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Background. The association between oxidative stress and lncRNAs within the cancer-related researching field has been a
controversial subject. At present, the exact function of oxidative stress as well as lncRNAs exert in breast cancer (BC) are still
unclear. Therefore, the present study examined the lncRNAs oxidative stress-related in BC. Methods. Transcriptome data of BC
obtained from TCGA (The Cancer Genome Atlas) database were used to generate synthetic matrices. Patients with breast
cancer were randomly assigned to training, testing, or combined groups. The prognostic signature of oxidative stress was
created using the selection operator Cox regression method, and the difference in prognosis between groups was examined
using Kaplan-Meier curves, the accuracy of which was calculated using a receiver-operating characteristic-area through the
curve (ROC-AUC) analysis with internal validation. Also, the Gene Set Enrichment Analyses (GSEA) was applied for the
analysis of the risk groups. To conclude, the half-maximal inhibitory concentration (IC50) of these groups were investigated by
immunoassay assay. Results. A model based on 7 lncRNAs related to oxidative stress was proposed, and the calibration plots
and projected prognosis matched well. For prognosis at 5, 3, and 1 year, the area under the ROC curve (AUC) values were
0.777, 0.777, and 0.759. The functions of target genes identified by GSEA appear to be mainly expressed in metabolism, signal
transduction, tumorigenesis, and also the progression. The remarkable differences in IC50 and gene expression between risk
groups in this study provide a deep insight for further systemic treatment. Higher macrophage scores were acquired in the
high-risk group, of which patients showed more response to conventional chemotherapy drugs, such as AKT inhibitor VIII
and Lapatinib, as well as immunotherapy strategies including anti-CD80, TNF SF4, CD276, and NRP1. Conclusion. The
prognosis of breast cancer can be independently predicted by the markers, which sheds light on further research of the specific
role of lncRNAs which are oxidative stress-related and clinical treatment of breast cancer.

1. Introduction

Breast cancer is the most commonly diagnosed feminine
malignant tumor with an increasing incidence. Studies have

shown that in 2018 there were approximately 2.08 million
new diagnosed cases and 630,000 deaths globally [1]. With
the improvement of surgery, radiotherapy, and chemother-
apy, the overall survival condition of breast cancer patients
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has improved significantly. However, breast cancer is insid-
ious in its onset and highly malignant. By the time a patient
presents with typical symptoms of BC, the tumor has often
progressed to an intermediate to advanced stage. At this
time, common interventions are less likely to yield desired
results, and this significantly affects the prognosis of patients
[2, 3]. Therefore, it is very important to dig into the molec-
ular biological mechanism of breast cancer and to find
molecular biological markers for early identification and
development of breast cancer.

Oxidative stress refers to the overproduction of highly
reactive molecules including reactive oxygen species (ROS)
and reactive nitrogen species (RNS), by the body in response
to various damaging stimuli. Physiological and pathological
reactions in cells and tissues are caused by the imbalance
of oxidation-antioxidation in vivo. Many factors, such as

radiation, age, infectious diseases, and heat stress, may lead
to increased intracellular ROS concentrations, which stimu-
late intracellular oxidative stress response and protect or
destroy cells [4]. In recent years, scholars have gradually clar-
ified the participation of oxidative stress in the occurrence
and prognosis of tumors. Oxidative stress causes DNAmuta-
tions in tumor cells, mediates the action of proto-oncogenes,
and causes aberrant cell amplification and tumor formation
[5]. Moreover, oxidative stress can also promote the metabo-
lism of tumor by altering the key enzymes of metabolism,
inducing changes in the metabolic genome and activating
signaling pathways, thus promoting the further development
of tumors [6].

