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Background. Infantile Hemangiomas (IHs) are common benign vascular tumors of infancy that may have serious consequences.
Te research on diagnostic markers for IHs is scarce. Methods. Te “limma” R package was applied to identify diferentially
expressed genes (DEGs) in developing IHs. Plugin ClueGO in Cytoscape software performed functional enrichment of
DEGs. Te Search Tool for Retrieving Interacting Genes (STRING) database was utilized to construct the PPI network. Te
least absolute shrinkage and selection operator (LASSO) regression model and support vector machine recursive feature
elimination (SVM-RFE) analysis were used to identify diagnostic genes for IHs. Te receiver operating characteristic (ROC)
curve evaluated diagnostic genes’ discriminatory ability. Single-gene based on Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) was conducted by Gene Set Enrichment Analysis (GSEA). Te chemicals related to the
diagnostic genes were excavated by the Comparative Toxicogenomics Database (CTD). Finally, the online website Network
Analyst was used to predict the transcription factors targeting the diagnostic genes. Results. A total of 205 DEGs were singled
out from IHs samples of 6-, 12-, and 24-month-old infants. Tese genes principally participated in vasculogenesis and
development-related, endothelial cell-related biological processes. Ten we mined 127 interacting proteins and created
a network with 127 nodes and 251 edges. Furthermore, LASSO and SVM-RRF algorithms identifed fve diagnostic genes,
namely, TMEM2, GUCY1A2, ISL1, WARS, and STEAP4. ROC curve analysis results indicated that the diagnostic genes had
a powerful ability to distinguish IHs samples from normal samples. Next, the results of GSEA for a single gene illustrated
that all fve diagnostic genes inhibited the “valine, leucine, and isoleucine degradation” pathway in the development of IHs.
WARS, TMEM2, and STEAP4 activated the “blood vessel development” and “vasculature development” in IHs. Sub-
sequently, inhibitors targeting TMEM2, GUCY1A2, ISL1, and STEAP4 were mined. Finally, 14 transcription factors
regulating GUCY1A2, 14 transcription factors regulating STEAP4, and 26 transcription factors regulating ISL1 were
predicted. Conclusion. Tis study identifed fve diagnostic markers for IHs and further explored the mechanisms and
targeting drugs, providing a basis for diagnosing and treating IHs.
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1. Introduction

Infants with infantile hemangiomas (IHs), with a morbidity
rate of 4–10%, have developed one of the most prevalent
benign vascular neoplasms in pediatrics [1]. IHs are clini-
cally divided into the proliferation and involution stages and
show a rapid proliferation during the frst year of life. Where
most of them multiply within 6 to 10 months, reaching the
maximum size by 3 to 5 months old, and slowly regress
before 4 years old in 90% of cases [2], while the remaining
10% of IHsmay require intervention resulting from location,
size, and complications, involving obstruction, dysfunction,
ulcers, hypothyroidism, disfgurement, and other syndromes
with life-threatening [3]. Head and neck ulcers are the most
common severe anatomical deformations which heavily
burden the child and their families [4, 5].

Te formation of hemangiomas might be evoked by
secondary physiological events in patients carrying germline
risk mutations, such as perinatal hypoxia or mechanical
stress during delivery [6]. Although the potential patho-
genesis has not been fully elucidated, the aberrant responses
of pluripotent stem cells to stimuli such as hypoxia [7],
abnormal glucose metabolism, and the renin-angiotensin
system [8] are considered critical pathogenic factors. Te
injury elicited by IHs depends on the depth and distribution
of hemangioma-like lesions. IHs can occur in any organ
system, and diagnosis may be delayed up to 3 months after
birth in cases where deep local IHs present as a blue tumor
with ill-defned boundaries [9].

Te high expression of glucose transporter-1 (GLUT-1)
protein draws a distinction between IHs and other vascular
tumors or malformations in pathology [10]. As a classical
pathological diagnostic marker of IHs, GLUT-1 is present at
all stages of IHs and has limited signifcance for the early
diagnosis of IHs. Clinical events summary proved if pro-
pranolol is used early in the IHs proliferation period, which
could minimize the demand for surgical reduction and
reconstructive surgery in the future [11]. Terefore, the
diagnostic markers contributing to an early diagnosis of IHs
are eager to be explored and will be a crucial component in
disease treatment.

