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In recent years, abnormal endoplasmic reticulum stress (ERS) response, as an important regulator of immunity, may play a vital
role in the occurrence, development, and treatment of glioma. Weighted correlation network analysis (WGCNA) based on six
glioma datasets was used to screen eight prognostic-related di�erentially expressed ERS-related genes (PR-DE-ERSGs) and to
construct a prognostic model. BMP2 andHEY2 were identi�ed as protective factors (HR< 1), andNUP107, DRAM1, F2R, PXDN,
RNF19A, and SCG5 were identi�ed as risk factors for glioma (HR> 1). QRT-PCR further supported signi�cantly higher DRAM1
and lower SCG5 relative mRNA expression in gliomas. Our model has demonstrated excellent performance in predicting the
prognosis of glioma patients from numerous datasets. In addition, the model shows good stability in multiple tests. Our model
also shows broad clinical promise in predicting drug treatment e�ects. More immune cells/processes in the high-risk population
with poor prognosis illustrate the importance of the tumor immunosuppressive environment in glioma. �e potential role of the
HEY2-based competitive endogenous RNA (ceRNA) regulatory network in glioma was validated and revealed the possible
important role of glycolysis in glioma ERS. IDH1 and TP53 mutations with better prognosis were strongly associated with the risk
score and PR-DE-ERSGs expression in the model. mDNAsi was also closely related to the risk score and clinical characteristics.

1. Introduction

Gliomas are the most common primary intracranial tumor,
accounting for 81% of malignant brain tumor [1]. It is a very
invasive brain tumor, which causes signi�cant mortality and
morbidity [2, 3]. With the development of molecular biology
techniques, much evidence shows that gliomas’ genetic and
epigenetic features have changed signi�cantly, facilitating
many new diagnostic and therapeutic approaches, including

targeted therapy and immunotherapy. Conventional ther-
apies, including surgery, chemotherapy, and radiotherapy,
have achieved limited improvements in the prognosis of
glioma patients [4, 5]. Compared with other solid tumors,
gliomas pose signi�cant challenges to the development of
novel tumor treatments due to biological factors such as the
blood-brain barrier and unique tumor and immune mi-
croenvironments [6]. A remarkable level of genetic, epige-
netic, and environmental heterogeneity exists within each
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glioma, providing multiple mechanisms of therapeutic re-
sistance and forming this highly adaptable and resilient
disease [7]. 0e current rapid development of in-silico
technology provides new computational strategies for po-
tential drug targets for many diseases [8–10]. 0erefore, in
order to improve the level of diagnosis and treatment of
glioma and prognosis prediction, it is particularly necessary
to identify effective biomarkers combined with clinical
features.

0e endoplasmic reticulum (ER) is the primary site for
protein synthesis, processing, and trafficking, and many
genetic and environmental impairments impede the cell’s
ability to fold correctly and post-translationally modify
secreted and transmembrane proteins in the ER, resulting in
the accumulation of misfolded proteins in the ER [11]. 0e
above situation is called ER stress (ERS). Beyond a tolerable
threshold, the accumulation of misfolded proteins triggers
the unfolded protein response (UPR) to improve the folding
ability of ER proteins during transcription and translation
[12]. Robust ERS responses have been documented in most
major types of human cancer, including breast, pancreatic,
lung, skin, prostate, brain, and liquid malignancies [11].
Hostile microenvironmental conditions within tumor
masses, such as nutrient deprivation, oxygen limitation, high
metabolic demand, and oxidative stress, disturb the protein
folding capacity of the ER, thereby provoking a cellular state
of ERS [13]. Sustained activation of ERS sensors endows
malignant cells with greater tumorigenic, metastatic, and
drug resistant capacity [14].

Many studies have also reported the pathogenic role of
ERS in the gliomas’ initiation and progression and the
potential therapeutic guiding value. ERS has been reported
to be associated with self-renewal, differentiation, and drug
resistance of glioma stem cells, and plays a vital role in the
resistance of glioblastoma (GBM) to temozolomide toxicity
(TMZ) [15–17]. General UPR activators or selective GRP78,
ATF6, and PERK inducers have been detected to modulate
cell proliferation and induce apoptosis in glioma cells [18].
Additionally, increased UPR activity strongly affects many
intracellular metabolic pathways, which in turn shape the
tumor microenvironment [18]. UPR favors increased 13C-
glucose uptake and results in higher levels of lactate, alanine,
and uridine diphosphate glucose, which are often associated
with tumor aggressiveness [19]. Recent studies have shown
that abnormal ERS response emerges as critical regulators of
immune cell function in the tumor microenvironment, and
it can subvert the protective function of innate immune cells
in the tumor microenvironment to cripple the development
of antitumor immunity [14]. 0erefore, understanding the
relationship between ERS and tumor microenvironment/
immune cells and exploring the related mechanisms may
become a new way to supplement and improve standard
chemotherapy and immunotherapy in the clinic.

0e competing endogenous RNA (ceRNA) hypothesis
postulates that any RNA transcript with microRNA
(miRNA)-response elements (MREs) can sequester miRNAs
from other targets sharing the same MREs, thereby regu-
lating their expression [20]. 0erefore, cross-talk between
RNAs, both coding and noncoding, through MREs forms

a large-scale regulatory network across the transcriptome
[21]. Mounting evidence has shown that various types of
RNAs, including pseudogenes, long noncoding RNAs
(lncRNAs), circular RNAs, and messenger RNAs, can
function as ceRNAs in distinct physiological and patho-
physiological states [22]. Recent studies on solid tumors and
hematopoietic malignancies have shown that ceRNAs play
significant roles in cancer pathogenesis by altering the ex-
pression of key tumorigenic or tumor-suppressive genes
[23], including gastric cancer [24], lung adenocarcinoma
[25], pancreatic cancer [26], and gallbladder [27]. While
many studies investigate tumors, including gliomas, from
the perspective of ERS, few studies have investigated gliomas
from the perspective of ERS gene-related ceRNA. 0erefore,
exploring ERS-related ceRNA regulatory networks may
contribute to the understanding of ERS-related biological
roles in gliomas.

In this study, with the primary purpose of constructing
a biomarker with high predictive performance and clinical
value, we deeply analyzed ERS-related genes that are highly
correlated with glioma progression and prognosis. To fur-
ther elucidate the important role of ERS in glioma, a multi-
omics analysis from the perspective of ERS-related immune
microenvironment, cell stemness, and ceRNA regulatory
network was also included in this study.

2. Material and Methods

2.1. Recruitment of Glioma Samples for Obtaining DE-ERSGs.
0e schematic overview of our research process is shown in
Figure 1. Our research enrolled the RNA sequencing data
and clinical information of glioma samples from 3 public
databases, including 0e Cancer Genome Atlas database
(TCGA), Gene Expression Omnibus (GEO), and Chinese
Glioma Genome Atlas (CGGA). 0e TCGA and CGGA
databases contain 703 samples (698 glioma and 5 adjacent
normal brain tissues) and 1018 glioma samples, respectively.
0e following 4 datasets from the GEO database were also
included: GSE108474 (376 astrocytoma, 67 oligoden-
droglioma, and 28 normal brain tissues), GSE4290 (26 as-
trocytoma, 81 glioblastoma, 50 oligodendroglioma, and 23
normal brain tissues), GSE4412 (85 glioma), and GSE43378
(5 astrocytoma, 32 glioblastoma, and 13 anaplastic
oligoastrocytoma).

