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Background. Lung cancer is emerging as one of most deadly diseases, and the mortality rate was still high with 5-year overall
survival rate less than 20%. Aging is referred as protumorigenic state, and it plays a significant role in cancer development.
Methods. Molecular subtype of lung cancer was identified by consensus cluster analysis. Prognostic signature was constructed
using LASSO cox regression analysis. CeRNA network was constructed to explore lncRNA-miRNA-mRNA regulatory axis.
Results. A total of 27 differentially expressed aging-related genes (ARGs) were obtained in LUAD. Three clusters of TCGA-
LUAD patients with significant difference in prognosis, immune infiltration, chemotherapy, and targeted therapy were
identified. We also developed an aging-related prognostic signature that had a better performance in predicting the1-year, 3-
year, and 5-year overall survival of LUAD. Further analysis suggested a significant correlation between prognostic signature
gene expression and clinical stage, immune infiltration, tumor mutation burden, microsatellite instability, and drug sensitivity.
We also identified the lncRNA UCA1/miR-143-3p/CDK1 regulatory axis in LUAD. Conclusion. Our study identified three
clusters of TCGA-LUAD patients with significant difference in prognosis, immune infiltration, chemotherapy, and targeted
therapy. We also developed an aging-related prognostic signature that had a good performance in the prognosis of LUAD.

1. Introduction

Lung cancer is emerging as one of most deadly diseases with
an estimated 2.09 million new cases and 1.76 million deaths
per year globally [1]. Lung adenocarcinoma (LUAD) is the
main type of lung cancer. Despite great advance had been
achieved in the diagnosis and therapy of lung cancer, the
mortality rate was still high, and 5-year overall survival rate
is less than 20% [2, 3]. Apart from the TNM staging system,
there are still no ideal biomarkers or signatures to predict the
prognosis of lung cancer patients. Increasing evidences
revealed that molecularly-defined subtypes could provide
novel strategies for the therapy and prognosis of lung cancer
[4]. Thus, it is significance to develop effective prognostic
signature and molecular subtype for lung cancer.

Aging is a complex process associated with various molec-
ular and cellular mechanisms [5]. Aging facilitates a series of
degenerative pathologies with characteristics of debilitating

losses of tissue or cellular function [6]. The incidence of malig-
nancy increases as the age increases [7]. Moreover, aging is
referred as protumorigenic state, and it plays a significant role
in cancer development [8]. Moreover, aging-related signature
could serve as prognostic biomarker formany types of cancers,
including colorectal cancer [9], ovarian cancer [10], and gli-
oma [11]. However, the significance role of aging-related
genes (ARGs) in LUAD had not been clarified.

In the current study, we conducted consensus clustering
for differently expressed ARGs in the Cancer Genome Atlas
(TCGA) database. This was followed by the correlation anal-
ysis between molecular subtype and drug sensitivity as well
as immune infiltration. We then developed a prognostic risk
model based on prognostic ARGs. Moreover, we also clari-
fied the potential molecular mechanism by constructing a
ceRNA network. Our result may reveal the potential impli-
cation of ARGs as marker for the prognosis and therapy of
LUAD patients.
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2. Materials and Methods

2.1. Data Acquisition and Preprocessing. Human ARGs were
isolated from HAGR on March 1, 2022 (n = 307, http://
genomics.senescence.info/genes/, Supplementary Table 1)
[12]. Gene expression profile of LUAD was isolated from
the TCGA database (https://portal.gdc.cancer.gov/), using
the limma package in the R software to study the
differentially expressed genes (DEGs) with adjusted P <
0:05 and fold change > 2 as the threshold value. The
differentially expressed ARGs were shown with Venn
diagram. The somatic mutation data of LUAD was
downloaded from UCSC Xena (https://xena.ucsc.edu/), and
the result was shown with “maftools” package. Copy
number variation (CNV) oncoplot of differentially
expressed ARGs in LUAD was drawn with GISTIC2.0 [13].

2.2. Consensus Cluster Analysis. Based on differentially
expressed ARGs, we then identified the optimum number
of clusters of LUAD with “ConsensusClusterPlus” package.
The survival curve of each cluster in LUAD was drawn using
“survival” package. Moreover, immuneeconv algorithm were
used to evaluate the immune score. The immune cell abun-
dance and immune-checkpoint-related gene expression in
each cluster was evaluated with Student t-test with “ggplot
2” package. Moreover, we also used “pRRophetic” R package
to calculate the chemotherapeutic response in each cluster.