Recently, various new biomarkers were studied and
examined for IHs diagnosis, prediction of therapeutic efect,
and nosogenesis investigation [12–16]. Diferentially
expressed genes (DEGs) between normal and 6-, 12-, and 24-
month-old IHs samples were screened from the Gene Ex-
pression Omnibus (GEO) database in the present study, and
the front-rank genes were identifed by DEGs coordinated
with PPI network construction. Eventually, we confrmed
TMEM2, GUCY1A2, ISL1, WARS, and STEAP4 for di-
agnosis and development of IHs based on receiver operator
characteristic (ROC) curves analysis Gene Set Enrichment
Analysis (GSEA), Gene-chemical interaction, and tran-
scription factor prediction.

2. Materials and Methods

2.1. Data Source. Te transcriptome data of the GSE127487
dataset [12] were obtained by downloading from the GEO

database (https://www.ncbi.nlm.nih.gov/gds). Six normal
skin samples, fve hemangioma samples from 6-month-old
infants, six hemangioma samples from 12-month-old in-
fants, and six hemangioma samples from 24-month-old
infants were selected for subsequent analysis. Te heman-
gioma samples were all from infants who were not treated
with propranolol.

2.2. Identifcation of DEGs in the Development of IHs. To
acquire genes that were involved in the development of IHs,
we frst fltered genes that were diferentially expressed
between normal and 6-month-old IHs samples, normal and
12-month-old IHs samples, normal and 12-month-old IHs
samples, respectively by “limma” R package (version 3.44.3),
employing P-value <0.05 and |Log2FC| >2 as screening
thresholds [17]. Ten, the up- and down-regulated genes
from the three groups were intersected separately. Finally,
the common up- and down-regulated genes were obtained
and considered candidate genes for the following analysis.

2.3. Functional Enrichment of DEGs. Te above conjoint
DEGs were submitted to Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) functional
enrichment analysis in the plugin ClueGO of Cytoscape
software (version 2.5.8) [18].

2.4. PPI Network Construction. Te Search Tool for Re-
trieving Interacting Genes (STRING) database (https://
string-db.org/) was utilized to construct the PPI network
[19] after concealing the independent nodes. Nodes with an
interaction confdence level greater than 0.4 were in-
corporated into the network. Te data were introduced into
Cytoscape software (version 2.5.8) for visual display.

2.5. Diagnostic Genes Screening and Verifcation. Te least
absolute shrinkage and selection operator (LASSO) is a high-
dimensional data analysis method that synchronously
conducts regularization and variable selection, which would
enhance the prediction accuracy and validity [20]. Te
“glmnet” R package was utilized to execute the LASSO al-
gorithm. Support Vector Machine-Recursive Feature
Elimination (SVM-RFE) is a feature selection algorithm
based on a support vector machine, which ranks the features
based on deleting the recursive feature sequence [21]. Te
e1071 R package applied the SVM algorithm. Intersection
genes identifed from the two algorithms were deemed as
characteristic genes. In addition, the area under the curve
(AUC) of receiver operating characteristic (ROC) was
computed by using the pROC package [22] to evaluate the
diagnostic ability of potential diagnostic genes in discrim-
inating hemangioma samples from normal samples.

2.6. Gene Set Enrichment Analysis. To explore the mecha-
nisms of diagnostic genes in the development of IHs, we
performed GSEA for a single gene in “clusterProfler” and
“org.Hs.eg.db” in R, took the expression value of each gene
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as the phenotype fle and ranked the correlation coefcients
between each gene and all genes in the gene sets. Te
threshold for enrichment signifcance was |NES| >1, and
adjust P-value was <0.05.

2.7. Gene-Chemical Interaction and Transcription Factor
Prediction. Te chemicals related to the diagnostic genes
were excavated by the Comparative Toxicogenomics Data-
base (CTD) (https://ctdbase.org/) [23]. Te online website
Network Analyst (https://www.networkanalyst.ca/faces/
home.xhtml) was used to predict the transcription factors
targeting the diagnostic genes.

2.8. Statistical Analysis. All analyses were conducted using
the R programming language, and the Wilcoxon test
compared the data from diferent groups. In all analyses,
P-values less than 0.05 were regarded as statistically
signifcant.

