗P < 0:05.
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with apoptosis (R = 0:501, P = 0:001) and negatively corre-
lated with angiogenesis (R = −0:388, P = 0:015) in acute lym-
phoblastic leukemia. TIMP2 was positively correlated with
metastasis in multiple cancers, including high-grade glioma
(R = 0:289, P < 0:001), non-small-cell lung cancer
(R = 0:393, P < 0:001), and BCa (R = 0:403, P < 0:001).
TIMP2 was positively correlated with angiogenesis
(R = 0:349, P = 0:032), EMT (R = 0:404, P = 0:012), hypoxia
(R = 0:441, P = 0:006), and in quiescence (R = 0:398, P =
0:013). However, TIMP2 was not significantly correlated
with any of the 14 functional states in glioma.

4. Discussion

TIMPs firmly participated in the development and process
of the majority of cancer hallmarks and may serve as prom-
ising biomarkers for cancer prognosis in patient body fluids
[3]. A systematic and comprehensive understanding of the
TIMP-metalloproteinase-substrate network will aid in
MMP inhibitor design for therapy. As numerous studies
delineated protease-independent TIMP function and prote-
ase biology was inherent to various human cancers,
advances made in comprehending these versatile
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Figure 3: Relationship between TIMP2 expression and immune infiltration level in pan cancer. (a) Relationship between TIMP2 expression
and infiltration level of 22 immune cell subtypes. (b) Relationship between TIMP2 expression and immune marker sets. (c) Relationship
between TIMP2 expression and infiltration level of the most common immune cells, including B cell, CD8+ T cell, CD4+ T cell,
macrophage, neutrophil, and dendritic cell. (d) Relationship between the estimated proportion of immune and stromal and TIMP2
expression in pan cancer, and analysis was used by ImmuneScore, StromalScore, and ESTIMATEScore.
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metalloproteinase inhibitors could help us defeat cancers.
Future efforts will align animal model systems with changes
in TIMPs in patients, will pinpoint therapeutic targets
within the TIMP-metalloproteinase-substrate network, and
will use TIMPs in liquid biopsy samples as biomarkers for
cancer prognosis. Among the family of TIMPs, Wang et al.
disclosed that TIMP2 participated in the regulation of cell
adhesion, angiogenesis, and epithelial-to-mesenchymal tran-
sition (EMT) and interacted with multiple integrin pathways
[29]. Upregulated TIMP2 expression level in cancer tissues
probably played a crucial part in the occurrence of cancers.
Additionally, TIMP2 probably exerted their functions in
many aspects of tumorigenesis through ECM regulators,
degradation of ECM, and ECM disassembly.

Cancer immunotherapy has shown substantial and vali-
dated therapeutic effects in patients with cancer, including
ICI and adoptive cell therapy, manipulating the immune
system to discern and assault cancer cells [30, 31]. As intro-

duced previously, TIMP2 was related to TMB, MSI, and
neoantigen in varying degrees, providing a theoretical basis
for directing patient-specific cancer immunotherapy opti-
mizing clinical benefit of current immunotherapy.

Altogether, our study was conducted using diverse pub-
lic databases and displayed the expression and clinical signif-
icance of TIMP2 in cancers. However, our research has
several limitations. Sample numbers of each cancer varied
greatly, which may lead to a reduction in the reliability and
accuracy of analyses for those cancers with a relatively small
sample size. In addition, our analysis failed to account for
differences in clinical and sociodemographic characteristics
of the individuals. The biological interactions and detailed
mechanisms involved need further investigation and experi-
mental confirmation, which will be conducted in future
researches. We hope our study may be helpful to potential
prognostic markers for the improvement of cancer survival
and prognostic accuracy in the future.
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Figure 5: Radar maps of relationship between TIMP2 expression and (a) TMB, (b) MSI, and (c) neoantigen.
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(d)

Figure 6: Functional role of TIMP2 and potential mechanisms in cancers. (a) Gene-gene interaction network analysis of TIMP family
members obtained from the GeneMANIA database. Each node represented a gene. The node size indicated the strength of interactions.
The internode connection lines indicated the types of gene–gene interactions, and the line color indicated the types of interactions. (b)
Network of GO enriched terms colored by clusters. (c) The bar plot of GO enriched terms of the genes coexpressed with TIMP2 colored
by P value. (d) Most significant MCODE components form the PPI network. GO: Gene Ontology.
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Figure 7: Single-cell sequencing analysis of TIMP2 using the CancerSEA database. (a, b) The functional state of TIMP2 across diverse types
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5. Conclusions

Comprehensive understanding of the TIMP2 may have
guiding significance for the prognostic judgments, early
diagnosis, and targeted therapy of in cancer patients. Based
on our study, further discovery of the systematic molecular
mechanisms that how TIMP2 interacted with different sig-
naling and other molecules or leads to different prognosis
of cancer patients can pave the way for more effective tumor
diagnosis and serve as a genetic treatment target. Therefore,
we hypothesize that TIMP2 is a versatile candidate as a novel
biomarker and therapeutic target for cancers.
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