Long noncoding RNA (lncRNA) is considered as one of
the important members among the noncoding RNA family,
whose length was more than 200 nucleotides and are a
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Figure 1: GO and KEGG analyzing of DEGs related to oxidative stress in cancer and normal tissues. (a) Volcano plot of 794 genes related to
oxidative stress in BC. Light salmon dots represent for upregulated genes and blue dots for downregulated ones. (b, c) GO analysis of DEGs
related to oxidative stress. (d, e) KEGG analysis of DEGs related to oxidative stress. GO: Gene Ontology; DEGs: differentially expressed
genes; KEGG: Kyoto Encyclopedia of Genes and Genomes; fdr: false discovery rate; FC: fold change; CC: cellular components; BP:
biological process; MF: molecular function.
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subtype of RNA transcripts [7]. In recent years, researches
have proved that multiple lncRNAs participate in various
biological processes as a vital part, especially in the incidence
and progression of invasive tumors. Many lncRNAs have
been illustrated to be closely linked to the breast cancer
development and can be broadly classified into two types:
cancer-promoting and cancer-inhibiting [7]. Their mecha-
nisms of action are to affect the amplification, invasion,

distant metastasis, apoptosis, and drug resistance of breast
cancer cells. lncRNAs which are oxidative stress-related have
not been studied in breast cancer.

In this research, we aimed to identify lncRNAs associated
with oxidative stress regarding breast cancer and to elucidate
the participation of lncRNAs in tumor microenvironment
(TME) and breast cancer prognosis. To identify the underly-
ing mechanisms, a gene enrichment analysis was performed.
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Figure 2: Oxidative stress-associated lncRNA selection through the screening of Lasso model. (a) Lasso coefficients of the 15 lncRNAs
which are oxidative stress-related in BC, where the optimal log (lambda) value is marked by vertical dashed lines. (b) Lasso coefficient
profiles.
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2. Materials and Methods

2.1. Data Identification and Acquisition of Oxidative Stress-
Associated lncRNAs. In order to obtain comprehensive data
matrices about BC with normal tissue, the RNA tran-
scriptome datasets (HTSeq-FPKM) and the germane clinical
information were acquired online from The Cancer Genome
Atlas (TCGA) database (https://http://portal.gdc.cancer.gov/
). 1109 BC tissue samples and 113 normal breast tissue sam-
ples were acquired as control samples. Furthermore, exten-
sive clinical information on patients was obtained from the
TCGA. Samples with a follow-up period of less than a
month were excluded from further screening using clinical
information. As all the data enrolled were obtained from
The Cancer Genome Atlas Database and strictly followed
guidelines of TCGA publication (http://cancergenome.nih
.gov/abouttcga/policies/publicationguidelines), ethics com-
mittee approval was not required.

2.2. Screening Analysis of Oxidative Stress-Related Genes and
lncRNAs. The lncRNA profiles were acquired firstly from the
dataset of RNA seq. Total RNA expressing panel was nor-
malized before the analyzation through log2 transformation.
A list of genes related to oxidative stress was downloaded
from an online website (https://www.genecards.org/) to
screen for gene sets associated with oxidative stress with a
correlation score greater than 7.

2.3. Functional Enrichment Analyzation of Differentially
Expressed Genes Linked to Oxidative Stress. A false
discovery rate ðFDRÞ < 0:05 and jlog 2 − fold change ðFCÞ >
1j were applied in this experiment as screening criteria to
acquire the panel of oxidative stress-related different
expressing genes (DEGs). Gene Ontology (GO) were con-
ducted for the research aim, as well as Genes Kyoto Encyclo-
pedia and Genomes (KEGG) analyzation in the “ggplot2”
package (Figure 1).

2.4. Identification of Prognostic lncRNAs Related to Oxidative
Stress.We utilized the “limma” package for the calculation of
the correlation between genes related to oxidative stress as
well as lncRNAs. The square of correlation coefficient jR2j
> 0:3 in combination of p < 0:001 was identified as lncRNAs
which are oxidative stress-related. We performed univariate
Cox regression analysis for lncRNAs which are oxidative
stress-related associated to the cancer prognosis in breast
cancer patients, followed by Lasso Cox regression and mul-
tivariate Cox regression analyzation of lncRNAs which are
oxidative stress-related for constructing the predictive signa-
ture of lncRNAs which are oxidative stress-related. The
computational equation adapted is descried as follows:

risk score = 〠
n

i=1
∗ Coef i ∗ xið Þ: ð1Þ

Coef stands for the coefficient value, and x for selected
lncRNAs expressing value. This formula was utilized to assess
the risk score for each individual diagnosed with breast cancer.
The patients were divided into two separate groups on the

basis of the median risk score: low-risk along with high-risk
groups [8, 9]. Differences of survival condition between groups
were compared through the log-rank test.