2.3. Development of Aging-Related Prognostic Signature
Analysis. Univariate cox proportional hazard regression anal-
ysis was conducted to explore aging-related prognostic genes
(P < 0:05). This was followed by the development of aging-
related prognostic signature by using the least absolute shrink-
age and selection operator (LASSO) regression algorithm in
“glmnet” package. The risk score of LUAD cases was estab-
lished as follows: risk score =∑i = 1nCoefðiÞ × xðiÞ. The near-
est neighbor estimation (NNE) method was utilized to
evaluate the 3-year survival and 5-year survival of LUAD.
ROC curve was drawn with “survivalROC” R package. Using
“ggDCA” package, we also draw a decision curve analysis
(DCA) to evaluate the prediction ability of this signature. Fur-
ther, Pearson correlation analysis was conducted to analyze
the correlation between risk score and immune infiltration.

2.4. Risk Module Gene Analysis. Kruskal-Wallis test was per-
formed to evaluate the differences of the risk module gene
expression in different stages of LUAD patients. After we
obtained the TMB/MSI score of LUAD patients from the
TCGA database, we then analyzed their correlation with the
risk module gene expression with Spearman’s method. Pearson
correlation analysis was performed to get the correlation
between risk module gene expression and drug IC50 of Geno-
mics of Therapeutics Response Portal (CTRP) and immune cell
abundance of TIMER (https://cistrome.shinyapps.io/timer/).
After we downloaded the cell line mRNA expression profile
from the CCLE dataset (https://portals.broadinstitute.org/ccle),
we then explored the risk module gene expression in different
types of LUAD cell with “ggplot 2” package. ThemiRNA targets
were identified by using miRDB (http://mirdb.org/), StarBase
(http://starbase.sysu.edu.cn/), and miRWalk (http://mirwalk

.umm.uni-heidelberg.de/). And the lncRNA targets were identi-
fied by LncBase (http://carolina.imis.athena-innovation.gr/)
and StarBase (http://starbase.sysu.edu.cn/).

3. Results

3.1. Identification of ARG Expression and Their Mutation
Landscape of in LUAD. Figures 1(a) and 1(b) show the DEGs
in LUAD. And a total of 1091 DEGs were identified. Among
these DEGs, 27 was differentially expressed ARGs
(Figure 1(c)). We then explored the genetic mutation of
these 27 differentially expressed ARGs in LUAD, and the
results were shown in Figures 1(d)–1(f). The data revealed
that top 3 genes with the highest mutation frequency in
LUAD were LEPR, A2M, and CDKN2A (Figures 1(d) and
1(e)). CNV analysis demonstrated a significant homozygous
deletion of KL, BUB1B, and LMNB1 in LUAD (Figure 1(f)).
Moreover, most differentially expressed ARGs had a homo-
zygous amplification in LUAD (Figure 1(f)).

3.2. Consensus Clustering of ARGs in Three Clusters in
LUAD. Consensus clustering analysis was utilized to distin-
guish LUAD patients based on 27 differently expressed
ARGs. Interestingly, these differently expressed ARGs could
separate TCGA-LUAD patients into three categories accord-
ing to CDF values and delta area (Figures 2(a)–2(d) ).
Among these categories, LUAD patients in cluster 2 had a
worse prognosis while LUAD patients in cluster 3 had a best
prognosis (Figure 2(e), p = 0:00018). Considering the signif-
icant role of chemotherapy and targeted therapy in LUAD,
we then evaluate the response of this three clusters to some
common chemotherapeutic drugs and targeted therapeutics.
The data suggested that LUAD patients in cluster 3 could be
more resistant to commonly chemotherapy and targeted
therapy, including paclitaxel, gemcitabine, cisplatin, and
gefitinib (Figures 2(f)–2(i), all P < 0:05). Increasing evi-
dences suggested immunotherapy as the most promising
therapeutic strategy for LUAD patients in advance stage
[14, 15]. In the current study, the data demonstrated an
immune checkpoint expression (Figure 3(a), all P < 0:05),
immune score (Figure 3(b), p < 0:05), and TIDE score
(Figure 3(c), all p = 1:1e − 13) in cluster 2 versus cluster 1
and cluster 3 in LUAD. Cancer stem cells (CSCs) are
believed to be responsible for tumor growth and mainte-
nance, and they are involved in the resistance to conven-
tional chemotherapy and radiation and tumor metastasis
and recurrence. In our study, we found that LUAD patients
in cluster 1 had a higher mRNAsi score versus cluster 2 and
cluster 3 (Figure 3(d), p = 4:7e − 44).