3. Results

3.1. Te Diferentially Expressed Genes (DEGs) in the Devel-
opment of IHs. Compared to normal samples, 527 DEGs
were screened in the 6-month-old infant hemangioma
samples, of which 429 were up-regulated and 98 were down-
regulated (Figure 1(a), Supplementary Table S1). As to the
12-month-old infant hemangioma samples, 542 DEGs were
identifed, including 382 up-regulated and 160 down-
regulated genes (Figure 1(b), Supplementary Table S2).
For 24-month-old infants, 299 DEGs were mined, con-
taining 266 up-regulated and 33 down-regulated genes
(Figure 1(c), Supplementary Table S3). Te TOP 100 DEGs
in each group were also presented in a heat map separately
(Figures 1(d)–1(f )). Ten, we obtained 194 common up-
regulated and 11 down-regulated genes by taking the in-
tersection of up-regulated and down-regulated genes of the
above three groups, respectively (Figures 2(a) and 2(b),
Supplementary Table S4). Tese 205 common DEGs among
the 6-, 12-, and 24-month-old infants were considered
candidate genes for subsequent analysis. To investigate the
function of these genes in the genesis of IHs, we performed
functional enrichment analysis on these genes. As a result, 62
GO items and 9 KEGG pathways were enriched (Supple-
mentary Table S5). Interestingly, we found that these genes
were mainly involved in biological processes such as “blood
vessel development,” “vasculogenesis,” “stress fber,” “reg-
ulation of endothelial cell proliferation,” “blood vessel
maturation,” “regulation of systemic arterial blood pressure
by circulatory renin-angiotensin,” “sprouting angiogenesis,”
“cell-cell junction,” “regulation of angiogenesis,” “regulation
of adaptive immune response,” “vascular process in the
circulatory system,” “endothelium development” and et al.
(Figure 3(a)). At the same time, these genes were also as-
sociated with KEGG pathways such as “purine metabolism,”
“cGMP-PKG signaling pathway,” “Notch signaling path-
way,” “cell adhesion molecules,” “leukocyte transendothelial
migration,” “adipocytokine signaling pathway,” “renin se-
cretion” and et al. (Figure 3(b)). Hence, we speculated that

these genes might impact the development of IHs via these
processes.

3.2. Diagnostic Genes Identifcation. A PPI network was
constructed to explore the connections between the proteins
encoded by the 205 DEGs. First, we dug up 127 interacting
proteins and created a network with 127 nodes and 251 edges
(Figure 4). In the following, we ran the LASSO logistic
regression analysis based on these 127 genes and yielded the
gene coefcients graph and the cross-validation graph, fl-
tering out seven characteristic genes according to lambda
close to 0 and the lowest error rate, namely PCDH17,
TMEM2, GUCY1A2, ISL1, RUNX2, WARS, and STEAP4
(Figures 5(a) and 5(b)). Meanwhile, we conducted the
SVM-RFE algorithm to rank the 127 genes for character-
istics, and the top 20 genes were listed in Supplementary
Table S6. As shown in Figure 5(c), 14 characteristic genes
were identifed using a 10-foldcross-validation approach at
the optimal point “0.0189,” the top 14 genes in Supple-
mentary Table S6. Subsequently, we obtained the charac-
teristic genes for IHs by intersecting the distinct genes
predicted by LASSO and SVM-RFE, namely TMEM2,
GUCY1A2, ISL1, WARS, and STEAP4 (Figure 5(d)). After
that, we proceeded with expression analysis and ROC curve
analysis to further assess the diagnostic ability of the
characteristic genes. As shown in Figure 5(e), the expression
of all fve distinct genes was increased in the infant hem-
angioma samples compared to the normal samples (all the
P-value lower than 0.001). Furthermore, we found that
except for GUCY1A2, which had an AUC value of 0.956, the
other four diagnostic genes had an AUC value of 1, in-
dicating the adequacy of fve hub genes as diagnostic
markers to accurately distinguish IHs samples from normal
samples (Figure 5(f).