In the meantime, we obtained 5909 endoplasmic re-
ticulum stress-related genes (ERSGs) with a relevance score
≥1 from the gene card database (GeneCards), which con-
tains genomic, transcriptomic, proteomic, genetic, clinical,
and functional information integrated from 150 web sources
[28]. Subsequently, we obtained the RNA sequencing level of
ERSGs in those 6 datasets (TCGA: 5828, GSE108474: 5353,
GSE4290: 5353, GSE4412: 4748, GSE43378: 5351, CGGA:
5254).

To obtain the differentially expressed endoplasmic re-
ticulum stress-related genes (DE-ERSGs) between gliomas
and normal tissues, we set filter conditions for datasets from
different databases (TCGA: |log 2 fold change| (|log 2FC|)
> 1 and false discovery rate (FDR)< 0.05, GEO: FDR< 0.05),
respectively. We intersected DE-ERSGs from TCGA,
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GSE108474, and GSE4290 datasets with ERSGs from
GSE4412, GSE43378, and CGGA datasets to obtain common
genes. 0is process was shown via the R “Venn” package.

2.2. Screening for DE-ERSGs Strongly Related to Glioma.
Weighted gene coexpression network analysis (WGCNA)
was used to explore the modules of highly correlated genes
among samples for relating modules to external sample traits
[29]. We identified 5, 3, and 2 gene modules byWGCNA for
the TCGA, GSE108474, and GSE4290 datasets, respectively.
0e values of best soft power β used in these three WGCNA
processes are 11, 3, and 1, respectively. Among all modules,
the turquoise module of GSE4290 has the strongest corre-
lation with glioma. 0erefore, we extracted DE-ERSGs
strongly related to glioma from the modules with the
strongest positive correlation with glioma from the TCGA,
GSE108474, and GSE4290 datasets, respectively. 0e R
“Venn” package was again used to obtain the common genes
of the three gene modules.

2.3. Screening PR-DE-ERSGs for Prognostic Model’s Con-
struction Based on LASSO Regression. For subsequent sur-
vival analysis, we curated data from 6 datasets to extract
glioma samples with full overall survival (OS) data. TCGA
dataset’s 668, GSE4412 dataset’s 85, GSE43378 dataset’s 50,

and CGGA dataset’s 983 glioma samples satisfy this re-
quirement, as counted in Tables 1 and 2. Univariate Cox
analyses identified differentially expressed endoplasmic re-
ticulum stress-related genes associated with prognosis (PR-
DE-ERSGs) based on TCGA and CGGA datasets data and
filter threshold (p< 0.05), respectively. Common PR-DE-
ERSGs from two datasets were extracted. Expression heat-
map, forest plot reflecting univariate Cox regression results,
and Kaplan–Meier survival curves based on TCGA data
were all used to display the 14 common PR-DE-ERSGs.

0e 668 TCGA samples were randomly equally divided
into 2 subsets (training and test sets). Based on the RNA se-
quencing level of common PR-DE-ERSGs from the training
set, the least absolute shrinkage and selection operator
(LASSO) regression analysis was utilized to screen out highly
related genes and minimize the risk of overfitting for screening
signatures [30]. Eventually, 8 PR-DE-ERSGs and corre-
sponding coefficients were obtained for constructing the
prognostic model by calculating the optimal penalty parameter
(λ). 0e risk score for each sample� sum of corresponding
coefficients×matching gene’s RNA sequencing level.

2.4. Validation of Differential Expression of 8 Genes by Ex-
ternal Data. To maintain the stability of the model, we tried
to validate the differential expression of eight genes in the
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Figure 1: 0e schematic overview of our research process.
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model between glioma and normal brain tissues using data
from an external database. GEPIA is a web tool server for
cancer and normal gene expression profiling and interactive
analyses [31]. Finally, we used this database to compare the
eight gene expression differences between glioma (glio-
blastoma multiforme + lower grade glioma) and normal
brain tissues.

2.5. Model’s Performance and Stability Testing. After
assigning a risk score for each sample, we got the median risk
score. 0is median risk score directly split all samples into
high-risk and low-risk groups. Risk curve and survival point
plot were matched to show each sample’s risk score and
survival status. Kaplan–Meier survival curve and receiver
operator characteristic (ROC) curve were used to test the
performance of the model to discriminate and predict
prognosis, respectively. Univariate and multivariate Cox
regression analyses were used to determine the stability of
the model as a prognostic factor before and after adjustment
for confounders. To maintain the stability of the test results,

we repeated the above analysis based on 3 sets from the
TCGA database, GSE4412 and GSE43378 sets from the GEO
database, and CGGA set, respectively.

As one of the most popular machine learning algorithms
for regression and classification tasks [32], the random forest
(RF) algorithm is often used to determine the importance of
eigengenes [33]. To further assess the relative importance of
the eight PR-DE-ERSGs used to build the model in glioma,
we ran the RF algorithm.0e RF algorithm was run based on
the minimum point of cross-validation error to further rank
the importance of the 8 PR-DE-ERSGs. 0is step was
performed synchronously in the TCGA, GSE108474, and
GSE4290 cohorts. In addition, we also plotted ROC curves
based on 8 PR-DE-ERSGs expression of glioma and normal
samples from the TCGA dataset to evaluate their diagnostic
value in glioma.

2.6. Deep Validation of Model’s Performance and Stability.
0e heatmap visually shows the clinical features matched to
the risk score of each sample from TCGA. We observed

Table 1: Clinical characteristics of glioma samples in training, test, and whole sets from TCGA.

Whole set (n� 668) Training set (n� 334) Test set (n� 334) P

Gender (%)
Male 385 (57.6%) 186 (55.7%) 199 (59.6%) 0.3474Female 283 (42.4%) 148 (44.3%) 135 (40.4%)
Age (year, %)
≤60 529 (79.2%) 255 (76.3%) 274 (82.0%) 0.0862>60 139 (20.8%) 79 (23.7%) 60 (18.0%)
Overall survival time (day, %)
≤730 407 (60.9%) 200 (59.9%) 207 (62.0%) 0.6342>730 261 (39.1%) 134 (40.1%) 127 (38.0%)
Survival status (%)
Alive 414 (62.0%) 197 (59.0%) 217 (65.0%) 0.1299Dead 254 (38.0%) 137 (41.0%) 117 (35.0%)
Grade (%)
2 247 (37.0%) 121 (36.2%) 126 (37.7%)

0.92343 261 (39.1%) 130 (38.9%) 131 (39.2%)
Unknown 160 (23.9%) 83 (24.9%) 77 (23.1%)

Table 2: Clinical characteristics of glioma samples in 2 GEO cohorts and CGGA cohort.

