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Background. Te association involving cuprotosis, molecular subtype, and specifc immune cell groups in the tumor micro-
environment has been focused on by more recent studies. In lung adenocarcinoma (LUAD), the potential functions of cuprotosis
remain elusive.Methods.Te cuprotosis regulations and tumor immune profle of 567 LUAD patients and the correlation between
the cuprotosis patterns and the immune landscape were comprehensively evaluated. Te cuprotosisScore was calculated using
principal component analysis (PCA).Te prognostic signifcance of the cuprotosisScore was evaluated by Cox regression statistics
analysis. Results. Five cuprotosisClusters (named mc1, 2, 3, 4, 5)—characterized by diferences in expression of immuno-
modulatory genes, mRNA, or lncRNA expression, and prognosis were identifed. We established cuprotosisScore to quantify the
cuprotosis pattern of individual LUAD patients. As is shown in further analyses, the cuprotosisScore was a relatively potential
independent prognostic factor of LUAD involved in mc1. Finally, the prognostic value of the cuprotosisScore and its association
with tumor immune microenvironment (iTME) of LUAD in fve cuprotosisClusters were verifed. Conclusions. We demonstrated
the correlation between cuprotosis modifcation, the molecular subtype, and tumor immune landscape in LUAD. Te cupro-
tosisCluster with high cuprotosisScore and high tumormutation burden (TMB) was identifed with a good prognosis and immune
functions. Te comprehensive evaluation of cuprotosis patterns in individual LUAD patients enhances the understanding of
iTME and gives a new insight toward improved immune treatment strategies for LUAD patients.

1. Background

Te requirement of copper as a helper for essential enzyme
function has been recognized in human cells. However,
intracellular copper concentrations are kept very low by
active homeostatic mechanisms that work across concen-
tration gradients to prevent the accumulation of free in-
tracellular copper that is detrimental to cells. Te
mechanisms of copper-induced cytotoxicity had been well

explored [1]. A clear picture of the mechanisms underlying
copper-induced toxicity emerged by targeting lipoylated
TCA cycle proteins: LA pathway (FDX1, LIAS, LIPT1, and
DLD) and PDH complex (DLAT, PDHA1, PDHB, MTF1,
GLS, and CDKN2A).

Immune checkpoint inhibitor therapy (ICT, mainly PD-
1/PD-L1 mono-antibody therapy) is promising in the
clinical treatment of lung adenocarcinoma (LUAD) [2, 3].
However, not all LUAD patients show an efective clinical
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response or even drug resistance to ICT therapy [4]. In many
malignant cancer types, a large number of tumors are in-
trinsic, [2] for example, the efective responses to ICT
therapy occur when the TIME is characterized by a high
portion of CD8+ Tcells and while none occur when there is
low CD8+ Tcell infltration [5, 6]. It is important to explore
the related characteristics with the TIME or tumor immune
microenvironment (iTME) of LUAD that drives the ICT
efective clinical response [7, 8] or even the clinical treatment
strategies of immune-oncology therapies [9, 10].

In this investigation, we integrated the clinical and
molecular data of 461 LUAD cancer patients to compre-
hensively evaluate the cuprotosis patterns and iTME. Five
distinct cuprotosis regulations were identifed, and we were
surprised to fnd that they had distinct immune charac-
teristics and prognoses, showing the key roles of cuprotosis
in the development of individual iTME in LUAD patients.
We then quantifed the cuprotosis of individual LUAD
cancer patients by evaluating the gene patterns of cuprotosis
regulators.

2. Methods

2.1. Molecular and Clinical Data. From the genomic Data
Commons (https://portal gdc cancer gov/.) [11], RNA se-
quencing data (fpkm and count values) were retrieved for
clinical data, genetic mutations, and expression analysis. By
consulting an annotation fle, the Ensembl gene IDs from the
RNA-seq data were changed into the gene symbols (https://
www.gencodegenes.Org/human/release22.html). Te xena
online tool (https://xena ucsc edu/) [12] was used to retrieve
the CNV (Copy Number Variation) data. We followed the
methods of Zhong et al [13].

2.2. Model-Based Clustering Technique for Cuprotosis
Regulators. Model-based clustering analysis, performed in
the R package/mclust [14], was used to discover cuprotosis
modifcation patterns [15] on the basis of expression of 10
cuprotosis regulators genes. Considering the metric log2
(fpkm +1), gene expression levels were assessed. Te
Bayesian information criteria were used in this program to
calculate the ideal number of clusters.

2.3. Gene Set Variation Analysis. For investigating the var-
iations in biological procedures among the cuprotosis
modifcation techniques, GSVA (Gene Set Variation Anal-
ysis), an unsupervised and nonparametric technique that is
frequently used to estimate pathway diferences in samples
of expression datasets, was applied. From the Molecular
Signatures Database, the c2.cp. kegg. v6.2. symbols gene sets
were retrieved (MSigDB) for GSVA. p< 0.05 was set for
statistical signifcance.

