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Te sarcoendoplasmic reticulum calcium adenosine triphosphatase (ATPase) 3 (SERCA3), a member of the SERCA protein family, is
located at the endoplasmic reticulum. Its main function is to pumpCa2+ into the endoplasmic reticulum and is involved inmaintaining
intracellular calcium homeostasis and signal transduction, which are very important factors impacting cancer development and
progression. However, the specifc role of SERCA3 in cancer remains unclear. Our study, for the frst time, comprehensively analyzed
the SERCA3 expression profle in multiple cancers and its prognostic value in diferent cancers using bioinformatics. Furthermore,
TCGA database was applied to evaluate the certain correlation of SERCA3 expression with immune modulator genes, immune
checkpoints, immune cell infltration, TMB, and MSI. Te results revealed that in many cancers, SERCA3 expression was markedly
decreased, which was related to poor prognosis. Additionally, we noticed that SERCA3 expression was correlated with TNM clas-
sifcation and WHO cancer stages in some cancer types. Te Pearson correlation analysis showed that SERCA3 expression was closely
associated with chemokines, chemokine receptors, MHC, immune activation genes, and immunosuppressive genes. In most cancer
types, SERCA3 expression was also associated with immune checkpoints, including PDCD1 and CTLA-4. Further analysis suggested
that SERCA3 was signifcantly correlated with CD8+ T cells, and regulatory T cells. Additionally, pan-cancer analysis confrmed that
SERCA3 expression was related to TMB and MSI. In conclusion, these results ofer a new insight into the functions and efects of
SERCA3 in pan-cancer, and further provide some basis for considering SERCA3 as a potential cancer treatment target and biomarker.

1. Introduction

Cancer, a major cause of death worldwide, imposed a heavy
burden on society [1–4]. Cancer incidence and mortality are
exceptionally high. Global cancer cases increased by 19
million in 2020, and nearly 10 million deaths due to cancer
were recorded. Furthermore, America cancer cases expected
to rise by 1.9 million, and new cancer deaths are expected to
reach 60,936 by 2022 [3, 5].Te rapid development of cancer

immunotherapy in recent years has improved the prognosis
of some cancer patients; however, immune checkpoint in-
hibitors have not achieved satisfactory results in most cancer
cases [6–8]. Tis may be attributed to the susceptibility of
cancer to mutations and drug resistance, which signifcantly
limit cancer screening and treatment [9, 10]. Terefore,
identifying new therapeutic targets or biomarkers is im-
portant for the early screening and successful treatment of
cancer.
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Te sarcoendoplasmic reticulum calcium adenosine tri-
phosphatase (ATPase) 3 (SERCA3) enzyme belongs to the
SERCA protein family and is found in the endoplasmic re-
ticulum. It pumps calcium ions (Ca2+) from the cytoplasm into
the endoplasmic reticulum, which is the main calcium-storing
organelle. In most cells, it is mainly involved in maintaining
homeostasis of endoplasmic reticulum Ca2+ and the in-
tracellular Ca2+ concentration [11–13]. Being the second
messenger of intracellular signal transduction, Ca2+ is an
important regulator of cellular signaling activities, and in-
tracellular Ca2+ disorders can afect gene expression, pro-
liferation, diferentiation, and cell death [14–16]. Cumulative
evidence suggests that Ca2+ signal transduction is crucial for
cancer development. Te growth, proliferation, invasion,
death, and drug resistance of cancer cells are regulated by Ca2+
[17–20]. It has been reported that abnormal changes in am-
plitude of cytoplasmic free Ca2+ concentration and duration of
Ca2+ elevation may promote breast cancer cell proliferation
and invasion [17, 21]. Te same phenomenon was confrmed
in endometrial and colorectal cancers [22, 23].

Intracellular calcium homeostasis is a crucial factor that
afects the occurrence and development of cancers. SERCA3
is one of the most important calciummodulators involved in
maintaining intracellular calcium homeostasis by modu-
lating the entry of cytoplasmic calcium into the endoplasmic
reticulum. However, no pan-cancer study of SERCA3 has
been reported, and the role of SERCA3 in pan-cancer re-
mains unknown. Our study elucidated the SERCA3 ex-
pression profle and examined correlations between SERCA3
expression and cancer prognosis; moreover, the correlation
between SERCA3, tumor-node-metastasis (TNM) classif-
cation, and World Health Organization (WHO) cancer
stages was also detected. Te relationship between SERCA3
with immune modulator pathways, immune checkpoints,
and immune cell infltration levels was analyzed. Finally, we
examined the correlation of SERCA3 expression with cancer
mutation burden (TMB) andmicrosatellite instability (MSI).
We provided a study of SERCA3 in pan-cancer, focusing on
the role of SERCA3 in cancer immune functions and the
potential mechanisms of cancer immunotherapy.