GSE4412 cohort (n� 85) GSE43378 cohort (n� 50) CGGA cohort (n� 983)
Gender (%)
Male 32 (37.6%) 34 (68.0%) 405 (41.2%)
Female 53 (62.4%) 16 (32.0%) 578 (58.8%)
Age (%)
≤60 70 (82.4%) 29 (58.0%) 869 (88.4%)
༞60 15 (17.6%) 21 (42.0%) 113 (11.5%)
Unknown 0 (0.0%) 0 (0.0%) 1 (0.1%)
Survival status
OS-days (median, range) 389 (7–2516) 545 (20–3020) 777 (19–4697)
OS-state (alive (%)/dead (%)) 26 (30.6%)/59 (69.4%) 8 (16.0%)/42 (84.0%) 387 (39.4%)/596 (60.6%)
Grade (%)
2 0 (0.0%) 5 (10.0%) 280 (28.5%)
3 26 (30.6%) 13 (26.0%) 325 (33.1%)
4 59 (69.4%) 32 (64.0%) 374 (38.0%)
Unknown 0 (0.0%) 0 (0.0%) 4 (0.4%)
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differences in risk scores across subgroups of different
clinical characteristics. Kaplan–Meier survival curves further
tested the model’s ability to distinguish prognosis within
each clinical subgroup.

We attempted to obtain glioma and normal brain tissues’
immunohistochemical (IHC) staining images of modeled 8
PR-DE-ERSGs from the Human Protein Atlas database.
0ese images were used to compare further the expression
differences of the 8 PR-DE-ERSGs at the protein expression
level to verify the stability of the model.

Unfortunately, IHC staining images still failed to con-
firm the differential expression of BMP2, DRAM1, NUP107,
and SCG5 between gliomas and normal tissues. 0erefore,
we further carried out Quantitative Real-time PCR (QRT-
PCR) experiments to detect the mRNA expression levels of
these four genes.

After obtaining the approval from the Ethics Committee
of Shangrao People’s Hospital (2022-04-041) and patients’
informed consent, we obtained 6 matched pairs of gliomas
and adjacent paracancerous tissues from the hospital. All
primer sequences were listed in the Supplementary Table 2.
Total RNA was isolated from tissues using the TransZol Up
Plus RNA Kit (TRANS, Beijing, China). According to the
manufacturer’s instructions, cDNA was synthesized by us-
ing EasyScript First-Strand cDNA Synthesis SuperMix
(TRANS, Beijing, China). QRT-PCR was performed by
using PerfectStart® Green qPCR SuperMix (TRANS, Bei-
jing, China) on the Roche Light Cycler 96 Real-time
Fluorescent Quantitative PCR System. 0e detection
values of 4 genes were normalized to the β-actin gene with
the 2−ΔΔCt method. After calculating the relative mRNA
expression values of the four genes, we compared their
differences between glioma and normal paracancerous tis-
sues using paired t-test.

2.7. Enrichment Analysis for Biological Functions and Path-
ways Related to Different Risk Groups. Gene Set Enrichment
Analysis (GSEA) was utilized to perform Kyoto encyclo-
pedia of genes and genomes (KEGG) and Gene ontology
(GO) analyses to screen the signal pathways and biological
functions involved in the different risk groups based on
expression matrix data [34]. 0e R package “clusterProfiler”
and gene sets “c2.cp.kegg.v7.4.symbols.gmt” and
“c5.go.v7.4.symbols.gmt” were applied to run enrichment
analysis [34].

2.8. Exploring the Potential Role of Tumor Immunosuppressive
Environment/Immune Infiltrates Types. After calculating the
overall immune and stromal cell scores for each sample
using the R package “estimate,” we further quantified 16
immune cells and 13 immune function scores by single-
sample gene set enrichment analysis (ssGSEA) based on R
packages “GSEABase” and “gsva” [35, 36]. Correlation
analysis was run between overall immune cell/stromal cell/
16 immune cell/13 immune function scores and risk scores
to explore potential relationships between risk scores and
immune microenvironment. As reported previously, six
types of immune infiltration were identified in human

tumors, which corresponded from tumor-promoting to
tumor-suppressing, respectively, namely, C1 (wound heal-
ing), C2 (INF-g dominant), C3 (inflammatory), C4 (lym-
phocyte depleted), C5 (immunologically quiet), and C6
(TGF-b dominant) [37]. Heatmaps showed differences in the
distribution of different immune infiltrating subtypes be-
tween high- and low-risk groups. Boxplots were used to
further visualize differences in risk scores between different
immune infiltrating subtypes.

2.9. Exploring the Potential Role of Cell Stemness. 0e ac-
quisition of progenitor-like, stem-cell-like features is
strongly connected with cancer progression. Stemness, the
attribute of self-renewal and differentiation from the cell of
origin, can be described by two stemness indexes: a gene
expression-based stemness index (mRNAsi) and a DNA
methylation-based stemness index (mDNAsi), which are
calculated by one-class logistic regression machine learning
algorithm (OCLR) training on stem cell (ESC, embryonic
stemcell; iPSC, induced pluripotent stem cell) classes and
their differentiated ecto-, meso-, and endoderm progenitors
[38]. Malta et al. calculated the mDNAsi for each TCGA
sample based on OCLR-based transcriptomic and epigenetic
signatures [38]. Correlation and difference analyses were
again run to explore the potential association of mDNAsi
with risk score/various clinical characteristics.

2.10. Exploring the Potential Role of HEY2-Related ceRNA
Regulatory Network. Gene names of miRNAs for RNA se-
quencing data from the TCGA database (530 gliomas and 5
adjacent normal tissues) were matched with annotation files
of mature miRNAs obtained frommiRbase. Considering the
critical role of hairy and enhancer of split-related with
YRPW motif protein 2 (HEY2) in glioma, we predicted
miRNAs and lncRNAs that may regulate HEY2 expression.

To improve the accuracy of the prediction results, we
selected miRNAs that appeared more than 3 times in several
target gene prediction programs of starBase. 0e coex-
pression network between all predicted miRNAs and HEY2
was plotted by Cytoscape (v3.7.2). TCGA data was used to
further screen miRNAs with significant roles in glioma. 0e
correlation analysis between miRNAs and HEY2, miRNAs
difference analysis between glioma and normal brain tissue,
and the Kaplan–Meier survival analysis of miRNAs were
performed under the corresponding filtering conditions
(correlation analysis: correlation coefficient<−0.2,
p< 0.001; difference analysis: |log 2FC|> 1 and p< 0.05;
Kaplan–Meier survival analysis: p< 0.05). Eventually, hsa-
miR-369-3p and hsa-miR-181a-5p were identified as can-
didate miRNAs upstream of HEY2.