3.3. The Functional Enrichment of ARGs. The GO analysis
revealed that these ARGs were mainly associated with aging,
cellular response to oxidative stress, cell aging, positive regu-
lation of pri-miRNA transcription by RNA polymerase II,
kinase regulator activity, growth factor binding, and protein
kinase inhibitor activity (Figure 4(a)). Moreover, ARGs were
mainly associated with aging, cellular response to chemical
stress, gliogenesis, response to drug, mitolic cell cycle check-
point, and circadian rhythm in KEGG analysis (Figure 4(b)).
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Figure 1: Expression and mutation landscape of ARGs in LUAD. (a, b) The volcano plot and heat map revealed the differentially expressed
genes in LUAD. (c) Venn diagram revealed the differentially expressed ARGs in LUAD. (d, e) The SNV landscape of ARGs in LUAD. (d)
The CNV landscape of ARGs in LAUD. ARG: aging-related gene subtype; DEGs: differentially expressed genes.
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Figure 2: Continued.
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Figure 2: Consensus clustering of ARGs in LUAD. (a, b) Consensus clustering cumulative distribution function (CDF), relative change in
area under CDF curve, and tracking plot for k = 2 − 6. (c, d) LUAD cases were divided into three clusters. (e) The overall survival curves in
clusters 1/2/3 of LUAD cases. (f)–(i) The distribution of IC50 score of three clusters in LUAD. ∗P < 0:05, ∗∗P < 0:01, ∗∗P < 0:0001. ARG:
aging-related gene subtype.
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Figure 3: The difference of immune infiltration in three clusters of LUAD. (a) The differences of immune checkpoint gene expression of
three clusters in LUAD. (b) The differences of TIMER score of three clusters in LUAD. (c, d) The differences of TIDE and mRNAsi
score of three clusters in LUAD. ∗∗∗P < 0:001, ∗∗∗∗P < 0:0001.
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Figure 4: The enriched items in functional enrichment analysis. (a) The enriched items in gene ontology analysis. (b) The enriched items in
Kyoto Encyclopedia of Genes and Genomes pathways analysis. BP: biological process; CC: cellular component; MF: molecular function.
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Figure 5: The result of prognosis of ARGs in LUAD. (a) Forest map revealed the result of overall survival of ARGs in LUAD. (b) Forest map
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3.4. The Prognostic Significance of ARGs in LUAD. We then
evaluate the prognostic value of ARGs in LUAD. In over-
all survival analysis, a total of 19 ARGs (PLAU, A2M,
UCHL1, FOXM1, CDK1, KL, PPARG, EGR1, LEPR,
PYCR1, AGTR1, CDKN2B, IL6, TFAP2A, BUB1B, SOCS2,
CAT, CDKN2A, and RECQL4) were correlated with the
overall survival of LUAD patients (Figure 5(a), all P <
0:05). Moreover, a total of 21 ARGs (PLAU, A2M,
UCHL1, FOXM1, CDK1, KL, PPARG, EGR1, LEPR,
PYCR1, AGTR1, CDKN2B, CCNA2, IL6, TOP2A,

TFAP2A, BUB1B, SOCS2, CAT, CDKN2A, and RECQL4)
were correlated with the disease-specific survival of LUAD
patients (Figure 5(b), all P < 0:05). As for progression-free
survival, a total of ARGs (A2M, UCHL1, FOXM1, CDK1,
KL, PPARG, EGR1, LEPR, PYCR1, AGTR1, CDKN2B,
CCNA2, IL6, LMNB1, TOP2A, TFAP2A, BUB1B, SOCS2,
CAT, CDKN2A, and RECQL4) were correlated with the
prognosis of LUAD patients (Figure 5(c), all P < 0:05).
Combined with these results, a total of 17 ARGs were sug-
gested as potential prognostic biomarkers for LUAD,
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Figure 6: Aging-related prognostic signature in LUAD. (a, b) The coefficient and partial likelihood deviance of prognostic signature. (c) The
risk score distribution, patient survival status, and aging-related gene expression profile of prognostic signature. (d) Overall survival curve of
LUAD patients in the high-risk and low risk group. (e) ROC curve evaluated the predictive value of this prognostic signature in 1-year, 3-
year, and 5-year overall survival. (f)–(h) Decision curve analysis of candidate prognostic biomarker or signature for predicting 1-year, 3-
year, and 5-year survival status of LUAD patients.
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including AGTR1, BUB1B, CAT, CDK1, CDKN2A,
CDKN2B, EGR1, FOXM1, IL6, KL, LEPR, PPARG,
PYCR1, RECQL4, SOCS2, TFAP2A, and UCHL1.