2. Materials and Methods

2.1. SERCA3 Expression in Human Pan-Cancer. Te Cancer
Genome Atlas (TCGA) pan-cancer database (PANCAN,
N� 10535, G� 60499, year: updated in 2022) was down-
loaded from the UCSC Cancer Genome Browser (https://
xenabrowser.net/), from which SERCA3 expression data for
each cancer type were extracted [24, 25]. Furthermore, we
screened data from the Primary Tumor (year: updated in
2022) and Solid Tissue Normal (year: updated in 2022)
databases to compare SERCA3 expression between diferent
cancer types. Te fnal cancer expression data were obtained
after eliminating cancer types from less than three sample.
All expression data were standardized by log2 conversion.
SERCA3 expression in diferent cancers was calculated using
R software (version 3.6.4) [24]. Additionally, we used the
Human Protein Atlas (HPA) database to investigate SERCA3
expression in normal and cancer tissues in humans.

2.2. Association of SERCA3 Expression with TNM Classif-
cation and WHO Cancer Stages. We selected SERCA3 ex-
pression data from TCGA-LAML (year: updated in 2022)
and Primary Tumor databases. Te fnal cancer expression
data were obtained after eliminating cancer types from less
than three sample. Using R software to correlate SERCA3
expression with TNM classifcation and WHO cancer stages
in various types of cancer. All expression data were stan-
dardized via log2 conversion.

2.3. Prognostic Analysis. In addition to extraction of data
from TCGA-LAML, TCGA-SKCM (year: updated in 2022),
and Primary Tumor databases, prognostic data for TCGA
within 1 month of follow-up were also obtained from
a previously published TCGA prognosis study [26], and pan-
cancer data were obtained after eliminating the cancer types
with less than 10 samples. Applying hazard ratios (HR) and
95% confdence intervals (CI) to assess overall survival (OS).

2.4. Relationship between SERCA3 Expression and Immune
ModulatorPathwaysandImmuneCheckpoints. Te SERCA3
expression data and data on fve immune modulator
pathways, including chemokines, chemokine receptors,
major histocompatibility complex (MHC), immune acti-
vation genes, and immunosuppressive genes, were extracted
from TCGA. Further, we excavated TCGA-LAML and
Primary Tumor data and plotted the Spearman correlation
analysis heat map of SERCA3 expression and fve immune
modulator pathways.

Moreover, we extracted expression data on two immune
checkpoints, including 24 immune checkpoint inhibitors
and 36 immune checkpoint stimulators, from a previous
study [27]. We screened the cancer samples as follows:
TCGA-LAML and Primary Tumor. All expression data were
standardized by log2 conversion. Te Pearson correlation
between SERCA3 level and two immune checkpoint path-
ways was calculated.

2.5. SERCA3 Expression and Immune Cell Infltration.
Mapping the obtained SERCA3 expression data of each
cancer type to Gene Symbol, using CIBERSORT [28, 29] in R
software IOBR (version 0.99.9) [30]. Immune cell infltration
levels of each cancer type were assessed, the corr.test
function of the R software psych (version 2.1.6) was used to
calculate the Spearman correlation coefcient.

2.6. Association of SERCA3 Expression with TMB and MSI.
SERCA3 expression and TMB data were extracted from
TCGA and Primary Tumor. Downloaded TCGA level 4
simple nucleotide variation data processed by MuTect2
software from GDC [31]. TMB for each cancer type was
estimated using the “maftools” R package (version 2.8.05).
Subsequently, SERCA3 expression and TMB data were in-
tegrated. Te fnal cancer expression data were obtained
after eliminating cancer types from less than three sample.
All expression data were standardized via log2 conversion.
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Spearman’s correlation between SERCA3 expression and
TMB was then compared.

Subsequently, we obtained the MSI score of each cancer
type from a previous study [32], and the MSI score and
SERCA3 expression data were integrated; less than three
samples of cancer types were eliminated, and the fnal cancer
expression data was acquired. All expression data were
standardized via log2 conversion. Spearman correlation
between SERCA3 expression and MSI was then compared.

2.7. Statistical Analysis. Diferential expression of SERCA3
in various cancer types was evaluated using Student’s t-test.
Kruskal–Wallis test and Mann–Whitney U-test were used to
calculate the relationship of SERCA3 expression with TNM
classifcation and WHO cancer stages. HR and p-values for
overall survival were assessed using the log-rank test.
Spearman correlation and Pearson’s correlation were ap-
plied to detect the correlation between SERCA3 expression
and immunity. All analyses were performed using R software
(IOBR, psych, and maftools). p≤ 0.05 was considered
a statistically signifcant diference.