Afterward, we again predicted potential lncRNAs up-
stream of hsa-miR-369-3p and hsa-miR-181a-5p, re-
spectively. Similar methods and filtering conditions were
used to screen candidate lncRNAs, respectively. Only hsa-
miR-369-3p obtained candidate lncRNAs. Cytoscape was
again used to map the regulatory network composed of 5
candidate lncRNAs, hsa-miR-369-3p, and HEY2. We again
ran correlation analysis between lncRNAs and hsa-miR-369-
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3p (correlation coefficient<−0.35 and p< 0.001), correla-
tion analysis between lncRNAs and HEY2 (correlation
coefficient<−0.15 and p< 0.001) to filter lncRNAs as the
finalized lncRNAs deeply. Two finalized lncRNAs were
highlighted in yellow in regulatory networks.

2.11. Exploring the Potential Role of Mutation. After
detecting and counting somatic gene mutation data in gli-
oma samples in MAF files from the TCGA database, wa-
terfall plots were used to visualize the corresponding results.
0e correlation analysis between risk score and tumor
mutation burden (TMB), the difference analysis of TMB
between different risk groups, and the Kaplan–Meier sur-
vival analysis of TMB were all used to explore the potential
relationship between the model and TMB.

0e statistical results show that IDH1/TP53 mutation,
the most frequently mutated gene in glioma, may play an
indispensable role in glioma. 0erefore, after obtaining the
effect of IDH1/TP53 mutation on prognosis, we further
compared the difference in the risk score/8 PR-DE-ERSGs
expression between IDH1/TP53 mutation and wild groups.
Considering the predictive value of CD274 in immuno-
therapy effect, we also compared the CD274 expression
difference between the two groups to explore the guiding
value of IDH1/TP53 mutation in clinical treatment.

2.12. Evaluation of the GuidingValue of theModel in)erapy.
At present, chemotherapy and immunotherapy are still the
main drug treatment methods for glioma patients [39, 40].
Immunophenoscore (IPS) from 0e Cancer Immunome
Atlas (TCIA) database and Tumor Immune Dysfunction and
Exclusion (TIDE) indexes from the TIDE online website
have previously been used as predictors of the immuno-
therapy efficacy [41, 42]. A lower TIDE score and higher IPS
represent a better patient response to immunotherapy
[41–43]. 0erefore, we obtained 3 kinds of IPSs and TIDE/
MSI/T cell dysfunction/T cell exclusion scores from these
two websites as indicators of immunotherapy’s effect.
Correlations between 3 IPSs and 8 PR-DE-ERSGs expres-
sions, and correlations between TIDE indexes and 8 PR-DE-
ERSGs expressions were analyzed to explore the model’s
guiding value in immunotherapy efficacy.

0eNCI-60 database containing 60 cancer cell lines from
9 different types of tumors was accessed through the Cell-
Miner interface [35]. 0en, the association between 8 PR-
DE-ERSGs and 263 drugs approved by the FDA or in clinical
trials was examined by correlation analyses, respectively.

2.13. Extending the Model’s Clinical Value. To construct
a more accurate comprehensive nomogram to predict the
survival probability of glioma patients, we used independent
prognostic factors obtained by Cox regression analysis. 0e
calibration curve and ROC curve at 1, 2, and 3 years were
used for performance testing of this tool.

Recent studies have shown that immune checkpoint
inhibitors (ICIs), N6-methyladenosine (m6A), and multi-
drug resistance-related genes play an important role in the

diagnosis and therapy of gliomas [44–46]. 0e correlation
between the expression levels of 46 ICIs/12 m6A/2 multi-
drug resistance-related genes and risk scores, and the ex-
pression differences of these genes between different risk
groups were analyzed to further explore the model’s ex-
tended clinical value.

2.14. Statistical Analysis. 0is analysis was performed pri-
marily in the R programming language (version 4.0.3) based
on numerous packages including “limma,” “WGCNA,”
“ComplexHeatmap,” “GSEABase,” “ggExtra,” “maftools,”
“regplot,” and “ggplot2.” In data comparison between/
among groups, student’s t-test/chi-square test or non-
parametric test/fisher’s exact test was used when appro-
priate. Unless otherwise stated, statistical significance was set
at p< 0.05.

3. Results

3.1. Recruitment of Glioma Samples for Obtaining DE-ERSGs.
Supplementary Figures 1A and 1B show 1438 DE-ERSGs
(up-regulated: 785; down-regulated: 653) are identified from
the TCGA dataset based on the 5828 ERSGs’ RNA se-
quencing data. Similarly, there are 2828 DE-ERSGs (up-
regulated: 1507; down-regulated: 1321; Supplementary
Figures 2A and 2B) extracted from the GSE108474 dataset
and 3375 DE-ERSGs (up-regulated: 1886; down-regulated:
1489; Supplementary Figures 3A and 3B) extracted from the
GSE4290 dataset. Five hundred eighty-four common DE-
ERSGs were obtained by intersecting DE-ERSGs from these
3 datasets and ERSGs from the remaining 3 datasets
(Figure 2(a)).

3.2. Screening for DE-ERSGs Strongly Related to Glioma.
After setting the best soft power β, the dynamic pruning
trees merged the similar modules and matched each gene
with the corresponding gene module based on TCGA,
GSE108474, and GSE4290 datasets, respectively
(Figures 3(a), 3(c), and 3(e)). 0e heatmaps in Figures 3(b),
3(d), and 3(f ) show the correlation between gene modules
identified by WGCNA and glioma status based on these
three datasets, respectively. We extracted 24 common DE-
ERSGs strongly related to glioma from TCGA grey module,
GSE108474 blue module, and GSE4290 turquoise module
using Venn diagram (Figure 2(b)).

3.3. Screening PR-DE-ERSGs for Prognostic Model’s Con-
struction Based on LASSO Regression. Fourteen common
PR-DE-ERSGs were obtained from 20 PR-DE-ERSGs in the
TCGA dataset and 17 PR-DE-ERSGs in the CGGA dataset
(Figure 2(c)). 0e expression levels of these 14 genes in
glioma and normal brain tissues are shown in Figure 2(d).
Except for CD22, MTX1, BMP2, and HEY2 (HR< 1), the
remaining 10 genes (HR> 1) were identified as risk factors in
the TCGA dataset, as shown in the forest plot (Figure 2(e))
and Kaplan–Meier survival curves (Figures 2(f )–2(s)). It can
be seen that random grouping did not cause differences in
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Figure 2: Continued.
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the distribution of data between groups (Table 1, p> 0.05).
By setting the optimal value of λ by the LASSO regression
analysis (Supplementary Figures 4A and 4B), we acquired 8
PR-DE-ERSGs to construct the model, eventually. 0e
corresponding coefficients of the 8 PR-DE-ERSGs are de-
tailed in Supplementary Table 1.