2.5. The Prognostic Model Development. A model for inde-
pendent prognostic was developed using Cox regression.
Nomogram was applied for the prediction of the patient sur-
vival. The calibration curves, receiver-operating characteris-
tic (ROC), and concordance index (C-index) curves were
developed for exploring this model’s accuracy. Demographic
variables were included in the multivariate Cox regression
analysis to see if the risk score could independently predict
the development of breast cancer. The stability of the predic-
tion model conducted in this experiment was also examined
within the testing and training groups.

2.6. Functional Analysis. The online CBioPortal (http://www
.cbioportal.org/) was taken to describe the mutation profiles
of each key gene. Gene set enrichment analysis was applied
for interpreting the functional enrichment of gene express-
ing panel [10]. The enrichment of lncRNAs related to oxi-
dative stress with a classified prognosis value was explored
and 10 GO and KEGG pathways related to oxidative stress
were visualized.

2.7. The Investigation of the Immunocheckpoints, TME, and
the Model in the Clinical Treatment. Limma, GSVA, ggpubr
R, and ggplot2 packages as well as GSEABase were utilized
to determine the expression differences of 29 immunocells
and 47 immune checkpoint genes within the studied groups
and to guide the immunotherapy of breast cancer [9].
“pRRophetic,” “ggpubr,” “ggplot2,” etc. R packages were
applied to classify the differential expression of IC50 in the
two groups of breast cancer and to perform clinical chemo-
therapy against breast cancer [11].

2.8. Statistical Analysis. All statistical analyzation involved
were completed using R software (Version 4.1.2). The Wil-
coxon test was used to compare the expression levels of
DEGs in cancer and normal tissue samples. Univariate Cox
regression analyzation was performed for determination of
the relationship of lncRNAs which are oxidative stress-
related with overall survival, and lncRNAs which are oxida-
tive stress-related were screened using multivariate Cox
analysis for the construction of predicting signature
discussed in this research. The Kaplan-Meier method

Table 1: Multivariate Cox analyzation towards the lncRNAs on the
basis of TCGA COAD data.

lncRNA Coefficient HR 95% CI of HR

DLG5-AS1 -0.651 0.521 0.307-0.887

LINC01235 0.400 1.492 1.184-1.881

SEMA3B-AS1 -0.245 0.783 0.563-1.088

LINC00987 -0.684 0.504 0.303-0.841

ST7-AS1 -1.181 0.307 0.139-0.675

MAPT-AS1 -0.782 0.458 0.281-0.744

LINC01871 -0.714 0.490 0.332-0.721
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combined with log-rank test were applied for analyzation of
the OS of patients in the two groups. The “survival ROC”
package was applied for drawing the ROC curves and for
determination of the area below the curve (AUC) values.
Principal component analysis (PCA) method was utilized
to discover the distribution of patients ranked at differed
risk scores. Statistical tests turned out to be bilateral, with
p < 0:05 being significant.

3. Results

3.1. Identification of Prognostic lncRNAs Which Were
Oxidative Stress-Related. 14,142 counted lncRNAs were
gained from TCGA-COAD, among which 1086 lncRNAs
linked to oxidative stress were identified. Univariate Cox
regression analyzation uncovered that 50 of them were
linked to the development of BC. Lasso Cox regression

analyzation displayed in Figure 2 showed that 15 lncRNAs
which are oxidative stress-related had a connection with
the BC development. Finally, multivariate Cox regression
analysis uncovered that 7 lnccRNAs which are oxidative
stress-related were linked to the development of BC. DLG5-
AS1, LINC01235, SEMA3B-AS1, LINC00987, ST7-AS1,
MAPT-AS1, and LINC01871 were identified as construct pre-
dictive signatures (Table 1). The risk scores were calculated as:
risk score=−0.65107016×DLG5−AS1expressing level
+ 0.40027496×LINC01235 expressing level +−0.244710708
× SEMA3B−AS1expressing level +−0.684301493×LINC0
0987 expressing level +−1.181200718× ST7−AS1 expressin-
g level +−0.781949407×MAPT−AS1 expressing level +−0.
713957256×LINC01871 level. The lncRNAs were further
visualized with the ggalluvial, ggplot R software package.
From the Sankey diagram, one lncRNA (LINC01235)
was a detrimental prognostic factor, and the others
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(DLG5-AS1, SEMA3B-AS1, LINC00987, ST7-AS1, MAPT-
AS1, and LINC01871) were positive prognostic factors
(Figure 3).