3. Results

3.1. SERCA3 Expression in Human Pan-Cancer. We calcu-
lated SERCA3 expression in various cancer types based on
TCGA database. Te results showed inconsistent expression
of SERCA3 in diferent types of cancer; it had signifcantly
low expression in 13 cancers, including GBM, GBMLGG,
LGG, COAD, COADREAD, KIRP, KIPAN, PRAD, LUSC,
THCA, READ, BLCA, and KICH. Contrastingly, two can-
cers, including BRCA and CHOL, showed signifcantly high
SERCA3 expression (Figure 1). Immunohistochemistry
(IHC) of SERCA3 in COAD, PRAD, LUSC, and THCA
supported this view (Figure 2). Tese cancer abbreviations
are defned in Supplement 1.

3.2. Association of SERCA3 Expression with TNM Classif-
cationandWHOCancerStages. Tounderstand the association
of SERCA3 expression with TNM classifcation and WHO
cancer stage, we measured SERCA3 expression among the
diferent TNM classifcation. Strong association of SERCA3
expression with TNM classifcation was found in KIRP
(p � 0.01), GBMLGG (p � 0.02), LGG (p � 0.02), and
COADREAD (p � 0.05) (Figure 3(a)). Subsequently, the ex-
pression of SERCA3 in the WHO cancer stages was assessed
based on theUnion for International Cancer Control defnition.
SERCA3 expressionwas downregulated in some advanced-stage
cancers, including GBMLGG (p � 1.5e − 3), BRCA (p � 0.05),
LGG (p � 0.04), and GBM (p � 0.02) (Figure 3(b)).

3.3. PrognosticAnalysis of SERCA3Expression. Te relevance
between the expression of SERCA3 and the OS in cancer
patients was evaluated. SERCA3 is a protective factor in most
cancers, HR and 95%CI for cancers were PAAD (0.68,
0.56–0.81), CESC (0.85, 0.72–0.99), SKCM (0.86, 0.80–0.93),
SARC (0.81, 0.71–0.92), BLCA (0.89, 0.80–0.98), SKCM-M

(0.87, 0.80–0.95), COADREAD (0.80, 0.69–0.94), HNSC
(0.87, 0.79–0.95), KIRC (0.87, 0.75–0.99), COAD (0.83,
0.70–0.99), OV (0.92, 0.84–1.00), while SERCA3 is an ad-
verse factor in KIPAN (1.11, 1.00–1.22), GBMLGG (1.53,
1.38–1.70), TGCT (3.20, 0.94–10.88), UVM (2.04,
1.39–3.01), LGG (1.53, 1.33–1.76). Te pan-cancer results
were found using cox regression analysis (Figure 4).

3.4. Relationship between SERCA3 Expression and Immune
Modulator Pathways and Immune Checkpoints. Based on
TCGA database, we analyzed the connection between
SERCA3 expression and the fve immune modulator path-
ways. Te heat map revealed that SERCA3 expression was
closely correlated with the level of chemokines and che-
mokine receptors, such as CCL5, CCL17, CCL22, CCR4, and
CCR5 (Figures 5(a) and 5(b)). Furthermore, SERCA3 ex-
pression was closely correlated with MHC, immune acti-
vation genes, and immunosuppressive genes such as HLA-
DRB1, HLA-E, PDCD1 (PD-1), TGF-B1, CTLA-4, TIGIT,
and ICOS in most cancer types (Figures 5(c)–5(e)).

Immunotherapy is increasingly becoming an important
means of cancer treatment, the application of immune
checkpoint inhibitors has improved the prognosis of some
cancer patients [33, 34]. Terefore, we collected the ex-
pression data of 60 common immune checkpoints [27],
using Pearson’s correlation analyzed the relationship be-
tween SERCA3 expression and immune checkpoints. Our
results suggested that in most types of cancer, SERCA3
expression was distinctly related to immune checkpoints,
such as TLR4, ICOS, CTLA-4, PDCD1, and CD27 (Figure 6).

3.5. ImmuneCell InfltrationAnalysis. Te abundances of 22
immune cells were calculated using CIBERSORT, the re-
lationship between SERCA3 expression and immune cell
infltration levels in diferent cancer types was analyzed. We
noticed that the abundance of many immune cells was
correlated with SERCA3 expression. SERCA3 expression was
positively connected with CD8+ T cells, regulatory T (Treg)
cells, M1 macrophages, and näıve B cells, while negatively
correlated with M0 macrophages, M2 macrophages, and
eosinophils (Figure 7).