3.4. Validation of Differential Expression of 8 Genes by Ex-
ternal Data. Supplementary Figures 5A–5H show the dif-
ferential analysis results of 8 genes from the GEPIA database.
Consistent with our previous findings, the expressions of
NUP107, DRAM1, RNF19A, PXDN, HEY2, F2R, and BMP2
were up-regulated in gliomas (glioblastoma multiforme+
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Figure 2: Screening PR-DE-ERSGs. (a) Acquisition of common DE-ERSGs. (b) Acquisition of common DE-ERSGs strongly related to
glioma. (c) Acquisition of common PR-DE-ERSGs. (d) 0e expression levels of 14 common PR-DE-ERSGs in glioma and normal brain
tissues. (e) Univariate Cox regression analysis results of 14 common PR-DE-ERSGs. (f )–(s) Kaplan–Meier survival analysis of 14 common
PR-DE-ERSGs.

8 Journal of Oncology



lower grade glioma). 0e stable expression trends of these
genes all support the good stability of our model.

3.5.Model’s Performance and Stability Testing. Samples from
all three sets of TCGA exhibited worse prognosis as the risk
score increased (Figures 4(a)–4(c)). 0is conclusion was also

supported in three external datasets samples (Supplemen-
tary Figures 6A–6C). Figures 4(d)–4(f ) show that our model
achieved an area under the curve (AUC) value of >0.85 in
three sets of TCGA data. Surprisingly, such excellent per-
formance can still stand in the test of external datasets (all
AUC values> 0.65, Supplementary Figures 6D–6F).
Kaplan–Meier survival curves show significant differences in
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Figure 3: 0e process of identifying gene modules strongly related to glioma by WGCNA based on TCGA, GSE108474, and GSE4290
datasets, respectively. (a), (c), and (e)0e dynamic pruning trees after merging similar modules, respectively. (b), (d), and (f) 0e heatmaps
reflecting the correlation between modules and gliomas, respectively. 0e correlation coefficients and corresponding p-values for each
module are shown in the boxes.
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Figure 4: Continued.
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survival probability between different risk groups. 0is
conclusion is applicable to the corresponding tests based on
all internal and external datasets (Figures 4(g)–4(i) and
Supplementary Figures 6G–6I). Both univariate and mul-
tivariate analyses based on 6 sets all confirmed that risk score
was a prognostic factor for patients with glioma (Fig-
ures 4(j)–4(o) and Supplementary Figures 6J–6O). Together,
the above results support the excellent performance of our
model in predicting the prognosis of glioma patients.

0e effect of the number of decision trees on the error
rate from three datasets is shown in Supplementary
Figures 7A–7C. From the 3 datasets, we observed that the
importance scores of the 8 ERSGs were relatively high (all
importance scores> 0.5), which suggested that these genes
played relatively important roles in the model (Supple-
mentary Figures 7D–7F). 0e diagnostic ROC curves of the
genes used for modeling all verified their high diagnostic
value in glioma (all AUC> 0.85, Supplementary
Figures 7G–7M). 0ese results support the stability of the
model constructed by these eight genes.

3.6. Deep Validation of Model Performance and Stability.
0e heatmap visually shows 3 clinical features matched to
the risk score of each sample from TCGA (Figure 5(a)).
Additionally, the following Wilcoxon signed-rank test fur-
ther provided many exciting results with clinical value. 0e
risk scores between survival status, age, and grade subtypes
show dramatical differences (Figures 5(b), 5(c), and 5(e)),
demonstrating the close association between survival status/
age/grade and risk score. It is worth pointing out that pa-
tients in the dead group, age ༞60 group, and G3 group were
observed to have a higher risk score. However, gender

characteristics did not show a similar conclusion (Fig-
ure 5(d)). More importantly, there were also significant
differences in survival probability between samples from
different risk groups within each clinical feature subgroup
(Figures 5(f )–5(k)), indicating the guiding significance of
risk score for prognosis.

We only obtained IHC staining images reflecting the
protein expression of five PR-DE-ERSGs (F2R, HEY2,
PXDN, RNF19A and SCG5) (Figures 5(l)–5(p)). As shown
in the stained images, the four PR-DE-ERSGs (F2R, HEY2,
PXDN, and RNF19A) exhibited differences in protein ex-
pression levels between glioma and normal brain tissues,
consistent with their differential expression results based on
the TCGA dataset (Figures 5(l)–5(o)). Unfortunately, the
image of SCG5 fails to support the analysis results based on
the TCGA dataset (Figure 5(p)).

Figures 6(a) and 6(b)showed the significantly higher
DRAM1 and lower SCG5 relative mRNA expression in gli-
omas. But we still failed to verify the significant differential
relative mRNA expression of BMP2 and NUP107 between
gliomas and adjacent normal tissues (Figures 6(c) and 6(d)).

3.7. Enrichment Analysis for Biological Functions and Path-
ways Related to Different Risk Groups. To explore the re-
lationship between different risk groups and biological
pathways, GSEA was utilized to catalogue biological path-
ways modulated by risk groups. In the high-risk group, most
of the GO analysis results and KEGG analysis results were
immune-related functions (positive regulation of T cell
proliferation, regulation of T cell mediated immunity, re-
sponse to interferon-beta, T cell activation, T helper 2 cell
differentiation, toll-like receptor signaling pathway) and
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Figure 4: Model performance testing based on training dataset (a), (d), (g), (j), and (m), test dataset (b), (e), (h), (k), and (n), whole set (c),
(f ), (i), (l), and (o). (a)–(c) Changes in sample’s survival with increasing risk score. (d)–(f) ROC curves reflecting model’s performance.
(g)–(i) Kaplan–Meier survival curves reflecting model’s prognostic discrimination performance. (j)–(l) Results of univariate Cox regression
analysis to determine influencing factors of prognosis. (m)–(o) Results of multivariate Cox regression analysis to determine independent
influencing factors of prognosis.
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pathways (antigen processing and presentation, JAK-STAT
signaling pathway, natural killer cell mediated cytotoxicity,
p53 signaling pathway) (Figures 6(e) and 6(g)). Likewise, the
biological functions in the low-risk group are shown in
Figure 6(f ) (including cell differentiation in hindbrain,
regulation of postsynaptic membrane potential, neuro-
transmitter receptor complex, and postsynaptic density
membrane).

3.8. Exploring the Potential Role of Immune Infiltrates Types
and Cell Stemness. Both correlation and difference analysis
results supported a positive association between the overall
immune/stromal cell score and the risk score (Figures 7(a)–
7(d)). 0e distribution of 16 immune cells and 13 immune
function scores as risk scores increased preliminarily showed
their positive association with risk score (Figure 7(e)).
Figures 7(f ) and 7(g) further show the specific association of
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each immune cell/function score with the risk score. No-
tably, regulatory T (Treg) cells, CD8+ T cells, immature
dendritic cells (iDCs), T helper 2 (02) cells, and macro-
phages were all positively associated with risk scores, and
their higher scores in the high-risk group were also observed.

3.9. Exploring the Potential Role of Tumor Immunosuppressive
Environment. 0e heatmap showed significant differences
in the number of samples of C3, C4, and C5 immune in-
filtrating subtypes between different risk groups
(Figure 8(a)). Higher risk scores in the C3/C4 subgroup and
lower risk scores in the C5 subgroup further confirmed this
distribution (Figure 8(b)). 0e above results indicated that
the C5 subtype was dominant in the low-risk group, and the
C3 and C4 subtypes were dominant in the high-risk group.