3.3. Te Function of Diagnostic Genes in IHs. Based on the
functional enrichment results of the DEGs, GO items rel-
evant to diagnostic genes were picked and exhibited in
Supplementary Table S7 and Figure 6. 19 biological processes
were authenticated to be associated with diagnostic genes
(Figure 6). WARS, a tryptophanyl-tRNA synthetase, was
involved in “blood vessel development,” “vasculogenesis,”
et al. TEME2, also known as CEMIP2, cell migration in-
ducing hyaluronidase 2, was engaged in “cell-cell junction”
and “adherens junction.” GUCY1A2, guanylate cyclase 1
soluble subunit alpha 2, and STEAP4, metalloreductase,
were associated with “heme binding.” ISL1, ISL LIM ho-
meobox 1, was correlated with multiple processes such as
“blood vessel development,” “circulatory system process,”
“heart process,” “blood circulation,” “regulation of angio-
genesis,” “mesenchyme development,” and et al. To further
gain insight into the biological role of each diagnostic gene in
IHs, we performed the GSEA analysis for single-gene. TOP5
GO term and KEGG pathway for each gene are listed in
Figure 7. All enrichment results and detailed information
were shown in Supplementary Table S8. As toWARS, the top
fve biological processes, namely “angiogenesis,” “blood
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vessel development,” “vasculature development,” “blood
vessel morphogenesis,” and “endothelium development,”
were most positively related to WARS expression

(Figure 7(a)). Among the top fve KEGG pathways, “valine,
leucine and isoleucine degradation” and “propanoate
metabolism” were negatively correlated with WARS,
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Figure 1: DEGs between IHs and normal. (a)–(c) Te volcano plot of DEGs of IHs at 6, 12, and 24 months was compared with normal,
where the green dots represent the down-regulated genes, and the red dots represent the genes that are up-regulated. Te black dots
represent the genes that are not signifcantly diferent. (d)–(f ) Heatmaps of DEGs of IHs at 6, 12, and 24 months were compared with
normal, where the aquamarine blue bar represents IHs and the red bar represents normal control samples.
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Figure 2: Venny maps of DEGs in GSE127487 gene chips. (a) Up-regulated genes of hemangioma at 6, 12, and 24 months. (b) Down-
regulated genes of hemangioma at 6, 12, and 24 months.
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(a) (b)

Figure 3: Analyses of candidate genes enriched in biological functions and signaling pathways. (a) GO enrichment network of candidate
genes. (b) KEGG enrichment network of candidate genes.

Figure 4: PPI network of DEGs.Te increasing color from green to red, the higher connectivity of genes, and the greater the connection, the
larger the point.
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suggesting that WARS may inhibit these pathways. Mean-
while, “pathways in cancer,” “salmonella infection,” and
“PI3K-Akt signaling pathway” were positively correlated
with WARS, indicating that WARS may activate these
pathways (Figure 7(b)). Te top fve biological processes
which were activated by TMEM2 were “angiogenesis,”
“blood vessel development,” “vasculature development,”
“blood vessel morphogenesis,” and “endothelium develop-
ment” (Figure 7(c)). Te top fve KEGG pathways, “valine,
leucine, and isoleucine degradation” was negatively corre-
lated with TMEM2. “Pathways in cancer,” “PI3K-Akt sig-
naling pathway,” “salmonella infection,” and “endocytosis”
were positively correlated with TMEM2 (Figure 7(d)). For
GUCY1A2, “regulation of symbiotic process” was activated
most signifcantly. “Fatty acid metabolic process,” “mono-
carboxylic acid metabolic process,” “organic acid catabolic
process,” and “carboxylic acid catabolic process” was
inhibited by GUCY1A2 most signifcantly (Figure 7(e)).
Among the top fve KEGG pathways related to GUCY1A2,
“pyruvate metabolism” and “valine, leucine, and isoleucine
degradation” were inhibited. “Spliceosome,” “yersinia in-
fection,” and “bacterial invasion of epithelial cells” were
activated (Figure 7(f )). As to STEAP4, “cell morphogenesis