3.6. Association of SERCA3 Expression with TMB and MSI.
TMB and MSI afect the sensitivity of immunotherapy and
prognosis. Te current study analyzed whether there is
a correlation between SERCA3 expression and TMB and
MSI in various cancers. From the analysis results it seems
that SERCA3 expression was positively correlated with TMB
in some cancers. A p-value for these cancers were UCEC
(0.0052), LGG (0.0006), OV (0.0035), COAD (0.0360),
ESCA (0.0007), and GBMLGG (<0.0001), while it was
negatively associated with TMB in LIHC (0.0002), TGCT
(0.0431), PAAD (0.0016), PRAD (<0.0001), LAML (0.0131),
GBM (0.0089), THCA (0.0004), STAD (0.0018), THYM
(7.87e-11), KIRP (0.0126), LUSC (0.0403), and KIRC
(0.0137) (Figure 8(a)). Moreover, expression of SERCA3 was
positively associated with MSI in some cancers. A p-value
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for these cancers were COADREAD (0.0014), LUAD
(<0.0001), COAD (<0.0001), and UCEC (0.0017), and was
negatively correlated with MSI in TGCT (0.0224), STAD
(0.005), LIHC (0.0202), DLBC (0.0136), KIPAN (2.16e-15),
GBMLGG (0.0003), SARC (0.0231), HNSC (0.0161), and
KIRP (0.0251) (Figure 8(b)).

4. Discussion

Calcium-dependent cell signal transduction was involved in
a variety of life activities including proliferation,

diferentiation, secretion, and death [12]. Maintaining Ca2+
homeostasis is crucial for protein storage and transport,
signal transduction, and various cellular activities [11].
Abnormal changes in intracellular Ca2+ levels have been
reported to afect cancer progression [21, 22, 35, 36].
However, in cancer, the role of SERCA3, a protein that
maintains Ca2+ homeostasis in the cytoplasm and endo-
plasmic reticulum, remains unknown. In this study, the pan-
cancer analysis revealed an association between SERCA3
expression and cancer prognosis, immunoregulatory genes,
immune infltration, and mutations.
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Figure 1: SERCA3 expression in human pan-cancer. Te expression of SERCA3 in diferent cancer types were compared in 26 cancer types
based on the Solid Tissue Normal, Primary Blood Derived Cancer- Peripheral Blood, Primary Tumor database. ∗p≤ 0.05; ∗∗p< 0.01;
∗∗∗p< 0.001 and ∗∗∗∗p< 0.0001.
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Figure 3: Pan-Cancer Analysis of the Association between SERCA3 Expression and TNM classifcation and WHO cancer stages (a) Te
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We found that SERCA3 expression varied among dif-
ferent cancer types. SERCA3was expressed at low levels in 13
types of cancers, including GBM, GBMLGG, LGG, COAD,
COADREAD, KIRP, KIPAN, PRAD, LUSC, THCA, READ,
BLCA, and KICH. Comparative analyses revealed high
SERCA3 expression in two cancer types, including BRCA
and CHOL. Moreover, SERCA3 expression is association
with WHO cancer stages and TNM classifcation in a few
types of cancer. For instance, the expression of SERCA3 is
diferent for WHO cancer stages of GBM, GBMLGG, LGG,
and BRCA. Furthermore, the expression of SERCA3 is re-
lated to metastasis stages of GBMLGG, LGG, and COAD-
READ. Cox regression analysis showed that SERCA3 is
a protective factor against some cancers, including PAAD,
SKCM, SARC, SKCM-M, HNSC, COADREAD, BLCA,
COAD, CESC, KIRC, and OV. However, it acts also as a risk
factor for GBMLGG, LGG, UVM, KIPAN, and TGCT.Tese
results indicated that SERCA3 has a low level of expression
in most cancers compared with its expression in normal
tissues and plays a protective role in most cancer types.