Figures 8(c) and 8(d) show that mDNAsi is positively
correlated with the risk score. We also explored the re-
lationship between mDNAsi and four clinical features
(survival state, age, gender, and grade). We found that
mDNAsi had significantly high scores in the dead
(Figure 8(e)), age> 60 (Figure 8(f )) and G3 grade
(Figure 8(h)) populations. However, no significant associ-
ation between gender and mDNAsi was found (Figure 8(g)).
0e above results imply the role of cell stemness in pro-
moting glioma’s progression.

3.10. Exploring the Potential Role of HEY2-Related ceRNA
Regulatory Network. Of all predicted miRNAs, only 25
miRNAs potentially regulating HEY2 exceeded three times
in Starbase database prediction procedures. 0e corre-
sponding coexpression network is shown in Figure 9(a). 0e
mechanism whereby miRNAs regulate the expression of
target genes elucidates that the potential miRNAs should be
inversely correlated with HEY2 expression [47]. 0e

negative correlation between miR-181b-5p/miR-369-3p and
HEY2 expression level and the significantly lower expression
of these two genes in glioma both support their negative
regulation of HEY2 expression (Figures 9(b)–9(e)). 0e
lower survival probability observed in the high expression
group of these two miRNAs further confirms their essential
roles in glioma progression (Figures 9(f ) and 9(g)). 0e
above analysis results well supported the roles of miR-
181a-5p and miR-369-3p as upstream candidate miRNAs in
regulating HEY2 expression.

0e prediction procedures predicted 122/54 lncRNAs
might regulate the expression of miR-181a-5p/miR-369-3p,
respectively. Stringent filtering conditions ultimately pro-
vided only two final candidate lncRNAs for miR-369-3p.
Eventually, the entire coexpression network is visualized in
Figure 9(p). Corresponding correlation and differential
analysis results further confirmed the inverse regulatory
relationship between these two lncRNAs (LINC00689 and
GAS5) and miR-369-3p in glioma (Figures 9(h)–9(m)).
0ese two lncRNAs also showed a positive effect on the
prognosis of glioma patients (Figures 9(n) and 9(o)).

3.11. Exploring the Potential Role of Mutation. 0e waterfall
charts provide an overview of the mutation distribution of
the top 20 genes with mutation frequency in the samples of
different risk groups (Figures 10(a) and 10(b)). TP53 and
IDH1 are the two genes with the highest mutation frequency
in those two charts. In addition, 17 of 24 DE-ERSGs strongly
related to glioma were mutated (Figure 10(c)). Correlation
and difference analysis both supported the close association
between TMB and the model (Figures 10(d) and 10(e)).
Clearly, TMB has a negative prognostic effect on gliomas
(Figure 10(f )). Figures 10(i)–10(k) and 10(m) reveal a strong
association between TP53/IDH1 mutation and 8 PR-DE-
ERSGs/risk score, suggesting cooperative roles of TP53/
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Figure 6: 0e differential analysis of 4 modeled genes’ relative mRNA expression detected by qRT-PCR and enrichment analysis results of
different risk groups. (a) DRAM1. (b) SCG5. (c) BMP2. (d) NUP107. (e) GO enrichment analysis results of the high-risk group. (f ) GO
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Figure 7: Exploratory results related to tumor immunosuppressive environment. (a), (c), and (f) Correlation analysis results between risk
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IDH1 mutation and ERS in glioma. Figures 10(l) and 10(n)
show the positive effect of TP53/IDH1 mutation on the
prognosis of glioma patients. Lower CD274 expression in the
TP53/IDH1 mutation group revealed the predictive value of
TP53/IDH1 mutation in response to immunotherapy
(Figures 10(g) and 10(h)).

3.12. Evaluation of the GuidingValue of theModel in)erapy.
Figures 11(a)–11(h) show the corresponding results for the
top six most strongly correlated with 8 PR-DE-ERSGs ex-
pression among 263 FDA approved or clinically tested
drugs. It is worth mentioning that we observed an inverse
correlation between DRAM1 expression and carmustine (a
chemotherapeutic drug recommended by the latest National
Comprehensive Cancer Network (NCCN) guidelines for the
treatment of glioma) (Figure 11(a)). 0is suggests that the 8
PR-DE-ERSGs in the model may serve as guide markers for
the rational use of these drugs. Combining the correlation
results, we found that the expressions of PXDN, DRAM1,
and BMP2 were all closely correlated with IPSs and TIDE
scores, implying the guiding value of these genes in im-
munotherapy strategies (Figures 12(a) and 12(b)).

3.13. Extending the Model’s Clinical Value. To expand the
clinical utility scope of the model, we developed a novel
nomogram to facilitate the prediction of the 1-, 2-, and 3-
year survival probability of glioma patients (Figure 13(a)).
Our nomogram considers the combined effects of composite
factors (risk group, age, and grade) on prognosis. 0e cal-
ibration curves demonstrate the excellent internal consis-
tency between the predictions made by our nomogram and
the actual outcomes (Figures 13(b)–13(d)). Also, ROC
curves show high AUC values in three sets of TCGA
(Figures 13(e)–13(g)).

Interestingly, with the exception of VTCN1, TMIGD2,
CD200, HHLA2, and ADORA2A, most ICIs related gene
expression showed positively correlated with the risk score
(Supplementary Figure 8A). In addition, half of the m6A-

related genes demonstrated a positive correlation with the
risk score (Supplementary Figures 8A and 8C). 0e fol-
lowing difference analysis results shown in Supplementary
Figures 8B and 8C further support the above conclusions.

After analyzing the correlation between multidrug
resistance-related genes and the prognosis model, we found
that ABCC1 and ABCC3 gene expressions were significantly
positively correlated with the risk score (Supplementary
Figures 8D and 8F). And both ABCC1 and ABCC3 were
highly expressed in the high-risk group (Supplementary
Figures 8E and 8G).

4. Discussion

WGCNA, a systems biology method for describing the
correlation patterns among genes across microarray sam-
ples, can be used for finding clusters (modules) of highly
correlated genes and relating modules to one another and to
external sample traits [48]. WGCNA is widely used to
identify tumor candidate biomarkers and explore the
mechanism, such as gastric cancer [49], bladder cancer [50],
gastric adenocarcinoma [51], and breast cancer [52]. 0is
study utilized WGCNA and univariate Cox regression to
screen out 8 PR-DE-ERSGs highly correlated with glioma to
establish a prognostic model. We also established a nomo-
gram by combining the prognosis model with clinico-
pathological factors to predict survival in glioma patients. In
repeated validation tests, both the prognostic model and
nomogram demonstrated excellent prognostic performance
and substantial clinical value. 0e strong association be-
tween risk score and immune cells/functions, cell stemness,
and IDH1/TP53 mutation further elucidates the important
role of ERS in glioma progression and treatment. 0e TCGA
data further confirmed the important regulatory value of the
predicted HEY2/miR-369-3p/lncRNAs networks in glioma.