2.4. Determination of Diferentially Presented Genes among
CuprotosisClusters. We grouped 597 patients into cuprotosis
clusters on the basis of expression of 10 cuprotosis genes in
order to fnd genes involved in the control of cuprotosis

modifcation. Considering the raw fpkm values from the RNA
sequencing data, the R/limma program was considered for
identifying the DEGs (diferentially expressed genes) in these
clusters. Genes with adjusted p> 0.05 are referred to as DEGs
with around two-fold alterations in the expression.

2.5. Formation of Cuprotosis Gene Signature. We used
a methodology to calculate each patient’s unique cuprotosis
alteration technique (cuprotosisScore). Following is how the
cuprotosisScore was calculated. In order to evaluate the
overlapping DEGs, we frst determined the overlying DEGs
between cuprotosis clusters and divided LUAD patients into
a variety of groups by considering model-based clustering.
Te cuprotosisScore was determined as follows. We initially
retrieved the overlapping DEGs between cuprotosis clusters
and used model-based clustering to split the LUAD patients
into several groups in order to analyze the overlapping
DEGs. At last, the Genomic Grade Index-like methodology
was used to defne the cuprotosisScore [16–18]:

At last, the Genomic Grade Index was used to defne the
cuprotosisScore.

cuprotosisScore � (PC1i + PC2i). (1)

Here, i represents the overlapping gene expression
having a signifcant prognosis of DEGs among clusters of
cuprotosis.

2.6. Correlation between cuprotosisScore and Other Related
Biological Procedures. Considering the gene sets presented
by Mariathasan et al. [19], Spearman’s correlation method
was carried out for determining the linkage between
cuprotosisScore and other related biological procedures,
such as angiogenesis signature, pan-fbroblast transforming
growth factor-β response signature, Wnt targets, epithelial-
mesenchymal transition markers, DNA damage repair,
nucleotide excision repair, DNA replication, efector CD8 T-
cell signature, mismatch repair, antigen processing ma-
chinery (APM), and immune checkpoint.

2.7. Statistical Analysis. In order to assess the statistical
signifcance, the Kruskal-Wallis test was considered for three
or more groups, and the χ2 test was considered to assess any
links between categorical variables. Trough Spearman’s
correlation analysis, the correlation coefcient was computed.
In order to assess the statistical signifcance of diferences, the
Kaplan-Meier technique was considered for building survival
curves and the log-rank test was considered. Te mutation
landscape of the TCGA-LUAD cohort and immunothera-
peutic cohort was shown using the oncoplot function of the R
package/maftools. p> 0.05 signifcance level was considered
for both sides’ tests. In every study, the V.4.1.0 (http://wwwR-
project.org.) was considered.

3. Results

3.1. Te Cuprotosis Regulators in LUAD: Molecular Charac-
teristics and Clinical Relevance. Based on published litera-
ture, cuprotosis is regulated by targeting 10 lipoylated TCA
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cycle proteins: LA pathway (FDX1, LIAS, LIPT1, and DLD)
and PDH complex (DLAT, PDHA1, PDHB, MTF1, GLS,
and CDKN2A) were highlighted. Te frequency of cupro-
tosis regulator changes in LUAD was investigated using
somatic mutations. Only 58 of 567 samples had cuprotosis
regulator mutations, indicating that the complete average
mutation frequency of cuprotosis regulators was lower (see
Figure 1(a)). Te survival curve of the 10 cuprotosis regu-
lators was then examined, and it was shown that 8/10
cuprotosis regulators had a substantial infuence (p< 0.05)
on LUAD patients (see Figure 1(b)). Te cuprotosis regu-
lators’ mRNA expression levels in LUAD and surrounding
tissues were also investigated, and it was discovered that 10
of the 10 cuprotosis regulators were diferently expressed
with p< 0.05 (see Figure 1(c)). For clinical relevance eval-
uation, we execute a Cox model which shows that overall, 10
cuprotosis genes have HR score� 0.6 (see Figure 1(d)). Te
expressional and genetic diferences in cuprotosis regulators
were signifcantly diverse between LUAD and surrounding
tissues, indicating that cuprotosis regulator expression im-
balance plays a critical role in the formation and progression
of LUAD.

3.2. Te Cuprotosis Modifcation Patterns Mediated by 24
Cuprotosis Regulators. Te 10 cuprotosis regulators’ ex-
pression was used to categorize LUAD patients using model-
based clustering. We found fve diferent RNA methylation
modifcation patterns (called cuprotosis clusters mc1-mc4),
with 118 cases in mc1, 129 cases in m6c2, 53 cases in mc3, 53
cases in mc4, and 85 cases in mc5 (see Figure 2(a)). Two risk
factors for overall survival (OS) (CDKN2A and GLS) were
among the cuprotosis regulators with the largest variations
across subtypes. As a result, it is no surprise that mc4 had
a poor prognosis (see Figure 2(b)).