3.2. The Prognostic Impact of the Signature Established. Risk
score was linked to the survival condition of BC patients sig-
nificantly. There was a shorter OS in the group with high-
risk (p < 0:001, log-rank test) (Figure 4). Cox regression
suggested significant developing impact on the risk score
for the BC patients (Figure 5).

3.3. Clinical Value of the Signature regarding lncRNA
Oxidative Stress-Related. The results of univariate cox
regression analysis suggested that general information
including age, T stage, N stage, M stage, stage, and risking
score was related to the survival condition in BC patients
(Figure 6(a)). As suggested by multivariate Cox regression
analyzation, age and risk score appear to be separate predic-
tors of OS in BC patients (Figure 6(b) and Table 2). The
AUC of the risk score was 0.807, which outperformed clini-
copathological variables in predicting the development of
BC (Figure 6(c)). The AUCs of 5-, 3-, and 1-year survival
ratios were accordingly recorded as 0.777, 0.777, and 0.759,
which indicated positive predictive capability (Figure 6(d)).
The clinicopathological variable differences between the
groups were analyzed, while N stage (p < 0:05) along with
stage (p < 0:05) were uncovered to be different between the
two groups discussed (Figure 6(e) and Table 3).

To predict the development of breast cancer further, a
nomogram including clinicopathological variable as well as
the risk score was constructed, which could predict the 1-,
3-, and 5-year prognosis (Figure 7(a)). Curves of calibration
implied a positive consistency of the actual OS conditions
along with the predicted survival conditions at separate
period (Figures 7(b)–7(d)).

3.4. Internal Validation of the Predictive Characteristics. For
the verification of the applicability of the predictive charac-
teristics for OS on the basis of the TCGA dataset, 856
patients with BC were randomly separated into two group-
ing cohorts (training cohort n = 427, test cohort n = 429).
The demographic information of patients enrolled are illus-
trated in Table 4. Complying with the results observed, OS
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Figure 6: The correlation of the predictive signature with the development of BC. (a) The forest plot regarding univariate Cox regression
analyzation. (b) The forest plot regarding multivariate Cox regression analyzation. (c) The ROC curve illustrating the clinicopathological
variables and the risk scores. (d) ROC curves along with corresponding AUCs at 1-, 3-, and 5-year survival with the predictive signature.
(e) The heat map of distribution for the clinicopathological variables and seven prognostic lncRNAs in the two risk groups.

Table 2: Risk scores as well as clinical characteristics regarding BC
through analysis of multivariate Cox regression.

Variable HR HR95L HR95H p value

Age 1.041 1.025 1.056 1.55E-07

Gender 0.572 0.079 4.168 0.582

Stage 1.770 1.057 2.963 0.030

T 0.962 0.712 1.299 0.802

M 1.420 0.616 3.273 0.411

N 1.191 0.892 1.591 0.235

Risk score 1.068 1.050 1.087 3.91E-14
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rates of patients in the group with high-risk tended to be
lower (p = 9:65e − 10). (Figure 8(a)) In the testing cohort,
the prognosis of the group with high-risk turns to be worse
(p = 1:15e − 05) (Figure 8(c)) The ROC curves of two
cohorts appears to be a positive predictive capability. In
the training cohort, the AUCs of 5-, 3-, and 1-year prognosis
conditions were, respectively, 0.797, 0.807, and 0.85
(Figure 8(b)), while within the test cohort, the AUCs of 5-,
3-, and 1-year survival conditions were, respectively, 0.747,
0.761, and 0.689. (Figure 8(d)).