To better understand the potential molecular mechanism
of our prognostic model, we have expanded on these genes.
As an essential component of the nuclear pore complex,
Nucleoporin 107 (NUP107) may contribute to the
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11201 Altered in 277 (86.29%) of 321 samples.
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Figure 10: Continued.
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regulation of cell fate in aged and transformed cells by
modulating nuclear trafficking of signal based on un-
differentiated oligodendroglioma cells in vitro [53]. Damage
Regulated Autophagy Modulator 1 (DRAM1), a p53 target
gene encoding a lysosomal protein that induces macro-
autophagy, plays a central role in p53/TP53-mediated ap-
optosis [54]. Galavotti et al. found that high levels of
DRAM1 were associated with shorter overall survival in
GBM patients, which is consistent with our findings [55].
Ring Finger Protein 19A (RNF19A) encodes a protein that
belongs to the ring fingers protein family, an E3 ubiquitin
ligase [56]. RNF19A decreases p53 expression and its
downstream signaling, binds to p53, and promotes its
ubiquitination, thereby promoting nonsmall cell lung car-
cinoma (NSCLC) growth and progression [57]. Peroxidasin
(PXDN) encodes a heme-containing peroxidase that is in-
volved in extracellular matrix formation associated with
prostate cancer [58]. Overexpression of PXDN is found in
ovarian cancer [59], melanoma [60], oral squamous cell
carcinoma [61], and prostate cancer [58], associated with
poor prognosis. All aforementioned studies support our
findings that PXDN is a prognostic risk factor in glioma.
Coagulation factor 2 thrombin receptor (F2R), a key
component in the thrombosis process, has been demon-
strated up-regulated in various cancers and was associated
with several protumoral responses, including primary
growth, invasion, metastasis, and angiogenesis [62–66]. In
glioma, the expression of F2R was up-regulated and pre-
dicted poor prognosis. F2R promotes glioma cell pro-
liferation and metastasis under SOX2 and actives the WNT/
β-catenin signaling pathway [62]. 0e epigenetic

inactivation of secretogranin V (SCG5/SGNE1/7B2) was
a frequent early event in glioma formation, resulting in
significant downregulation of SCG5/SGNE1/7B2 expression
[67]. Bone morphogenetic protein 2 (BMP2), a member of
the transforming growth factor-β (TGF-β) super-family, is
one of the main chondrogenic growth factors involved in
cartilage regeneration [68]. In the new glioma grading model
constructed by Zhou et al., BMP2 shows reliable prognostic
value as a protective factor in GBM, consistent with our
results [69]. In our study, the results of human tissue-based
IHC staining and QRT-PCR experiments well confirmed the
biological value of F2R, HEY2, PXDN, RNF19A, SCG5, and
DRAM1 in glioma.

Recently, the close functional relationship between ERS
and noncoding RNAs (ncRNAs), including miRNAs,
lncRNAs, and circRNAs, has been widely reported in cancer
development [70]. MiRNAs and lncRNAs directly or in-
directly act on UPR pathway molecules to regulate in-
tracellular homeostasis and affect carcinogenic processes,
including survival, apoptosis, invasion, metastasis, cancer
stem cell characteristics, and the tumor microenvironment
[70]. However, few studies focus on ERS-related ceRNA
regulatory network in gliomas. After prediction and veri-
fication of TCGA data, a ceRNA regulatory network com-
posed of HEY2, miR-369-3p, and GAS5/LINC00689 was
screened out.

HEY2, one of the most prominent Notch pathway target
genes, encodes a transcription factor [71]. Halani et al.
proposed that the loss of the Notch pathway activity and
particularly of Hey2 levels were correlated with oligoden-
droglioma [72]. Moreover, Giachino et al. found that high
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Figure 10: Exploratory results of mutation. (a) and (b) An overview of the mutation distribution in the samples of different risk groups of
the top 20 genes with mutation frequency, respectively. (c) A mutation distribution overview of 17 mutated DE-ERSGs strongly related to
glioma. (d) Correlation analysis result between risk score and TMB. (e) Difference analysis result of TMB between different risk groups. (f )
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HEY2 expression correlates with a better prognosis for
patients with grades II–III astrocytoma and GBM, further
supporting our observation [73]. Previous studies have
shown that overexpression of growth arrest-specific tran-
script 5 (GAS5) inhibits the malignant phenotype of glioma
cells, including proliferation, migration, and invasion, acting
as a tumor suppressor of human gliomas [74]. GAS5 may
blunt the resistance of glioma cells to cisplatin by sup-
pressing excessive autophagy through the activation of
mTOR signaling, implying a promising therapeutic strategy
against chemoresistance in glioma [75]. However, increased

LINC00689 level was associated with poor clinical features
and decreased overall survival in glioma patients, and the
overexpression of miR-369-3p inhibited the proliferation
and migration in glioblastoma cells [76, 77]. 0ose appear to
be different from ours. However, the predominant roles of
HEY2, miR-181a-5p, and GAS5 and the cross-talk between
multiple ceRNAs may explain our results. Interestingly,
miR-369-3p, miR-181a-5p, and LINC00689 were found to
be related to glycolysis [77–79]. And the high rate of aerobic
glycolysis is a key characteristic of cancer cells, which
promotes uncontrolled proliferation [80]. Recently,
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Figure 11: Correlation analysis results between the top six drugs most closely related to the 8 PR-DE-ERSGs expression and 8 PR-DE-
ERSGs, respectively. (a) DRAM1. (b) BMP2. (c) RNF19A. (d) PXDN. (e) NUP107. (f ) F2R. (g) HEY2. (h) SCG5.
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accumulating studies have illustrated that activated aerobic
glycolysis participated in various cellular and clinical ac-
tivities of glioma, thus influencing the efficacy of radio-
therapy and chemotherapy [80]. Taken together, miRNA
dysregulation in glioma disables proper tumor suppression,
increases glycolytic metabolism, and augments tumor ma-
lignancy through multiple effectors and signaling
pathways [81].

0e majority of immune cell and function scores in the
high-risk group further explain the enrichment of numerous
immune-related biological processes in the high-risk group.
Infiltration of Treg cells is often enriched in tumor tissue,
and a high proportion of Treg cells and effector T cells often
predicts poorer patient outcomes [82]. It has been suggested
that Treg cells in tumor-associated tertiary lymphoid
structures can suppress endogenous immune responses
against tumors, resulting in poor prognosis [83]. More and
more studies have shown that tumor-associated myeloid
cells, such as iDCs, can be recruited in the tumor envi-
ronment and form an organic whole to maintain an im-
munosuppressive state [84]. 0e Siglec-9 expressed on this
cell can bind to the Mucins1-related STn antigen released by
cancer cells and lead to an increase in interleukin-10 and
a decrease in the production of IL-12 [85]. 0is prevents the
DC’s ability to activate T-helper 1 responses [86]. According
to the tissue environment, macrophages can be divided into
M1 macrophages with proinflammatory and tumor-
suppressive effects and M2 macrophages with immuno-
suppressive and tumor-promoting effects [87]. While

tumor-associated macrophages generally acquire the same
phenotype as M2 macrophages, their roles in cancer are
often associated with poor prognosis [88]. Kakizaki et al.
found that the cells, together with Tregs, play a role in
maintaining the tumor microenvironment [89]. In con-
clusion, the reason for the poor prognosis of the high-risk
group but the enrichment of more immune-related pro-
cesses may be related to the fact that these immune cells can
maintain the tumor immunosuppressive environment.