Te limma program of R software was used to fnd 23
DEGs associated with the copper apoptosis subtype. Te
prognosis of 10 genes in the copper apoptosis subtype as-
sociated DEGs was assessed using a univariate Cox re-
gression analysis. Te network activity of 23 DEGS was
investigated (see Figure 2(c)). Based on fve copper clusters,
the therapy sensitivity of chemotherapy was evaluated (see
Figure 2(d)), with signifcantly diferent IC50 among fve
cuprotosisClusters (p< 0.001). Torsson et al. [20] in-
vestigated the pan-cancer immune landscape and eventually
found the six immune subtypes (C1-C6) considered for
determining the immune response patterns and have con-
sequences for future immunotherapy research. In most
LUAD patients, the immune subtype C3 was enriched,
which is characterized by lower levels of overall CNVs in
Figure 2(e). For a more detailed description, we execute 23
new DEGs as the same as Figure 2(c) for network plot in
Figure 2(f).

3.3. Molecular Subtype Identifcation in Distinct Cuprotosis
Modifcation Patterns. In comparison to the other clusters,
cuprotosisCluster-mc1 had a higher level of TMB, overall

CNVs, and specifc lnc- and m-RNA expression profle (see
Figures 3(a), 3(b), and 3(c)). Te aneuploidy score and
overall CNVs were highest in cuprotosisCluster-C2, and low
in cuprotosisCluster-C3. For further exploration, diferent
cuprotosisCluster subtypes with potential predictive bio-
markers and functional pathways were characterized.
Subtype-specifc upregulated or downregulated biomarkers
were found by starting with diferential expression analysis
(DEA). Te most DEGs sorted by log2Fold are chosen as the
biomarkers for each cuprotosisCluster subtype. Tese bio-
markers should pass the R/limma analysis to identify
subtype-specifc downregulated Figure 3(d) in left and
upregulated in right biomarkers.

Similarly, GSEA is run for each subtype based on its
corresponding DEA result to identify functional pathways
using a gene set background which includes all gene sets
derived from GO biological processes (c5. bp.v 7.1. symbols.
gmt). Heatmap analysis of subtype-specifc downregulated
biological pathways is given (see Figure 3(e) top) using
limma package for fve identifed subtypes in LUAD and
upregulated pathways (see Figure 3(e) bottom).

3.4. Construction of the Cuprotosis Gene Signature and
Evaluation of the Molecular and Immune Landscape Was
Signifcantly Associated with cuprotosisScore. Te immu-
nological properties of various cuprotosis modifcation
patterns were next investigated in further detail. 23 genes
associated with signifcant prognoses were extracted for
further PCA analysis to establish the copper apoptosis gene
signature. From the visualized box plot (see Figure 4(a)), we
could fnd a positive diferentiation (p< 0.05) between these
fve CopperClusters. Furthermore, the Student’s t-test
showed a signifcant diference in cuprotosisScore among
cuprotosis clusters. It was shown that CopperScore was not
positively correlated with AS (see Figure 4(b)). We used the
cuprotosisScore approach to properly assess the cuprotosis
alteration pattern in individual LUAD patients. Te limma
program of R software was used to fnd 23 DEGs associated
with the cuprotosis subtype. Te activity of KEGG pathway
processes was investigated using GO analysis among these
diferent cuprotosis modifcation patterns. In DEGs and Cox
regression, substantially DEGs were notably enriched in
pathways linked to non-small cell lung cancer-related terms,
such as p53, MAPK, and PI3K-Akt signaling pathway, as
depicted in Figure 4(c). Meanwhile, immune-related path-
ways such as the IL-17 signaling pathway were shown to be
overrepresented among the implicated pathways.

Multiple IM antagonists and agonists are studied in
clinical oncology since IMs are important for ICT therapy.
Understanding their expression in diverse copper apoptosis
alteration patterns is required to progress this research. Te
functions based on the expression of IM genes in the copper
apoptosis subtypes were investigated (see Figure 4(d)). Al-
most all functions were strongly expressed in mc1, especially
in immune functions, such as T function, B function, APC
processing, and macrophage functions. Using the cibersort
algorithm, the bar plot of immune cells in LUAD tissues is
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Figure 1: Continued.