3.5. Function Analyzation. 5484 GO analysis and 178 KEGG
analysis were conducted. In GO analysis, the lncRNAs oxi-
dative stress-related were enriched in biological processes
like regulation of cell cycle and of mitosis (Figure 9(a)).
KEGG analysis uncovered that these lncRNAs were mainly
enriched into metabolism, malignant tumor formation,
signal transduction, etc. (Figure 9(b)). Furthermore, it was
proposed that the gene clusters were associated to critical
biological processes, genesis functional pathways, and cancer
prognosis, for example, JAK-STAT as well as VEGF signal-
ing pathway (p < 0:05) was solidly linked to the cancer inva-
sion and metastasis.

3.6. Immune Cell Infiltration. With PCA maps, it was feasi-
ble to visualize the patients’ distribution based on oxidative
stress-related gene sets, the entire genome, oxidative stress-
related lncRNAs, and important genes. The results implied
that the key gene appears to be the best for patients. Patients
with differential risking score were distributed in differed
quadrants (Figure 10).

To discover the correlation between risking score and
immune cells further, the GSEA enrichment scores for dif-
ferent immune cell clusters were assessed. The results
showed DCs, aDCs, B_cells, plasmacytoid dendritic cells
(pDCs), CD8+_T_cells, mast cells, immature dendritic cells
(iDCs), neutrophils, macrophages, NK cells, T follicular
helper (Tfh) cells, tumor infiltrating lymphocyte (TIL), T
helper cells, T helper type 1 (Th1) cells, and T helper type
2 (Th2) cells were significantly varied between the groups
discussed (Figure 11). Only macrophages in the group with
high risk exhibited a high score, suggesting that the function
of macrophages was more active.

3.7. Linage Between the Predictive Signature and BC
Therapy. The expression of CD80, TNFSF4, CD276, and
NRP1 was higher significantly in the group with high risk,
suggesting a potential response to anti-CD80, TNFSF4,
CD276, and NRP1 immunotherapy in high-risk patients
(Figure 12(a)). This provides a new therapeutic target for
immunotherapy of BC. Combined with immunotherapy,
we also surveyed the linkage between the predicting feature
and the general chemotherapy efficacy, then revealed that
the AKT inhibitor VIII, AZD6482, bicalutamide,
BMS.708163, imatinib, lapatinib, pazopanib, and thapsigar-
gin in the high-risk group exhibited a lower IC50 compared
with the other group (Figures 12(b)–12(i)), and the metho-
trexate exhibited a higher IC50 in the group with high-risk
(Figure 12(j)), which could help explore personalized treat-
ment schemes appropriate for both high- and low-risk group
individualized patients.

3.8. Mutation Landscape of Key Genes. The OncoPrint view
of key genes in the CBioPortal database were applied to visu-
alize mutations within the seven key genes on the basis of
data acquired from 1084 BC patients. Nearly 1/4 of these
patients (23.7%) had mutations in all seven key genes. The
highest rate of mutations was found in DLG5-AS1 (7%)
and ST7-AS1 (7%) (Figure 13).

4. Discussion

Breast cancer looks to be a large malignant tumor that
endangers both women’s physical and mental well-being.
The incidence of BC appears to be growing year by year in
recent years, with a definite trend toward younger age. It is
therefore essential to establish an accurate tool for the pre-
diction of the development of BC to guide clinical diagnosis
and treating strategy.

Tumor generation is a complex multistep process requir-
ing three stages: onset, promotion, and development. A large
number of studies have illustrated that reactive oxygen spe-
cies (ROS), products of oxidative stress, are involved in all
stages of tumor formation [12]. Tumorigenesis is closely
correlated with ROS-induced oxidative damage to nuclear
chromosome, and ROS can also promote the activation
and transformation of tumoral cells. What has been reported
is that the ROS level in tumors correlates with the degree of
malignancy [13]. As ROS levels rise in hypoxia, malignant
tumor cells become more aggressive and more likely to

Table 3: Clinical impacts of the risk score characteristics (as
identified by the TCGA-COAD data).