0e waterfall plot showed that the two most frequently
mutated genes were isocitrate dehydrogenases 1 (IDH1) and
Tumor Protein p53 (TP53) in the high-risk and low-risk
groups. IDH1 mutation is an early event in glioma devel-
opment and positively correlates with TP53 mutation
[90, 91]. And the co-occurrence of IDH1 mutations and
TP53 alterations is widespread in gliomas [92]. An in-
creasing number of reports have shown that gliomas patients
with IDH1 mutations have a better prognosis than the one
with wild-type IDH1 [93, 94]. IDH1 is increasingly recog-
nized as an independent prognostic marker for gliomas,
consistent with our findings [95]. Importantly, Amankulor
et al. suggested that differences in immune cell content may
contribute to this prognostic difference [96]. By creating
mouse models, they found reduced levels of many types of
immune cells in IDH1-mutated tumors, such as macro-
phages, microglia, monocytes, and neutrophils [96]. Also,
previous reports suggested that significant infiltration of
these immune cells leads to poor prognosis in a variety of
cancers [88, 97–99]. Surprisingly, immune cells such as
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Figure 12: Evaluation of the correlation between 8 PR-DE-ERSGs and immunotherapy response. (a) Correlation analysis result between 3
types of IPS and 8 PR-DE-ERSGs expression. (b) Correlation analysis result between TIDE/MSI/Tcell dysfunction/Tcell exclusion score and
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macrophages were also less in the patients of the low-risk
group with a better prognosis. Based on the mutual support
between these studies and our findings, we speculate that the
favorable prognosis of the IDH1 mutant group may also be
related to the reduction of immune cells capable of main-
taining the tumor immunosuppressive environment.

As the results show, our model exhibited excellent ca-
pabilities in predicting the prognosis of patients with glioma
and facilitating the optimal selection of clinical treatment
strategies. However, the research still has numerous limi-
tations. For example, the difference in protein expression of
SCG5 is still not supported by IHC staining images obtained
based on experiments. In addition, our research failed to
combine basic experiments to verify the study results.
Considering the complexity of the ceRNA network, we only
selected HEY2 to explore the ceRNA axis to avoid involving
a large number of RNA transcription samples that make the
detailed study laborious. Despite many shortcomings, our
study still provides a rich exploration and in-depth expla-
nation of the underlying mechanism. 0ese may provide
new ideas for follow-up research.

5. Conclusions

In this study, 8 PR-DE-ERSGs strongly related to glioma
were screened out by WGCNA to establish a prognostic
model with excellent prognostic performance and important
clinical value. 0e strong association between risk score and
immune cells/functions, cell stemness, and IDH1/TP53
mutation further elucidates the important role of ERS in
glioma progression and treatment. 0e TCGA data further
confirmed the important regulatory value of the predicted
HEY2/miR-369-3p/lncRNAs networks in glioma. All in all,
the above results all supported that biological processes
related to HEY2-based ceRNA regulatory network, tumor
immunosuppressive environment, cell stemness, and IDH1
mutation may be involved in the progression and treatment
of glioma.
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Supplementary Figure 1. Differential expression analysis of
ERSGs in the TCGA dataset. (A) Heap map of the differ-
ential expression of ERSGs in the TCGA dataset. (B) Vol-
cano plot of DE-ERSGs in the TCGA dataset. (red dots: up-
regulated genes, black dots: genes with no significant dif-
ferences, green dots: down-regulated genes). Supplementary
Figure 2. Differential expression analysis of ERSGs in the
GSE108474 dataset. (A) Heap map of the differential ex-
pression of ERSGs in the GSE108474 set. (B) Volcano plot of
DE-ERSGs in the GSE108474 set. (red dots: up-regulated
genes, black dots: genes with no significant differences, green
dots: down-regulated genes). Supplementary Figure 3.
Differential expression analysis of ERSGs in the GSE4290
dataset. (A) Heap map of the differential expression of
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Figure 13: Construction of a nomogram that effectively extends the clinical value of the model. (a) A novel nomogram to accurately predict
the 1-, 2- and 3-year survival probability of glioma patients. (b)–(d) Internal calibration curves of 1, 2 and 3 years based on three sets,
respectively. Higher degree of fitting with the grey line represents higher accuracy of the Nomogram prediction. (e)–(g) ROC curves of 1, 2
and 3 years based on three sets, respectively. AUC> 0.5 is considered to have a predictive value.
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ERSGs in the GSE4290 set. (B) Volcano plot of DE-ERSGs in
the GSE4290 dataset. (red dots: up-regulated genes, black
dots: genes with no significant differences, green dots: down-
regulated genes). Supplementary Figure 4. LASSO analysis
based on the training set. (A) 0e minimum standard. (B)
Coefficients. Supplementary Figure 5. Validation of differ-
ential expression of 8 genes by GEPIA database’s data.
Supplementary Figure 6. 0e testing results of model’s
performance based on GSE4412, GSE43378, and CGGA
datasets. (A–C) 0e changes in sample’s survival state with
increasing risk score. (D–F) ROC curves reflecting model’s
prognostic predictive performance. (G–I) Kaplan–Meier
survival curves reflecting model’s prognostic discrimination
performance. (J–L) 0e results of univariate Cox regression
analysis to determine influencing factors of prognosis.
(M–O)0e results of multivariate Cox regression analysis to
determine independent influencing factors of prognosis.
Supplementary Figure 7. Calculate the relative importance of
8 PR-DE-ERSGs in glioma based on RF algorithm. (A–C)
0e error rates are influenced by the number of decision
trees in three datasets, respectively. 0e x-axis represents the
number of decision trees and the y-axis is the error rate.
(D–F) 0e importance score of the 8 PR-DE-ERSGs in three
datasets, respectively. 0e x-axis represents the importance
index, and the y-axis represents the genes. (G–N) 0e ROC
curves of 8 PR-DE-ERSGs from TCGA dataset. Supple-
mentary Figure 8. Extending the model’s clinical value. (A)
Correlation analysis of risk scores with ICIs and m6A-
related genes expression. (B–C) Differential expression
analysis of ICIs and m6A-related genes in different risk-
score subtypes, respectively. (D, F) Correlation analysis
result between risk-score and ABCC1/ABCC3, respectively.
(E, G) Differences in ABCC1/ABCC3 expression between
different risk groups, respectively. Supplementary Table 1:
the DE-FRGs used to construct the model and the corre-
sponding coefficients. Supplementary Table 2. All primer
sequences for qRT-PCR. (Supplementary Materials)
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