involved in diferentiation,” “blood vessel development” and
“vasculature development” were positively relevant to
STEAP4 expression most signifcantly. Moreover, STEAP4
expression was negatively related to “SRP-dependent
cotranslational protein targeting to membrane” and
“cotranslational protein targeting to membrane”
(Figure 7(g)). Among the top fve KEGG pathways related to
STEAP4, “valine, leucine, and isoleucine degradation” was
negatively related, and “pathways in cancer,” “endocytosis,”
“focal adhesion,” and “PI3K-Akt signaling pathway” were
positively related (Figure 7(h)). Concerning ISL1, “RNA
splicing, via transesterifcation reactions,” “RNA splicing, via
transesterifcation reactions with bulged adenosine as
a nucleophile,” “mRNA splicing, via spliceosome,” “mRNA
processing,” and “cell cycle phase transition” were activated
most signifcantly by ISL1 (Figure 7(i)). Among the top fve
KEGG pathways related to ISL1, “propanoate metabolism”
and “valine, leucine, and isoleucine degradation” were
inhibited. “Spliceosome,” “pathways in cancer,” and “bac-
terial invasion of epithelial cells” were activated (Figure 7(j)).
We noted that all fve diagnostic genes inhibited the “valine,
leucine, and isoleucine degradation” pathway in the de-
velopment of IHs. WARS, TMEM2, STEAP4, and ISL1
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activated the “pathways in cancer” pathway in IHs. WARS,
TMEM2, and STEAP4 activated the “blood vessel devel-
opment” and “vasculature development” in IHs.

3.4. Potential Inhibitors Related to Diagnostic Genes. To
further explore targeted drugs associated with diagnostic
genes and provide more information for clinical treatment,
we sought two compounds associated with TMEM2, fve
compounds associated with WARS, 24 compounds inter-
acting with GUCY1A2, 30 compounds associated with ISL1,
and 28 compounds correlated with STEAP4 by CTD, which
are shown and listed in Figure 8 and Supplementary
Table S9. In the interaction network, we detected that abrine
inhibited the expression of TMEM2. Te arbutin, aristolo-
chic acid I, entinostat, trichostatin A, and triclosan inhibited
GUCY1A2. STEAP4 was inhibited by antirheumatic agents,
licochalcone B, sulforaphane, troglitazone, zinc zulfate, 7, 8-
Dihydro-7, 8-dihydroxybenzo(a)pyrene 9, 10-oxide. Te 4-
chloro-N-((4-(1,1-dimethylethyl)phenyl)methyl)-3-ethyl-1-
methyl-1H-pyrazole-5-carboxamide, 1-Methyl-4-phenyl-
pyridinium, antimycin A, arachidonic acid, cyclosporine,
ribavirin, sunitinib, thifuzamide, triacsin C, and triclosan
were potential inhibitors for ISL1.

3.5. Transcription Factors Regulating the Diagnostic Genes.
Via Network Analyst, we predicted 14 transcription factors
regulating GUCY1A2, 14 transcription factors regulating

STEAP4, and 26 transcription factors regulating ISL1, as
revealed in the connection network (Figure 9). ISL1 and
STEAP4 were both regulated by SOX2, NANOG, SUZ12,
and AR in the network. ISL1 and GUCY1A2 were both
regulated by BMI1 and SMAD4. ERG1 and SETDB1 reg-
ulated STEAP4 and GUCY1A2 simultaneously. Based on the
potential drugs and the transcription factors of the target
diagnostic marker identifed, the linking of these drugs to the
transcriptional factors was shown in the network diagram
(Figure 10). Ulteriorly focusing on the relationship between
diagnostic biomarkers-related drugs and corresponding
major transcription factors (Supplementary Table S10), we
found that GUCY1A2 inhibitors, aristolochic acid I, and
entinostat could respectively inhibit the corresponding
transcription factors SETDB1 and ERG1. Te inhibitors of
STEAP4, 7, 8-dihydro-7, 8-dihydroxybenzo(a)pyrene 9, 10-
oxide simultaneously inhibited the expression of ERG1,
SETDB1, and SUZ12, antirheumatic agents inhibited ERG1,
sulforaphane and troglitazone inhibited AR. ISL1 inhibitors,
cyclosporine inhibited AR, and sunitinib inhibited both AR
and NANOG.

4. Discussion

IHs are characterized by abnormalities in the proliferation of
vascular endothelial cells and vascular structure. Distin-
guished from congenital vascular malformations, IHs gen-
erally do not appear until a few weeks after birth [5],
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Figure 7: Continued.
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Figure 7: Functional annotation enrichment analysis of the identifed diagnostic markers. ((a), (c), (e), (g), (i)) Top fve gene set enrichment
analysis (GSEA) plots of diagnostic markers by GO gene sets. ((b), (d), (f ), (h), (j)) Top fve GSEA plots of diagnostic genes by KEGG
gene sets.