3.5. Development of an Aging-Related Prognostic Signature
for LUAD. LASSO cox regression analysis was performed with
17 potential prognostic biomarkers to develop an aging-
related prognostic signature for LUAD. As a result, four
aging-related genes were included in this prognostic signature.
The coefficient and partial likelihood deviance of prognostic

signature was shown in Figures 6(a) and 6(b). The risk score,
survival status, and gene expression of prognostic signature
were shown in Figure 6(c). Overall survival analysis revealed
that LUAD patients with high risks core had a poor overall
survival (Figure 6(d), p = 1:22e − 7), and the AUC was 0.675,
0.678, and 0.61 in 1-year, 3-year, and 5-year, respectively, in
ROC curve. Further decision curve analysis (DCA) revealed
that this aging-related prognostic signature had a better per-
formance in predicting the1-year, 3-year, and 5-year OS of
LUAD patients versus potential aging-related prognostic
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Figure 7: The correlation between risk score and immune infiltration in LUAD. The correlation between risk score and the abundance of B
cells (a), CD4+ T cells (b), CD8+ T cells (c), Neutrophils (d), macrophage (e), and dendritic cells (f) in LUAD.
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Figure 8: Comprehensive analysis of prognostic signature genes in LUAD. (a) The expression of TFAP2A, KL, FOXM1, and CDK1 in
different clinical stages of LUAD. (b, c) Correlation between TMB/MSI score and prognostic signature genes expression in LUAD. (d)
Correlation between drug sensitivity and prognostic signature genes expression in LUAD. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001.
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biomarkers (Figures 6(f)–6(h)). We then analyzed the correla-
tion between the risk score of LUAD patients and immune cell
infiltration, which demonstrated a negative correlation
between risk score and the abundance of B cells (Figure 7(a),
p = 2:65e − 12) and CD4+ T cells (Figure 7(b), p = 0:01).
Moreover, risk score showed positive correlation with neutro-
phil immune infiltration (Figure 7(d), p = 1:86e − 4). How-
ever, there is no significant correlation between risk score
and the abundance of CD8+ T cells (Figure 7(c)), macrophage
(Figure 7(e)), and dendritic cells (Figure 7(f)).

3.6. Comprehensive Analysis of Prognostic Signature Genes.
The expression of FOXM1 (p = 8:2e − 5) and CDK1
(p = 0:00021) increases as clinical stage is increasing in
LUAD (Figure 8(a)), suggested that FOXM1 and CDK1
may be involved in the progression of LUAD. TMB and
MSI were suggested as predictive markers for tumor immu-

notherapy efficacy [16]. In our study, the TMB score showed
negative association with KL expression (p = 7:76e − 8) and
positive association with FOXM1 expression
(p = 2:47e − 21) and CDK1 expression (p = 2:2e − 18)
(Figure 8(b)). Moreover, the TFAP2A expression was posi-
tively correlated with MSI score in LUAD (Figure 8(c), p =
0:008). We then analyzed the correlation between the corre-
lation between existing therapy target and gene expression.
The current study revealed that high TFAP2A expression
and low CDK1 expression could be more resistant to drug
resistance in LUAD (Figure 8(d)). We also analyzed the cor-
relation between prognostic signature genes expression and
immune cell infiltration in LUAD. As a result, the TFAP2A
expression showed positive correlation with the level of CD4
+ T cells and neutrophils (Figure 9(a)). The KL expression
increased as the abundance of B cells, CD4+ T cells, CD8+
T cells, macrophage, and dendritic cells increased
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Figure 9: The correlation between prognostic signature genes and immune infiltration in LUAD. The correlation between the expression of
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(Figure 9(b)). Moreover, the FOXM1 expression was signif-
icantly correlated with B cell infiltration and neutrophils
(Figure 9(c)). The CDK1 expression decreased as the abun-
dance of B cells and CD4+ T cells increased (Figure 9(d)).