Analysis of the results of the TCGA database revealed
that the expression of SERCA3 was correlated with the
chemokine receptors CCR4, which plays a signifcant role in
immune regulation and is regarded as a potential therapeutic
target in bronchial asthma. CCR4 is also highly expressed in

adult T-cell leukemia/lymphoma (ATLL) and cutaneous T-
cell lymphoma (CTCLs) [37]. Li et al. showed that over-
expression of CCR4 mediates the chemotactic response of
breast cancer cells to CCL17 and accelerates the growth and
metastasis of breast cancer [38]. Our results found a corre-
lation between the level of SERCA3 and immune-activating
and immunosuppressive genes, including PDCD1 (PD-1),
CTLA-4, TIGIT, and ICOS. By analyzing the correlation
between SERCA3 expression and immune checkpoints we
found that SERCA3 expression was related to immune
checkpoints, including CTLA-4, PDCD1, and ICOS in most
types of cancer. PDCD1 and CTLA-4 antibodies, which are
immune checkpoint inhibitors, have been approved for the
treatment of cancers including non-small cell lung cancer
(NSCLC) and melanoma, and have improved the prognosis
of patients with these cancers [39, 40]. Tese results proved
that SERCA3 might partially afect immune checkpoints.

Te tumor microenvironment (TME) is pivotal in reg-
ulating cancer progression and can predict treatment out-
comes [41–43]. Te composition of the TME is complex and
includes vascular vessels, immune infltrates, fbroblasts, and
the extracellular matrix [44–46]. Te immune cells, an
important part of the TME, show an apparent impact on
cancer development [46, 47]. Investigating the association of
SERCA3 expression and levels of immune cell, we detected
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Figure 5: Pan-Cancer Analysis of the SERCA3 Expression in Relation to Immune Modulator Pathways (a) Te heatmap shows the
correlation between SERCA3 expression and chemokines. (b) Te heatmap shows the correlation between SERCA3 expression and
chemokine receptors. (c)Te heatmap shows the correlation between SERCA3 expression andMHC. (d)Te heatmap shows the correlation
between SERCA3 expression and immune activation genes. (e) Te heatmap shows the correlation between SERCA3 expression and
immunosuppressive genes. For each pair, the left top triangle is colored to represent the Spearman correlation coefcient; the right bottom
one is colored to indicate the p-value. ∗p≤ 0.05.
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that SERCA3 expression was positively associated with M1
macrophages and CD8+ T cells levels, whereas it showed
a negative correlation with the levels of M0 and M2 mac-
rophages. Cytotoxic CD8+ Tcells are the main immune cells
against pathogens and neoplastic cells. Te cancer

immunotherapy partially strengthens CD8+ T cell activity
leading to the reduced escape of cancer cells from the im-
mune system and then establishing durable and efcient
anti-tumor immunity [48, 49]. SERCA3 may play a pro-
tective role in most cancers by increasing T cell infltration.
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Previous research reported that an increased M2/M1
macrophage ratio promotes cancer progression [50].
SERCA3 expression was positively correlation with M1
macrophage levels while negatively correlation with M2
macrophage levels, further providing a basis for the pro-
tective role of SERCA3 in most cancer types. Tese results
suggest that SERCA3 may interfere with the prognosis of
various cancers by regulating the expression of multiple
immune cells.

Finally, we assessed the correlation among SERCA3
expression, TMB, and MSI. Te more somatic mutations in
tumors, the newer antigens that may form, and TMB can be
used to evaluate the number of new tumor antigen loads
[51]. MSI is an indicator of DNA mismatch repair (MMR)
defects. TMB and MSI were used as biomarkers to predict
the efcacy of immune checkpoint blockade (ICB) [52, 53].
By pan-cancer analysis we found that SERCA3 expression
correlated with TMB and MSI, providing evidence for
SERCA3 as a potential predictor of ICB therapy.

However, our study had some limitations. First, it was
based on bioinformatics and diferent databases; methods of
generating data may have impacted the results. Second,
TCGA database lacks data on immunotherapy; hence, we
cannot further analyze the indications for immunotherapy.
Overall, our study systematically analyzed the association of
SERCA3 expression with prognosis, immune modulator
genes, immune checkpoints, immune cell infltration, TMB,
and MSI, which can provide information to further un-
derstand the role of SERCA3 in cancers and its relationship
with the immune responses. It also provides a basis for
considering SERCA3 as a potential cancer treatment target
and biomarker. A potential challenge in the future will
involve the development of new therapeutic methods related
to the specifc targeting of SERCA3 to limit the development
and progression of cancer.

5. Conclusions

Tis research revealed that SERCA3 expression was signif-
icantly decreased in most types of cancer, cancer patients
with reduced SERCA3 expression tend to have a poor
prognosis. Moreover, we analyzed the correlation of
SERCA3 expression with immune regulatory gene expres-
sion, immune checkpoints, immune cell infltration, TMB,
and MSI. We speculated that SERCA3 might afect cancer
progression by regulating the TME, especially immune cells.
Tese results provide new ideas for the function and role of
SERCA3 in pan-cancer and provide a theoretical basis for
considering SERCA3 as a potential cancer treatment target
and biomarker.
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