Figure 8: Targeted drug network of diagnostic markers. Red triangles are diagnostic markers, and green dots are drug molecules; the shape
size of the node indicates connection degree, blue lines represent drugs inhibit biomarkers expression, pink lines represent drugs increasing
biomarkers expression, yellow lines represent drugs’ efect on gene methylation, gray lines show the efects of drugs on genes are unknown.
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reporting a predominant prevalence (male-female ratio of
2.4 :1) in females [24] and a higher incidence in premature
infants and low birth weight (<2500 g). Current academic
fndings revealed a 40% increased risk for every 500 g birth
weight loss [25], a history of chorionic villus sampling was
accompanied by a two-fold raised risk of IHs [26], and
siblings with IHs may elevate the incidence of subsequent
siblings [27]. In addition, multiple pregnancies, Caucasians,
preeclampsia, advanced maternal age, and placental ab-
normalities (such as placenta previa, placental abruption,
and abnormal insertion of the umbilical cord) are also
existing as risk factors for IHs occasion. According to
guidelines published in multiple countries and territories,
pediatricians and primary care clinicians are supposed to
regularly monitor IHs in infants during the frst months after
birth and refer infants requiring intervention to specialists as
early as possible [3]. Hence, early diagnosis is of great beneft
for the subsequent treatment of IHs.

In this study, bioinformatics analyses were adopted for
potential biomarkers identifcation in the development of
IHs, providing a particular reference for the diagnosis and
treatment of IHs. We frstly obtained 205 candidate genes by
diferential gene expression analysis and intersection. Te
results of GO enrichment analysis revealed that vascular
development was the primary function of the candidate
genes, which was primarily associated with cardiac devel-
opment, vascular maturation, and the blood circulation
system. Ulteriorly, we used the STRING tool to construct
a PPI network, Lasso analysis, and SVM regression analysis,
subtracting above 205 candidate genes, and fnally acquiring
fve hub genes, i.e., TMEM2, GUCY1A2, ISL1, WARS, and
STEAP4.

Acting as a transmembrane protein, TMEM2 is asso-
ciated with tumor invasion and angiogenesis [28, 29] and
manipulates cell adhesion and metastasis by degrading non-
protein components of the extracellular matrix [30]. Gastric
cancer prognosis is positively related to GUCY1A2 [31],
which plays a vital role in rheumatoid arthritis development
[32], and afects SARS-CoV 2 infections and drug repur-
posing [33]. ISL1 is identifed as a biomarker of oral
squamous cell carcinoma [34], up-regulator of vascular
development [35], and activator of EMT to induce drug
resistance in prostate cancer [36], serving to regulate re-
productive system development [37]. WARS, an essential
enzyme catalyzing the ligation of tryptophan to its cognate
tRNA tryptophan during translation via aminoacylation,
promoting cancer metastasis by controlling angiogenesis
and immune response in the tumor microenvironment,
which plays a pathological role in autoimmune disease and
Alzheimer’s disease concurrently. In addition, high ex-
pression of WARS could be referred to as a prognostic
biomarker for sepsis [38]. STEAP4 is a metal reductase that
reduces Fe3+ to Fe2+ and Cu2+ to Cu+, promoting iron and
copper transmembrane transport and maintaining their
homeostasis, as well as playing a benefcial role against
damage from infammatory diseases and metabolic disor-
ders. Nevertheless, its abnormal expression may accelerate
cancer proliferation or progression [39]. Furthermore, the
expressions were signifcantly higher for fve hub genes in

IHs samples than in normal samples. And we fnally defned
these fve genes as diagnostic markers for IHs by the ROC
analysis.