4 Journal of Oncology



***** **** **** **** **** *** ** ** *

0

2

4

6

8

D
LA

T

Gene

Ex
pr

es
sio

n

Group

G
LS

CD
KN

2A

PD
H

A
1

LI
A

S

FD
X1

M
TF

1

LI
PT

1

PD
H

B

D
LD

normal
tumor

(c)

CDKN2A

GLS

MTF1

PDHB

PDHA1

DLAT

DLD

LIPT1

LIAS

FDX1

0.2 0.5 1 2 5 10

0.94
(0.81 − 1.1)

0.74
(0.43 − 1.3)

0.70
(0.36 − 1.4)

1.54
(0.26 − 9.0)

1.20
(0.30 − 4.8)

0.85
(0.23 − 3.2)

2.74
(0.63 − 11.8)

0.72
(0.35 − 1.5)

0.64
(0.26 − 1.6)

2.34
(0.72 − 7.7)

0.41

0.259

0.302

0.632

0.797

0.808

0.177

0.385

0.326

0.159

# Events: 89; Global p−value (Log−Rank): 0.42533 
AIC: 824.45; Concordance Index: 0.6

Hazard ratio

(N=214)

(N=214)

(N=214)

(N=214)

(N=214)

(N=214)

(N=214)

(N=214)

(N=214)

(N=214)

(d)

Figure 1: Clinical relevance and molecular characteristics of cuprotosis regulator genes in LUAD. (a) Te mutation landscape of 10
cuprotosis regulator genes in TCGA-LUADs; (b) the overall survival of high or low expression of cuprotosis regulators in LUADs; (c) the
gene expression alterations among cuprotosis regulators; tumor (normal) was indicated in red (blue). ANOVA test: the asterisks represented
the statistical p value (∗p< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001); (d) for clinical relevance evaluation, a Cox model analysis shows positively
related genes.
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Figure 2:Te cuprotosis patterns in LUAD and biological characteristics of cuprotosis subtypes. (a) Model-based clustering of LUAD yields
fve subtypes in the LUAD dataset. MC1, cluster1; MC2, cluster2; MC3, cluster3; MC4, cluster4; MC5, cluster5; (b) comparison of prognosis
among four cuprotosis subtypes (Kaplan-Meier analysis); (c) PPI network based on 23 COX DEGs; (d) Boxviolins for estimated IC50 of
Cisplatin and Paclitaxel among 5 identifed subtypes of lung cancer; (e) agreement of 5 identifed subtypes of lung cancer with classifcation
and pathological stage in LUAD cohort; (f ) PPI network based on 23 COX DEG using network.
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Figure 3: Continued.

Journal of Oncology 7



shown in Figure 4(e). Te heatmap of immune-related genes
shows higher expression in mc1 than mc2345 cancer
samples as shown in Figure 4(f).

4. Discussion

Published research studies had reported that cuprotosis
genes showed their crucial biological and clinical functions
on tumor development, clinical therapeutic resistance, and
immune-oncology response via cross-work among the
cuprotosis regulators. Currently, the efects of modifcation
patterns on the TIME were explored in some cancer types.
[1] In our study, the role of cuprotosis modifcation in the
immune landscape of LUAD was profled to deepen our
knowledge of the immune-oncology response based on
LUAD iTIME and provide more potentially efective ICT
clinical treatment strategies.

Based on molecular genotyping by genomic profling
[21, 22], the future clinical application for LUAD patients
has been improved. In this study, fve cuprotosis modif-
cation clusters with signifcantly distinct TIME were iden-
tifed based on 10 cuprotosis gene regulators, including
diferent drug treatment sensitivity, the diferences in

aneuploidy, overall somatic copy number variation, and
expression level of the immune-related genes and clinical
prognosis (OS). In our study, cuprotosiscluster-mc1 showed
enrichment pathways related to full immune activation and
relatively high T-cell function, suggesting high tumor
growth rates in mc1. Accordingly, it was not shown that C3
exhibited deactivated immunity but a poor survival prog-
nosis. For the clinical application of LUAD patients, we
applied a methodology, known as cuprotosisScore, of in-
dividual LUAD patients, to exactly indicate the cuprotosis
methylation level. After an integrated analysis, it was
revealed that cuprotosisScore can be a potential and in-
dependent prognostic factor for LUAD patients. In this
study, we verifed the clinical value of the cuprotosisScore in
the cold immune status (cuprotosiscluster C3) LUAD pa-
tients. As is known, the pre-existing CD8+ Tcell infltration
and a high TMB drive the response to anti-PD-1/PD-L1 ICT
therapy. [23] Tus, combined with our results, the cupro-
tosisScore may serve as a potential indicator for ICT therapy.

Finally, this investigation discovered a link between
cuprotosis alteration, tumor mutation burden, and the
immunological landscape of LUAD tumors. Our in-depth
analysis of cuprotosis alteration patterns in individual
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LUAD patients adds to our knowledge of the tumor im-
munological landscape and paves the way for novel and better
immunotherapeutic methods for LUAD patients. With
consideration of the lack of clinical cohorts to verify our
current results, further validation based on large-cohort
prospective clinical trials is needed in future exploration.
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