3.7. lncRNA-miRNA-mRNA Regulatory Axis Analysis. We
selected CDK1 for further analysis. Finally, an lncRNA-
miRNA-mRNA regulatory axis analysis was performed to
further clarify potential mechanism. As a result, five miR-
NAs (miR-374c-3p, miR-143-3p, miR-330-3p, miR-641,
and miR-548o-3p) were suggested as miRNA target of
CDK1 based on the data of miRDB, miRWalk, and StarBase)
(Figure 10(a)). Among these 5 miRNAs, 3 miRNAs (miR-
143-3p, miR-330-3p, and miR-548o-3p) were differentially
expressed in LUAD (Figures 10(b)–10(d)), and only 1
miRNA (miR-143-3p) was significantly associated with
prognosis of LUAD (Figure 10(e)). Thus, miR-143-3p may
be the most promising miRNA target of CDK1. We then
explored the lncRNA target of miR-143-3p. As a result, a
total of 6 lncRNAs (OIP5-AS1, TSIX, LINC00662,
GABPB1-AS1, HCG18, UCA1) were suggested as the targets
of miR-143-3p based on the data of StarBase and LncBase
(Figure 10(f)). Though all these 6 lncRNAs were differen-
tially expressed in LUAD (Figure 10(g)), only UCA1 was sig-
nificantly correlated with the prognosis of LUAD
(Figure 10(h)). Thus, it may be the most promising lncRNA
target of miR-143-3p. All in all, the lncRNA UCA1/miR-
143-3p/CDK1 regulatory axis may play a vital role in the
progression in LUAD, and further in vivo and in vitro stud-
ies should be conducted to verify this hypothesis.

4. Discussion

As one of a vital risk factor for malignancies, aging exerts a
vital role in human morbidity and mortality [17]. Aging-
related genes were suggested as prognostic biomarker for
types of cancer [18]. The significance role of ARGs in LUAD
had not been fully clarified. Increasing evidences revealed
that molecularly defined subtypes could provide novel strat-
egies for the therapy and prognosis of lung cancer [4]. Thus,
it is significant to develop effective prognostic signature and
molecular subtype for lung cancer.

After obtained 27 differentially expressed aging-related
genes (ARGs), we performed consensus clustering analysis,
and three clusters of TCGA-LUAD patients with significant
difference in prognosis, immune infiltration, chemotherapy
,and targeted therapy were identified. The result revealed
that LUAD patients in cluster 3 had a poor overall survival.
Moreover, further analysis suggested that LUAD patients in
cluster 3 could be more resistant to commonly chemother-
apy, targeted therapy, and immunotherapy. Increasing evi-
dences revealed that molecular subtype classification of
cancer with distinct biological characteristics could guide
the development of precision treatment [19]. Ideal molecular
subtype of LUAD was vital for the immune checkpoint
blockade therapy and prognosis [20]. Our study identified
three aging-related molecular subtypes of LUAD, providing
more evidence for the precise treatment and prognosis
improvement for LUAD.

Our study also identified 17 potential prognostic bio-
markers for LUAD, including AGTR1, BUB1B, CAT,
CDK1, CDKN2A, CDKN2B, EGR1, FOXM1, IL6, KL,
LEPR, PPARG, PYCR1, RECQL4, SOCS2, TFAP2A, and
UCHL1. Based on these prognostic biomarkers, we devel-
oped an aging-related prognostic signature using LASSO
cox regression analysis. Interestingly, this prognostic signa-
ture had a better performance in predicting the 1-year, 3-
year, and 5-year overall survival of LUAD. Previous studies
had identified some prognostic signatures for LUAD. Lin
et al. had developed pyroptosis-related prognostic signature
in lung adenocarcinoma [21]. Another study also identified
an immune-related signature that had a good performance
in the prognosis of lung adenocarcinoma [22]. A robust
ferroptosis-related signature could provide potential for the
personalized outcome prediction for LUAD [23].

Actually, many aging-related signatures had been identi-
fied in cancers. In melanoma, a series of aging-related genes
were associated with prognosis and responsiveness to immu-
notherapy [24]. Xue et al. also developed an aging-related
prognostic signature for pancreatic adenocarcinoma [25].
Another study also constructed a prognostic signature based
on 9-aging related genes for acute myeloid leukemia [26].
Moreover, another bioinformatics study also developed an
aging-related signature, which had a good performance in
risk stratification and prognosis prediction in lung squa-
mous carcinoma [27].

Another vital finding of our study was that we also iden-
tified the lncRNA UCA1/miR-143-3p/CDK1 regulatory axis
in LUAD. This regulatory axis may play a vital role of pro-
gression of LUAD. Previous study revealed that lncRNA
UCA1 was a prognostic biomarker, and it could accelerate
tumor proliferation and migration [28, 29]. Moreover, previ-
ous studies suggested that the miR-143-3p expression was
downregulated in lung cancer and correlated with biological
process regulation [30, 31]. CDK1 was upregulated in lung
cancer, and it acts as a potential prognostic biomarker [32,
33]. Interestingly, the data of our study further verified these
results. Further in vivo and in vitro studies should be per-
formed to verify this regulatory axis.

5. Conclusion

Our study identified three clusters of TCGA-LUAD patients
with significant difference in prognosis, immune infiltration,
chemotherapy, and targeted therapy. We also developed an
aging-related prognostic signature that had a good perfor-
mance in the prognosis of LUAD.
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