Clinical n Mean SD t p

Risk score

Age

>65 222 2.064 2.442 1.378 0.169

≤65 634 1.805 2.304

Gender

Female 845 1.878 2.354 1.322 0.212

Male 11 1.465 1.001

Stage

I-II 655 1.708 2.169 -3.282 0.001

III-IV 201 2.408 2.773

T

T1-2 734 1.794 2.21 -1.938 0.055

T3-4 122 2.342 2.987

M

M0 840 1.851 2.323 -1.504 0.153

M1 16 3.014 3.076

N

N0 420 1.661 2.087 -2.605 0.009

N1-3 436 2.076 2.55
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spread. Chronic and ongoing oxidative stress induces
epithelial-mesenchymal transition (EMT) and migration
[14]. It is evident that oxidative stress participates as a vital
part in tumorigenesis and progression. At present, there
is no report on predicting the development of breast can-
cer patients by building oxidative stress-related lncRNA
prediction signals.

With this study, lncRNAs which are oxidative stress-
related were screened by generating a lncRNA coexpression
network and genes which are oxidative stress-related.
Furthermore, using Lasso as well as Cox regression, the

following seven lncRNAs which are oxidative stress-related
with good prognosis were obtained: DLG5-AS1, LINC01235,
SEMA3B-AS1, LINC00987, ST7-AS1, MAPT-AS1, and
LINC01871. These seven lncRNAs which are oxidative
stress-related may be targeting markers of potential clinical
therapy and development for the BC patients. We also found
mRNAs (MRPS34, HSPB1, GFER, NTHL1, UCN, F3,
CDK5, GDF15, S100B, EGFR, STAT1, CALR, IL18, and
IDO1) coexpressed significantly with the lncRNAsmentioned.

Five lncRNAs associated with oxidative stress
(LINC01235, SEMA3B-AS1, LINC00987, ST7-AS1, and
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Figure 7: The nomogram construction and verification. (a) A nomogram in combination of risk scores and clinicopathological variables.
(b–d) Calibration curves across the actual and predicted OS rates at 1, 3, and 5 years.

Table 4: The different clinical features of patients across separate cohorts.

Variables Entire TCGA dataset (n = 856) Validation cohort
Training cohort (n = 427) Testing cohort (n = 429)

Age (%)

≤65 634 (74.1) 321 (75.2) 313 (73.0)

>65 222 (26.9) 106 (24.8) 116 (27.0)

Gender (%)

Female 845 (98.7) 419 (98.1) 426 (99.3)

Male 11 (1.3) 8 (1.9) 3 (0.7)

Stage (%)

I + II 655 (76.5) 324 (75.9) 331 (77.2)

III + IV 201 (23.5) 103 (24.1) 98 (22.8)

T (%)

T1+T2 734 (85.7) 369 (86.4) 365 (85.1)

T3+T4 122 (14.3) 58 (13.6) 64 (14.9)

M (%)

M0 840 (98.1) 420 (98.4) 420 (97.9)

M1 16 (1.9) 7 (1.6) 9 (2.1)

N (%)

N0 420 (49.1) 210 (49.2) 2109 (49.0)

N1+N2+N3 436 (50.9) 217 (50.8) 219 (51.0)

M: metastasis; N: lymph node; T: tumor.
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MAPT-AS1) have been reported to be linked to cancer. (1)
Functional loss experiments suggest that upregulated
LINC01235 promotes gastric cancer cell metastasis
through EMT and may be a valuable prognostic biomarker
and treating target for metastatic gastric cancer [15]. (2)

Overexpression of SEMA3B-AS1 inhibits gastric cancer
cell proliferation and invasion in vitro. Sema3b-as1 can
be used as a tumor suppressor and as a clinical therapy
target for antitumor therapy [16]. (3) Silencing LINC00987
inhibits proliferation and invasion of osteosarcoma cells by
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Figure 8: Internal confirmation of the predictive feature for over survival condition on the basis of the TCGA dataset. (a) Kaplan-Meier
survival curving plot in the internal training cohort. (b) ROC curving plot and AUCs at 1-year, 3-year, and 5-year survival condition in
the training internal cohort. (c) Kaplan-Meier survival curving plot in the internal testing cohort. (d) ROC curving plot and AUCs at 1-,
3-year, and 5-year survival in the internal testing cohort. AUC: area under the curve; ROC: receiver-operating characteristic; TCGA: The
Cancer Genome Atlas; OS: overall survival.
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regulating FNBP1 expression through cavernous Mir-
376A-5p [17]. (4) ST7-AS1 promotes the lung adenocarci-
noma cells malignancy by regulating Mir-181B-5p/KPNA4
axis. Therefore, aiming at ST7-AS1 and KPNA4 or upreg-
ulation of Mir-181B-5p may be beneficial for the treating
lung adenocarcinoma [18]. (5) MAPT-AS1 has been iden-

tified as a solid prognostic marker of renal clear cell carci-
noma (ccRCC), inhibiting the invasion and proliferation of
ccRCC [19]. And its upregulation were associated with
positive survival in breast cancer patients [20].