Similar functional efects of fve diagnostic markers were
obtained through further biofunctional analyses. It is well
known that the dramatic and disorganized growth of blood
vessels is a defning feature of IHs, which represents a vas-
cular perturbation comprising pathologic angiogenesis and
vasculogenesis during post-natal growth [40]. Among the
top fve with highly signifcant enrichment, TMEM2,WARS,
and STEAP4 were related to angiogenesis and vascular
development. Valine, leucine, and isoleucine are collectively
referred to as Branched-chain amino acids (BCAAs), which
are essential for the growth of human tumors by donating
nitrogen to generate macromolecules such as nucleotides.
Cellular autonomous and involuntary efects of BCAA
metabolic transformations play a role in cancer progression,
indicating that the crucial proteins in BCAA metabolic
pathway can be prognostic or diagnostic biomarkers for
human cancer [41]. Consistently, all fve biomarkers were
involved in the degradation of valine, leucine, and iso-
leucine. In addition, several drugs were recognized to predict
the diagnostic makers’ inhibitor using the CTD database.
Tereinto, most of these drugs are involved in angiogenesis
inhibition, e.g., arbutin [42], entinostat [43], sulforaphane
[44], and sunitinib [45], which have been demonstrated to
suppress angiogenesis in tumor treatments efectively. Tri-
closan [46] and ribavirin [47] had been identifed as efectual
angiogenesis inhibitors. Cyclosporine promoted osteogenic
diferentiation of periodontal membrane stem cells and
curbed angiogenesis [48]. Troglitazone can subdue angio-
genesis by inhibiting endothelial cells (EC) proliferation and
vascular endothelial growth factor (VEGF) expression [49].
Triacsin C inhibits angiogenesis manipulated by fatty acid
metabolism [50]. Te results were expected to make new
progress in the treatment of IHs.

Te function of hub genes is infuenced by their ex-
pression level and regulated by transcription factors [51].
Terefore, we predicted the transcription factors regulating
these screened biomarkers through the online website
“Network Analyst,” reporting that only three genes can
obtain new work analysis results, indicating that diferent
transcription factors regulated each gene. Te co-
transcription factors involved in the regulation of 2 hub
genes simultaneously involved SOX2, NANOG, SUZ12, AR,
BMI1, SMAD4, ERG1, and SETDB1. of IHs are cellularly
composed of EC, pericytes, and stem cells [52]. EC works as
the main driving force of angiogenesis, which responds to
VEGF stimulation, critical signal transduction for angio-
genesis [53], and rapidly transforms from a static state to an
active form in the proliferation of IHs [54]. Notably, most
co-transcription factors regulate the VEGF pathway, af-
fecting the angiogenesis of various tumors or organs. For
example, high expression of SOX2, AR, and BMI1 stimulates
angiogenesis in multiple tumors [55–58]. Over-expressed
NANOG can promote EC proliferation and angiogenesis by
inducing transcription of liver kinase-1 (FLK1) [59]. On the
contrary, a low expression level of NANOG is required for
the maintenance of EC homeostasis and angiogenesis [60].
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EC development is also intervened by SMAD4 [61]; loss of
SMAD4 leads to decreased expression of VEGFR2 and
regulates angiogenesis [62].

It is interesting to note that there are some connections
in potential drugs and transcription factors of target di-
agnostic markers, which were both involved in the regula-
tion of angiogenesis. In addition to this study’s results,
recent literature also shows that aristolochic acid [63], and
entinostat [64] induce the down-regulation of SMAD4 in
human cells. Sulforaphane weakens the NANOG and SOX2
in respiratory tumors [65]. Sunitinib therapy can regulate
SMAD4 expression by altering the expression of Mir-452-5p
in renal cancer [66]. Overall, regulation of transcription
factors may play a role in drug inhibition of diagnostic
marker genes.

Tis study also has limitations, mainly refected in
a small sample size as source databases are derived. And the
molecules as the diagnostic markers of IHs are only based on
bioinformatic analysis data. On this account, we plan to
collect as sufcient samples as possible to verify the clinical
diagnosis value of Hub genes for IHs. More specifcally, the
discriminant capacity and potential action mechanism of
hub genes on IHs development were further clarifed by
Single-cell sequencing. Te feasibility of drug inhibitors and
related transcription factors obtained in this study will be the
primary objects discussed in the following survey on IHs
therapy.

5. Conclusions

Bioinformatics methods were utilized to identify fve hub
genes (including TMEM2, GUCY1A2, ISL1, WARS, and
STEAP4) with power diagnostic capacity for IHs in this
study. Tese diagnostic markers may regulate IHs devel-
opment by participating in tumorigenesis-related biological
processes, such as angiogenesis and BCAAs metabolism. We
also determined inhibitors and transcription factors asso-
ciated with these diagnostic markers. Despite as a pre-
liminary study that requires further research to validate
these results, the analysis outcomes provide new insights
into the diagnosis and treatment of IHs.
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