One of the lncRNAs associated with oxidative stress,
LINC01871, may serve as a marker of BC prognosis, but
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Figure 12: Comparison of sensitivity to treating drugs across high- and low-risk groups. (a) CD80, TNFSF4, CD276, and NRP1 expressions
between groups. (b) IC50 of AKT inhibitor VIII between groups. (c) IC50 of AZD6482 between groups. (d) IC50 of bicalutamide between
groups. (e) IC50 of BMS.708163 in the two risk groups. (f) IC50 of imatinib in the two risk groups. (g) IC50 of lapatinib in the two risk
groups. (h) IC50 of pazopanib between groups, (i) IC50 of thapsigargin in the two risk groups, and (j) IC50 of methotrexate between groups.
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has not been studied in depth for the pathogenesis of BC
[21]. Another lncRNA, DLG5-AS1, has not been studied
for its prognostic significance in cancer. As a result, more
research is needed to determine how this lncRNA affects
the development of patients with BC via oxidative stress.

The development of BC was significantly predicted based
on the characteristics of seven lncRNAs associated with oxi-
dative stress. Consistent with previous studies, the OS of the
low-risk group was higher. These results suggest that risk
score features have some potential in prediction of survival
condition. Univariate and multivariate Cox analysis results
indicated that this trait might be used as an independent
prognostic predictor. The model demonstrated superior dis-
tinction and accuracy based on the c-index, calibration
curve, ROC curve, and internal validation data, indicating
that it can be used as a possible predictive tool.

Subsequent GSEA results showed that macrophages
scored higher in the group with high-risk. The results indi-
cate that tumor-associated macrophages (TAMs) are key
cells promoting tumor in tumoral microenvironment. Pre-
clinical TAM stimulates progression of breast tumor, includ-
ing tumor cell growth and metastasis. In BC models, TAMs
also causes resistance to a number of therapies. The previous
work found that oxidative stress signalling has a role in BC
cell proliferation and migration. Initially, important compo-
nents of oxidative stress signalling were discovered to
substantially correlate with clinical and pathological charac-
teristics of BC. These connections were not independent of
TNM staging or clinical subtype, implying that oxidative
stress activation is a common feature associated with BC
development. Internal identification proved that the predict-
ing signature has positive predictive performance. PCA
suggested that seven lncRNAs associated with oxidative
stress could be differentiated according to the oxidative
stress condition of the patients.

The results of GSEA implied that macrophages scored
higher in the high-risk group. It was revealed that tumor-
associated macrophages (TAMs) are key cells promoting
tumor in tumoral microenvironment. Preclinical TAMs
stimulate progression of breast tumor, including tumor cell

growth and metastasis. TAMs also attributed to resistance
to a series of treatment in BC models [22].

Our study also showed that patients high ranked may
be sensitive to and resistant to demethotrexate against
TNF, CD80, CD276, SF4, and NRP1 immunotherapy and
conventional chemotherapy drugs including AZD6482,
bicaluamide, AKT inhibitor VIII, BMS.708163, imatinib,
lapatinib, pazolparib, and toxic carotene. This suggests that
the group of patients with high risk may alleviate the dis-
ease from the combination of immunotherapy and chemo-
therapy, providing the basis for precise, individualized
treatment of BC patients.

However, there are some limitations to our study. First,
external validation of data from other databases is required
to test the suitability of the predictive signatures. Secondly,
the mechanism of lncRNA oxidative stress in BC needs
further experimental verification.

5. Conclusions

In conclusion, lncRNAs with oxidative stress features can
independently predict BC prognosis, providing support for
the underlying mechanism of oxidative stress of lncRNAs
and their response to clinical treatment therapy within BC;
however, more research is needed.
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